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Abstract: The paper dea!s with utilizing mathematica! modelling in shallow seismic refiection
surveying. In view of the specific properties of the medium near the surface, the model based on
the method of finite differences is compared with the ray solution of the problem of seismic wave
prop~gation. An experimental calculation for the Brandýs locality is also given.
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1. INTRODUCTION

With the advent of digital instruments and development of computer processing,
shallow seismic surveying has become an effective method used in solving problems
of engineering geology, geotechnics and the geology of building raw materials. Kine-
matic interpretation of refraction measurements is being used on a routine basis.
The result is the determination of the parameters of a stratified model of the geo-
logical medium, or of ét velocity section.

To deal with the structure oí more complicated media, e.g., with velocity inver-
sion, with small velocity contrast, or to increase the resolution, shallow reflection

. .' .
has been introduced. This is a method which, by using relatively high frequencies
(Hill and Ali (1988) mention frequencies in excess of 200Hz), achieves a resolution
of as much as 0.5 m (Jogerius and Helbig, 1988). A number of authors (Knapp
and Steeples, 1986b; Híll and Ali, 1988; and others) have pointed out that the
disadvantage of the method is its dependence on actual conditions which affect the
interpretation. In particular circumstances, this dependence, for example, makes it
impossible to monitor the reflections from all boundaries, or makes it necessary to
use considerably simpler methods of processing (Hunter et al., 1984). The choice
of the optimum scanning window for given refiection, which is dosely related to
the source frequency and the time factor of the source function, plays an important
role. The choice of the trace spacing depends on the necessity to correlate the
phases. The seismic apparatus and the wave sources have to display sufficiently
high írequencies of the generated and recorded signals. Shallow geological media,
frequently characterized by considerable variability in the horizontal as well as ver-
tical directions, and the presence of strong and week refl.ectionboundaries require
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a record of cansiderable dynamics (Knapp and Steeples, 1986). The geometry of
mcasurernent involving shallow boundaries produce records of rays incident at the
surface under a very wide range of angles. This results in phase and amplitude
shifts between traces, which may cause problems in correlating the phases (Hunter
et al., 1984).

The complicated nature and cornplexity of the factors affecting the wave field
prompted the idea of usíng mathematical models of propagation of seismic waves
to solve the problem of the conditions under which shallow refiection can be used,
01' of using the solution of the direct problem for iterative interpretation.

2. MAfHEMATICAL METHODS OF MODELLING SEISMIC WAVE PROPAGATION

There are several methods of solving the direct problem related to the propaga-
tion of seismic waves. In the method of finite differences the complete wave field
is computed in the time and space domain. It is based on solving the equation
of motion of the continuum with the appropriate boundary and initial conditions.
This involves the integration of a differential equation in which the derivatives are
approximated by differences.

A similar method is the method of finite elements. In this method the functions
being sought approximated within the scope of elements by relatively simple depen-
dences. The problem is to determine the coefficients of the aproximation functions
in the separate elements so that they satisfy the differencial equation involved.

MethocÍs referred to as "reflectivity methods" make use of resolving the initial
wave field into a sum of plane waves. The propagation of 'elementary plane waves
through a 1-D structure can be solved by matrix methods. Once the waves have
propagated through the structure, they are added up to produce the resultant wave
field.

Ray methods a priori resolve the wave field into elementary wave types propa-
gating along the rays. In this case their travel times and amplitud es decreasing due
to geometrie spreading and. eonversion at the internal boundaries are eomputed.

Each of the methods mentioned has its advantages and disadvantages. In this
paper we have used the finite-difference methods and the ray method. The prop-
erties of both methods we have indicated will be briefly deseribed in the following
sections.

3. CHARACTERISTIC OF COMPUTING THE WAVE FIELD USING
THE FINITE-DIFFERENCE METHOD

For practieal reasons the eomputation is carried out in a grid with a finite number
of nodes. As a rule, a homogeneous, isotropie, rectangular grid with two dimensions
(x, z) and spacing Llx = Llz is used, i.e. the area of interest is formed by a reetangle
with sides nLlx times mLlz. In the internal nodes of the grid the difference schema
is derived from the equation of motion , however, boundary conditions have to be
formulated separa.tely for the boundary nodes. It is relatively easy to formulate
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the boundary conditions for a free surface, because these can be derived from
the condition of zero stres s components, O'zz = Tzx = O. The situation becomes
more complicated if a non-reflecting boundary has to be defined, across which the
waves should propagate as whole, and the continuing medium simulated in the
given direction. There are several ways of establishing non-reflecting boundaríes
(Smith, 1974; Reynolds, 1978; Sochacki et al., 1987; Cerjan et al., 1985; Clayton
and Engquist, 1977). The general feature of a11non-reflecting boundaries is that
they do not absorb the incident wave completely, and that it is always necessary
to assess the degree of contamination of the wave field by parasitic reflections.
Parasitic reflections may be eliminated in an elementary way by separating the
boundaries sufficiently; however, this is usua11y connected with having to deal with
a grid of unmanageable size.

