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ABSTRACT  
Non-liner inversion of ratio of (relative) P to S waves amplitudes of 3 selected KTB events was performed in Kolář (2007a) to 
determine moment tensors (MTs). Here further development of the method is presented: (i) re-calibration of the seismograms, 
(ii) re-interpretation of the S wave maximal amplitudes readings, (iii) a linear inversion of the (re-calibrated) amplitudes 
including MTs errors determination, and (iv) four methods of transformation of MT errors into errors of their decomposed
parts. Generally, the new results confirm previous ones, however remain some open questions about MT errors
transformation. New methodology is more accurate and data processing more user-friendly. 
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maximal displacement of P and S waves amplitudes. 
Remember, that while inversion of absolute P and/or 
S amplitudes is a simple linear problem, inversion of 
P to S ratios is then generally non-linear.1 

Determined MTs were finally decomposed into 
their volumetric (VOL), compensated linear vector 
(CLVD) and double couple (DC) parts and their 
orientation (strike, dip, rake), which is nowadays 
probably most often used way of MT decomposition. 
Errors of MT are then also “decomposed” into errors 
of DC, non-DC parts and geometrical orientation.  

Further development of several points of the 
previous work is presented in this paper: (i)
re-calibration of the seismograms, (ii) re-interpretation 
of the S wave amplitudes, (iii) a linear inversion of the 
(re-calibrated) amplitudes is performed, and (iv) four 
methods of transformation of MT errors into errors of 
their decomposed parts are design, applied and 
compared. 

INTRODUCTION 
The events under interest come from an active 

experiment: fluid injection into the KTB borehole (for 
details about the experiment see Baish et al., 2002). 
The seismograms were recorded by a network 
consisting of about 40 stations, there were available 
records of events with magnitude ranging from -1.2 to 
1.1. The analysis was restricted only to data from 
surface stations and to the set of about 150 events with 
depth about 5 km (events were also located around 
depth 9 km, but they were not subject of this analysis). 
In the previous study (Kolář, 2007a) we determined 
full seismic moment tensors (MT) for 3 events from 
the set (Mw = 1.02, 0.55, 0.22).  

The data sets – seismograms – are partly 
distorted and as the most distorting it has appeared the 
lack of calibrations constants due to which the 
amplitudes could not be determined absolutely. 
Therefore ratios of relative P to S waves amplitudes 
were used as inversion input data. We processed 

1 Even if division of two linear equations lead generally in non-linear problem, Julian and Foulger (1996) developed a method
which enable linear inversion of P to S waves ratio.  

In commemoration of work of Tycho Brahe (died 1605 in 
Prague), who measured so precisely, more precisely than 
had ever been measured before him, that his measurement 
would provided a basis to falsify his own hypothesis about 
the Solar system and the Universe. 
(adopted after Horský and Plavec, 1962 and Horský, 1980) 
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S WAVES AMPLITUDE RE-INTERPRETATION 
During S waves picking in the seismograms 

under the interest, it was often difficult to identify 
maximal S wave amplitude and particle motion 
diagrams were used systematically to distinguish them 
– see Kolář (2007a). Also time shift between S waves 
maxima on different components were often observed. 
We decided to re-interpret S waves picking with 
different seismogram viewer (Kolář, 2006, 2007b) and 
to test different methodology of S waves 
interpretation. We adopted methodology proposed 
Silver and Chan (1991) which is based on time and 
spatial correlated seismograms.4 In this method we 
search for new components F and S given by 
transformation of original component R and T (in 
ZRT components system). The transformation 
consists of rotation of (horizontal components) by 
angle dFi and their mutual time shift by dN. These 
values are chosen in such a way (following Silver and 
Chan, 1991), that determinant D  
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has minimal value. Coefficients C represent 
corresponding correlation of new components F and 
S. In such a way the shape of S waves is simplified - it 
has usually one principal maximum which can be 
easily identified. To obtain SH and/or SV amplitudes 
we rotated (time shifted) components F and S 
backward by angle –dFi while the (new) time position 
is kept unchanged. 

It has appeared, that maximal S amplitudes can 
be more easily identify in new transformed 
components and particle motion diagram was used 
only in a few cases, mainly to distinguish between two 
similar maxims of different orientation. The 
reinterpreted data were used then for (linear) 
inversion; P waves amplitudes were not re-interpreted 
and originally interpreted values (Kolář, 2007a) were 
used.  

