Video o ÚSMH
 
Vyhledej na webu
O časopisu Redakční rada Pro autory Obsahy čísel Přijaté články

Acta Geodynamica et Geomaterialia

 
Title: ASSESSMENT OF MULTI-GNSS PRECISE ORBIT AND CLOCK PRODUCTS FROM DIFFERENT ANALYSIS CENTERS BASED ON PRECISE POINT POSITIONING
 
Authors: Li Weiguo and Kačmařík Michal
 
DOI: 10.13168/AGG.2021.0027
 
Journal: Acta Geodynamica et Geomaterialia, Vol. 18, No. 3 (203), Prague 2021
 
Full Text: PDF file (2.0 MB)
 
Keywords: multi-GNSS; precise products; PPP; IGS MGEX; RTKLIB
 
Abstract: Performance of 24h static Precise Point Positioning (PPP) solutions based on multi-GNSS precise satellite orbit and clock products from four analysis centers and seven various constellation combinations was studied to evaluate their quality and characteristics. Data from ten European and four Chinese GNSS stations and 152 days long period from year 2020 were processed. Obtained coordinates were firstly compared with those provided by IGS final weekly combined solution. In Europe, the best agreement with this reference product was reached by solutions including Galileo signals, namely by a combination of GPS+GLONASS+Galileo systems with a mean RMS of 11 mm. This situation was different in China where inclusion of Galileo always led to worse results and the best agreement was achieved by a combination of GPS+GLONASS systems. Although product provided by German Research Center for Geosciences (GFZ) could be selected as the best performing over Europe and product by Center for Orbit Determination in Europe (CODE) over China, differences between individual precise products were mostly at a minimal level. Secondly, coordinates repeatability over the processed period was computed in order to assess the positioning stability. In this regard, the lowest values in both horizontal and vertical direction were reached by GPS+GLONASS solutions. From the perspective of precise products, the repeatability results were dependent on the selected constellation where mainly a specific behavior of product from Wuhan University (WUM) for Galileo system was observed.