Two slightly different ways of S waves 
processing were designed. First only horizontal 
components of seismograms are correlated with no 
regard to vertical one (method refereed here after as 
SLVR1). In the later, vertical Z and radial R
component are rotated (keeping transversal T 
component constant) so that the vertical component is 
minimal before correlation calculation. This approach 

SEISMOGRAM RE-CALIBRATION  
Once MTs are determined (Kolář, 2007a) it is 

also possible to evaluate forward problem, i.e. using 
well know equation 

 

U = G * MT ,                                                            (1)
 

where U is displacement, G is (derivative of) Green’s 
function and MT is seismic moment tensor (see e.g. 
Jost and Herrmann, 1989), “theoretical” amplitudes 
can be calculated. It is known, that the stations of 
KTB network were equipped with three-component 
seismometer Mark L4-3c and with recording units 
PDAS-100 (Baish et al., 2002). This instruments 
posses a pre-amplifier which gain can be changed by 
orders. Let suppose now, that the seismogram 
absolute amplitudes ambiguity is consequence only of 
usage wrong values of this 10n gain in raw data 
restitution and that values were not changed during 
the experiment.2 Those pre-gains for each station are 
searched in form of  

 

i
i
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n

abs AA 10=  i=1- number of stations             (2)
 

where Aabs is absolute (displacement) amplitude and 
Arelat relative amplitude for each station and we try to 
set individual ni from their mutual comparison to 
reach best fit - trial and error method was used.3 The 
possible influence of noise, which is eliminated when 
P to S ratio is used, is (partly) reduced by svismogram 
filtration (band pass filter 2.5 – 40.0 Hz) and using 
amplitudes determined as Amax - Aonset (for details see 
Kolář, 2007a). The effect of the correction is 
demonstrated in Figure 1; the values of correction are 
given in Table 1. Note, that by this method the 
calibration constants can be determined but for a 
multiplicative constant (common for all the stations). 
 

2 Value of calibration constants are likely lost for ever (if they ever had been known correctly). However on the base of 
discussion with people operating seismometers (namely J. Horálek – personal communication) and on the structure of data 
decoding program, where various constants in form of 10n for particular stations are applied, we consider our assumption to 
be at least probable, if not more. 

3 This idea was lanced by colleagues Z. Jechumtálová, V. Vavryčuk and T. Fischer – personal communication. 
4 This method was originally developed for processing of waves affected by medium with anisotropy. Here we do not study 

origin of the effect (shift of maxima can be caused not only by anisotropy but e.g. also by free surface effect). 
 

Station Correction 
303 0.01 
322 0.10 
323  0.10  
341  10.00    
347  0.10  

all others  1.00  
 

Table 1 Found values of re-calibration constants 
(Data_truth = Correction * Data_orig ). 
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a 

b 
Fig. 1 An example of one event data set (event 048290, seismograms are sorted according 

epicentral distance, all 3 components are plotted). There are raw original data in 
Figure 1a and the same seismograms after re-calibration in Figure 1b. The improvement 
is obvious, the remaining amplitude variation is consider to be the effect of radiation 
pattern, propagation, surface effects, etc.  
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more difficult to be interpreted, etc.). Therefore 
weighting of S wave data is optionally used: the S 
waves amplitudes are scaled with factor w which is 
estimated (following e.g. Bartsch, 2000) as 

 

2
S

2
P

s
sw =  ,                                                             (5)

 

where sP is error estimation from only P waves data 
solution evaluated using (4). Error estimation sS
cannot be calculated directly as it is not possible to 
invert only for SH waves amplitudes (see above). 
Therefore we used following approach: we evaluate 
theoretical StheorP waves amplitudes from MTP –
moment tensor determined from P waves. Error sS is 
then calculated as difference between those theoretical 
StheorP values and S waves data.  

To be able to compare reliability of various 
solutions we introduce a single number: an average of 
normalized errors of mij components. The averages of 
normalized error of MTs of different considered data 
sets are given in Table 2. It follows from the table that 
lower or even the lowers error is produced for linear 
inversion of P + S weighted data, ZRT coordinates 
system and SLVR1 data reading method. In addition 
this method enable also user-friendly way of data 
processing. The results of this (linear) inversion are 
given in Table 3 (MTs), Table 4 (MTs decomposition) 
and plotted in Figures 2 and 3. It follows from the 
Table 4 that MT obtained by non-linear and linear 
inversion are consistent when the system is 
sufficiently over determined (events 048290 and 
058266). For event 065259 the situation is different. 
We suppose that it is consequence low number of 
observations (data only from 9 stations are applicable) 
and also (slightly) different data set is used for linear 
and non-linear inversion: results of non-liner inversion 
of only P to S amplitudes ratios were unstable and had 
to be stabilized by adding signs of P waves onsets, 
which modify data set form statistical point of view. 
Note that similar approach for inversion stabilization 
was used also by Vavryčuk et al. (2008).  

From the re-calibrated data it was also possible 
to determine value of scalar seismic moment M0 and 
consequently moment magnitude MM0 by using 
formula 
 

( )1.9log
3
2

0100 −= MM M  ,                                  (6)
 

defined by Hanks and Kanamori (1975) – see Table 3. 
Determined MM0 values are higher than original 
values Morig , however serious discussion of this effect 
would need enlarge the processed event set. 

 
MT ERRORS DECOMPOSITION 

In addition to the knowledge of MT we 
determined also errors of MT components. In this 

is a sort of determination of dynamic incident angle. 
The angle of rotation was allowed to range in interval 
(0o ; 45o). Then new horizontal components were 
again correlated (method refereed here after as 
SLVR2). A byproduct of this operation is a set of 
values of dN, dFi and dynamic incident angles which 
should be the subject of the future investigation. 

 
LINEAR INVERSION OF RE-CALIBRATED DATA 

Absolute P and/or S amplitudes can be put into 
(1), i.e. in a system of over-determined linear 
equations in our case. Matrix’s coefficients – Green 
functions – are the same as in previous work (Kolář, 
2007a): a homogeneous half space model with vP=5.6 
km/s and vP/vS=1.8 was used. Remember that this 
simple model yielded better fit of the data then other 
considered model – a 400m low velocity layer over a 
half space gradient model (Málek et al., 2000).5 MTs 
were then determined as a solution of system of over 
determined linear equations (i.e. a matrix inversion is 
performed - see e.g. Menke, 1989). MTs are computed 
from re-calibrated P wave amplitudes and P+S wave 
amplitudes. Remember that MT cannot be inverted 
only from SH waves amplitudes which are used as S 
waves representation. Remember, that we restricted 
on SH waves to avoid problem with uncertainty or 
even singularities with free surface conversion 
coefficient for SV waves – for more detailed 
discussion see Kolář (2007a). 

Errors of these linear solutions can be 
determined by a standard way: independency of the 
parameters (MT components mij) is supposed and the 
errors are determined as diagonal members of a 
covariance matrix when estimation of data standard 
error s is given as (following e.g. Rektorys et al., 
1995) 
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where x0 are predicted values and x are observed data, 
N is number of observations, k number of parameters 
(k = 6 in our case). It is supposed, that into this 
estimation of the data standard error it is also 
projected error of inadequate medium modeling which 
is indeed not a homogeneous half space in reality. 
Note, that these “linear” errors are fully deterministic 
to the contrary to the previous “non-linear” errors 
determined in Kolář (2007a). Those “non-linear” 
errors were an estimation and even if they were found 
to be realistic and consistent, they inevitably posses a 
stochastic part and may vary for different realizations 
of non-linear inversions. 

It can be expected that P and S waves amplitudes 
are determined with different reliability (S waves 
amplitudes are expected to posses bigger error as they 
can be disturbed by noise generated by P waves, they 
are often of more complicated shape and therefore 

5 No other testing of medium models was performed in the present work. 
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Table 2 Average of MTs error of linear inversion of different data sets are given (inversion of P, P+S,
P+Sweighted and corresponding weight). Two systems of components were used (ZNE and ZRT) and
three methods of maximal amplitude finding: particle motion diagram (PM) and two methods of 
time-spatial correlation SLVR1, SLVR2 for data interpretation – see the text. The combination of ZRT 
components system, SLVR1 method of interpretation and weighted S amplitudes data yields generally
low or the lowest error value (bold); the inversion of non weighted P + S waves data set seems to be the
worst possibility, but for 06259 event. We assign this effect to the low number of observations in this
particular case.   
On the base of given result with regards to user-friendly way of method SLVR1 data processing, we 
chose the combination of ZRT coordinates system and SLVR1 interpretation method as suitable for
further processing. 

 
Event Components / 

 method 
P P+S P+S 

weighted 
P/S 

weight 
046290 ZNE  PM 0.18 0.19 0.13 35 
 ZRT  PM 0.18 0.36 0.13 34 
 ZRT  SLVR1 0.18 0.35 0.14 43 
 ZRT  SLVR2 0.18 0.42 0.15 128 
058266 ZNE  PM 0.33 0.93 0.26 7 
 ZRT  PM 0.22 0.24 0.16 13 
 ZRT  SLVR1 0.22 0.42 0.11 99 
 ZRT  SLVR2 0.22 0.50 0.11 149 
065259 ZNE  PM 1.27 0.16 0.37 40 
 ZRT  PM  0.39 0.48 0.19 115 
 ZRT  SLVR1 0.39 1.07 0.20 221 
 ZRT  SLVR2 0.39 1.13 0.20 192 
 

Table 3 Moment tensor determined as linear inversion of P and weighted S waves amplitudes. There are given
number of event, number of used stations, original magnitude Morig, magnitude determined from scalar 
seismic moment MM0, scalar seismic moment M0, normalized components mij of MT, their errors and 
average of errors of mij . 

event stats. Morig MM0 M0 x109 
[Nm] 

m11 m12 m13 m22 m23 m33 averr. 
error 

048290 29 1.02 1.33 
+/-  0.04 

123 
+/- 16 

-0.63 
+/- 0.23 

0.66 
+/- 0.16 

-0.24 
+/- 0.07 

-0.04 
+/- 0.23 

0.52 
+/- 0.07 

0.29 
+/- 0.07 

 
0.14 

058266 31 0.55 1.01 
+/- 0.01 

41.2 
+/- 0.9 

-0.47 
+/-  0.19 

0.72 
+/-  0.14 

-0.48 
+/- 0.06 

0.41 
+/- 0.18 

0.17 
+/- 0.07 

-0.25 
+/- 0.06 

 
0.12 

065259 9 0.22 0.42 
+/- 0.71 

5.3 
+/- 1.3 

0.78 
+/- 0.48 

0.18 
+/- 0.23 

-0.80 
+/- 0.22 

0.01 
+/- 0.14 

0.13 
+/- 0.06 

0.15 
+/- 0.08 

 
0.20 

 

MT’s decomposition results. Two versions of method 
were  used: either  all  the  possible  combination  of 
mij +/- mijerror were consider – i.e. 26 = 64 
combinations (hereafter referred as MAP64 method) 
or  all mij were kept constant but one, which were vary 
in the same way as before – i.e. 2*6 = 12 
combinations were considered (hereafter referred as 
MAP12 method). These methods are simple and easy 
to evaluate. Method MAP64 is very conservative error 
estimation, method MAP12 is rather errors lower limit 
than their estimation. Moreover these method are not 
fully robust (namely MAP64) for errors of periodical 
values (strike, dip, rake) sometimes cannot be 

paragraph we investigate how these errors can be 
transformed during MT decomposition. We named 
this transformation as MT errors decomposition.  

In Kolář (2007a) errors of MTs were determined 
by mapping the parameter space around the 
(non-linear) solution and they were transformed into 
errors of source geometrical orientation (strike, dip, 
rake) and errors of VOL, CLVD and DC components. 
It was done it in a following way: all possible 
combinations of MT’s values and their errors were 
used as input data for MT’s decomposition; the 
maximum or minimum of the decomposed values 
respectively were then taken as an error interval of 
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3a 2a 

3b 2b 

3c 2c 
Fig. 3 The best solutions of linear inversion of P+S 

weighted waves including stations used for 
the inversion. Event 04290 is in 4a, 058266 in 
4b, 069259 in 4c.  

 
 

Fig. 2 Comparisons of different MT solutions; for 
each event there are plotted non-liner 
solutions (dotted), linear solutions from P+S 
waves (dashed), and P+S weighted waves 
(full line). Note that solutions for P and P+S 
weighted waves do not differ significantly 
(but for 065259 event) and are not plotted. 
There are also plotted P (‘+’) and T (‘o’) 
axes, the mechanisms are plotted by MEPL2 
program (Kolář, 2007c). Event 04290 is in 3a, 
058266 in 3b, 069259 in 3c. 
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Table 4 Decomposition of MTs and errors. For all 3 processed events they are given non-linear (Kolář 2007a) 
and linear solutions. For each solution we give also errors determined by four methods: MAP64, 
MAP12, Gauss and Chol – see the text (Chol errors is not given for non-linear solution as necessary 
covariance matrix is not know). Note, that the non-liner errors may slightly vary from the values given 
in Kolář (2007a) as they were recalculated by slightly improved algorithm. Values marked with ‘*’
were determined only from one side error interval, ‘NaN’ stands for non-determined value. The results 
are discussed in the text. 

Event Inversion / 
Error 

  ISO 
[%] 

CLVD 
[%] 

DC 
[%] 

 Strike1 
[dgr] 

Dip1 
[dgr] 

Rake1 
[dgr] 

 Strike2 
[dgr] 

Dip2 
[dgr] 

Rake2 
[dgr] 

048290 
 

Non-Lin 
MAP64 
MAP12 
Gauss 

 2 
+/- 10 

+/- 4 
+/- 5 

-38 
+/- 29 
+/- 11 
+/- 15 

60 
+/- 28 
+/- 11 
+/- 16 

 215 
+/- 10 

+/- 4 
+/- 5 

73 
+/- 7 
+/- 2 
+/- 3 

55 
+/- 14 

+/- 4 
+/- 6 

 102 
+/- 10 

+/- 4 
+/- 5 

39 
+/- 10 

+/- 3 
+/- 5 

152 
+/- 16 

+/- 5 
+/- 7 

 Lin 
MAP64  
MAP12 
Gauss 
Chol. 

 -10 
+/- 15 

+/- 6 
+/- 8 
+/- 9 

-41 
+/- 34 
+/- 11 
+/- 16 
+/- 18 

49 
+/- 36 
+/- 10 
+/- 16 
+/- 16 

 204 
+/- 19 

+/- 8 
+/- 3 

+/- 11 

74 
+/- 16 

+/- 6 
+/- 7 
+/- 9 

49 
+/- 27 

+/- 9 
+/- 12 
+/- 17 

 96 
+/- 16 

+/- 6 
+/- 11 
+/- 16 

43 
+/- 13 

+/- 4 
+/- 7 
+/- 6 

156 
+/- 21 

+/- 7 
+/- 11 
+/- 16 

058266 
 

Non-lin 
MAP64 
MAP12 
Gauss 

 -11 
+/- 14 

+/- 4 
+/- 6 

-5 
+/- 34 
+/- 13 
+/- 16 

84 
+/- 24 
+/- 10 
+/- 16 

 113 
+/- 14 
+/- 10 

+/- 7 

60 
+/- 17 

+/- 9 
+/- 4 

-163 
+/- 13 

+/- 4 
+/- 11 

 15 
+/- 12 

+/- 7 
+/- 10 

75 
+/- 9 
+/- 3 

+/- 10 

-31 
+/- 18 
+/- 10 

+/- 6 
 Lin 

MAP64 
MAP12 
Gauss 
Chol 

 -9 
+/- 13 

+/- 5 
+/- 7 
+/- 7 

-21 
+/- 34 

+/- 8 
+/- 14 
+/- 15 

70 
+/- 34 
+/- 11 
+/- 19 
+/- 17 

 109 
+/- 9 
+/- 4 
+/- 5 

+/- 14 

74 
+/- 10 

+/- 3 
+/- 4 
+/- 5 

-155 
+/- 11 

+/- 3 
+/- 5 

+/- 10 

 12 
+/- 8 
+/- 4 
+/- 5 

+/- 12 

66 
+/- 10 

+/- 3 
+/- 5 
+/- 5 

-18 
+/- 11 

+/- 3 
+/- 4 

+/- 12 
065259 
 

Non-lin 
MAP64 
MAP12 
Gauss 

 34 
+/- 15 

+/- 7 
+/- 8 

12 
+/- 45 
+/- 20 
+/- 27 

54 
+/- 33 
+/- 12 
+/- 22 

 46 
+/- 19 

+/- 8 
+/- 10 

63 
+/- 10 

+/- 3 
+/- 5 

-79 
+/- 28 
+/- 12 
+/- 15 

 201 
+/- 41 
+/- 26 
+/- 29 

29 
+/- 12 

+/- 4 
+/- 5 

-111 
+/- 45 
+/- 21 
+/- 45 

 Lin 
MAP64 
MAP12 
Gauss 
Chol. 

 24 
+/- 15 

+/- 7 
+/- 8 

+/- 10 

33 
+/- 47 
+/- 15 
+/- 22 
+/- 25 

43 
+/- 41 
+/- 21 
+/- 26 
+/- 21 

 77 
+/- 26* 

+/- 4 
+/- 7 

+/- 52 

82 
+/- 8* 

+/- 6 
+/- 7 

+/- 18 

-110 
+/- NaN 

+/- 13 
+/- 17 
+/- 56 

 326 
+/- 31* 

+/- 29 
+/- 22 
+/- 35  

22 
+/- 20* 

+/- 10 
+/- 15 
+/- 20 

-22 
+/- NaN 

+/- 29 
+/- 25 
+/- 49 

 

covariance matrix, which cannot be know when e.g. 
non-linear inversion is performed.  

All four methods (MAP64, MAP12, Gauss and 
Chol) were applied and the results are given, together 
with MTs decompositions, in Table 4.  

It follows from the table that determined errors 
are generally consistent. Similarity between MAP64 
and Chol and between MAP12 and Gauss can be 
observed. The MAP64 method is generally most 
conservative however Chol method, which we 
consider to be the most apposite, yields sometimes 
bigger errors of geometrical orientation especially for 
bigger mij errors (event 065259). This could be 
influence of significant values of non-diagonal 
members of covariance matrix.  

It follows also from the table, that reliability of 
MT of 065259 event, especially from point of view of 
MAP64 and/or Chol method, is very low (its accuracy 
is of order of tens of percent or degrees respectively) 
and further possible exploitation of results of such 
uncertainty seems to be rather problematic. 

 

determined uniquely as errors intervals can sometime 
over crossed for complementary solutions. Therefore a 
standard Gaussian method of error propagation based 
on evaluation of function differential (A1) was applied 
(method is hereafter referred as Gauss). The method 
however had to be adapted to our particular case, the 
technical details are given in Appendix A. This 
method is rather time consuming from point of view 
of evaluation, but the results are robust to the contrary 
to MAP64/12 methods. All the above mentioned 
methods deal only with individual errors of mij. From 
linear inversion we have not only mij components 
errors but full covariance matrix is known. Therefore 
we can try to estimate also influence of its 
non-diagonal members. The algorithm is described in 
Appendix B, the method is referred as Chol 
(according to Cholesky matrix factorization which is 
used in the calculation). We consider Chol method as 
the most apposite to our problem (decomposition MT 
errors). Under this method the independency of MT 
components mij need not be assumed. The 
disadvantage is the required knowledge of full 
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CONCLUSIONS 
It can be concluded, that amplitudes of processed 

KTB seismograms were probably successfully 
re-calibrated. Results of performed linear inversion of 
re-calibrated amplitudes are in acceptable agreement 
with previous results from non-linear inversion of 
relative P to S amplitudes ratios (see Figure 2 and 
Table 4). The discrepancies are within the limit of 
determined errors or can be explained as solution 
instability caused by low number of observations. We 
designed four methods of MT errors decomposition. 
The results are discussed, however the appropriate 
usage of the method remains still open, namely for 
MT with relatively bigger errors. 

From general point of view, within the frame of 
performed work: 
• we design way of recovery of lost seismograms 

calibration constants. Hopefully, such situation is 
an exception and the method would not have to 
be used in future. 

• it has been developed, or at leas implemented, a 
new method of amplitudes reading – time-spatial 
correlation of horizontal components were used 
instead of particle motion diagrams. The data 
interpreted by the method seem to yield slightly 
smaller errors than old one, the new method is
definitely faster and more user-friendly.  

• we performed MT linear inversion, this is a 
standard operation, there is no innovation in this 
point.6 

•  we design four methods of MT errors 
decomposition and discuss their features. 
Accuracy of find MT solutions and their 
decomposition is an important problem, however 
it remains open to the future investigation, 
namely role of non-diagonal components of 
covariance matrix. 
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Appendix A 
In the Appendix A we describe a new 

symbolical-numeric method developed for evaluation 
of partial differential of values of MT decomposition, 
the method could be however used for other 
application also. 

Error ∆f of function f = f(x) can be expressed by 
function’s differential in form of 
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where function f is MT’s decomposition in our case, 
x0 is a solution and ∆x is its error (both values are 
known from inversion, see above);. Even if it is given 
analytically or in form of computer program code 
respectively, the formula is too complicate to express 
its partial derivatives analytically. Therefore we used 
a tool for symbolic calculus in MATLAB. Even on 
this platform the formula A1 cannot be simply 
implemented. Formulas for MT decomposition 
contain such elementary functions as 
absolute_value(x), minimum(xi), maximum(xi), 
relation operations, etc. and such functions cannot be 
directly treated under Symbolic MATLAB Toolbox 
formalism. However, in our case we do not need to 
know full analytical form of function f derivatives, it 
is enough to know the derivatives in a particular point 
- in a solution. For this particular case a 
Symbolical-Numeric Process (here after SNP) was 
developed: one more dimension of size 2 was added 
to all variables in program code for MT 
decomposition (in used MATALB platform such 
extension can be done very easily). In the first part of 
an extended variable the treated value is stored as 
symbolic type, in the second as numerical (double) 
type with value of a particular point. Any time any 
symbolically generally non-defined function is used, 
its actual numerical value is seen and its symbolical 
value is evaluated in concordance. Whole principle is 
demonstrated in following (simplified) example of 
MATLAB’s function for absolute value: 

 

function ret=absSNP(val) 
% 
% evaluate abs value in SNP Method 
% val=[val_symbolic, val_numeric]; 
% ret=[new_val_symbolic,...  
% new_val_numeric]; 
% 

ret=val; 
% numerical value is tested 
   if val(2) < 0    
   ret(1:2)=val(1:2) * -1;           (A2)
 end 
return 

6 Even if from practical point of view linear MT inversion would be most common task, real live data sometime brings need 
of non-linear inversion as it was in our case (Kolář, 2007a). In addition the same data set was already used as test of newly 
developed non-liner inversion method to supplement the synthetic testing problems (system of polynomial equations) –
Málek et al. (2007). 
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In such a way all required functions, namely: 
abs, min, max, atan2, eig and relation 
operations were modified. 

Once having symbolical expression of strike, 
dip, rake, VOL, DC, CLVD (in a particular point – a 
particular solution), their partial derivatives and 
differential can be expressed. The numerical part of 
variable serves, in addition, to checking of the result 
(the value must be the same as for direct MT 
decomposition).  

Notice that the method is rather computer time 
consuming. While the other methods (MAP64/12, 
Chol – see the text) are evaluated almost immediately, 
the SNP method is fairly exigent - it requires tens of 
minutes on relatively powerful computer and the 
memory allocation must be maintained carefully.7 

Developed SNP method can be useful also in 
similar situations, when we need a partial derivative of 
complicated functions which cannot be treated neither 
analytically nor directly symbolically. The method 
was also described in Kolář (2007d). 

 
Appendix B 

In the Appendix B we describe method of MT 
errors decomposition with use of full covariance 
matrix.   

The MT errors decomposition is based on Aster 
et al. (2005), Example B.10: 

Find the Cholesky factorization L of 
(covariance) matrix C 

 
TLLC =  ,                                                               (B1)

 

Let Z be a vector of n independent N(0,1) 
random numbers (i.e. normal distribution). Let  

 

LZmX +=  ,                                                         (B2)
 

where m is a MT (a solution) in our case. The 
decomposed MT errors are then determined as a 
standard deviation of decomposed X values. 

Note that the results obtained by this method 
posse a random part, however it can be effectively 
eliminated by choosing n sufficiently big. We used 
n = 1000, however even with n = 100 the results were 
almost identical and stable. 
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7 Notice that described computations under new MATLAB 2007b version appeared to be 2-3 times faster (in comparison to 
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