If a function f(Xi), say a displacement component, is approximated by discrete
values Ji, the derivatives of this function can be approximated by a linear combi-
nation of approximate values (e.g. f'(Xi) = (ji+l - Ji-l)/2iJ.x). It can be proved
that function ji, being determined by the finite-difference method, must not vary
too quickly, in other words that the value iJ.x must be sufficiently smalL The actual
conditions with regard to the magnitude of iJ.x follow from the order of accuracy of
the difference formula. For difference schemes of second-order accuracy the shortest
wave length Amin must be equal to ar larger than lOiJ.x, for difference schemes of
fourth-order accuracy .Amin ;::::5L1x (Zahradník and Hron, 1991). Difference schemes
of an order higher than the fourth have proved to be impracticaL Similar limita-
tions apply to the step in the time domain, iJ.t. For example, in the P-SV problem
with a difference scheme of second-order accuracy iJ.t ~ iJ.xj( 0'2 + [J2)1/2 (Aki and
Richards, 1980). If these conditions for iJ.x and iJ.t are not satisfied, the computa-
tion fails completely and becomes quite unstable. It can thus be proved that the
finite-dífference method is suitable namely for computing the low-frequency com-o
ponents of the wave field, the limiting case being problems of static strain. Since
th~ condition for iJ.t must hold within the model as whole, the computation for
a medium with large velocity contrasts is time-consuming. The presence of re-
gions with high values of O' andj 01' j3 requires small values of iJ.t to be used and,
consequently, also a large number of time levels to be computed.

In spíte of .all the restrictions mentioned, thefinite-difference method is used
frequently, however, as a rule for' solving problems of seismic wave propagation in
structures whose dimension is at least of the order of 100 m. The advantage of the
finite-difference method is namely that it produces the wave field as a whole and
no wave selection is required as in the ray method. The wave field thus contains
a11wave types, including all reflected and surface waves. In principle, this provides
the easiest way of comparison with real data.

4. CHARACTERISTIC OF COMPUTING THE WAVE FIELD USING THE RAY METHOD

Ray method are convenient namely for studying wave types of interest. They
provide data on the travel times and amplitudes of wave types selected in advance.
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In order toeonstruet a synthetie seismogram, it is, therefore, necessary to superim-
pose all energetieally signifieant waves, and the eorrect wave field, strictly speaking,
can then only be obtained in the limiting case of an infinite summation.

The source of seismic waves has a given time function and radiation diagram.
The shape of the rays is determined by solving the eikonal equation which depends
on the distribution of propagation velocities. By integrating the time increments
along the ray, the travel time is determined. The amplitudes deerease as a re-
sult of geometrie spreading, and as a result of refíection and refraction at internal
boundaries. The geometrie spreading values depend on the eurvature of the wave
surfaces. i.e. conversely on the shapes of the rays. The coefficients of re:fl.ection and
refraction can be determined using matrix methods, which assume a plane wave
incident at a plan ar boundary.

It can be proved that ray methods provide sufficiently accurate solutions only
if the signal frequency is sufficiently high. They eannot be used to solve problems
connected with ray refraction and diffraction on inhomogeneities of small size. The
simpler versions of ray methods do not, as a rule, yield characteristics of interference
(e.g. surfaee) and inhomogeneous (e.g. head) waves.

Ray method computations are relatively fast and, as eompared to the finite-
differenee method, a larger number of problems can be dealt with.

5. FIELD MEASUREMENTS

Experimental measurements aimed at monitoring reflections from shallow bound-
aries were carried out at the locality of Brandýs nad Labem. This is a locality with
a simple geological structure, located in the Bohemian Cretaceous. The geological
layers are deposited horizcntally to subhorizontally without being affected tecton-
ically to a larger extent. The geological profile is shown in Fig. 1 and depicts the
wall of an abandoned stone quarry.
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Fig. 1. Locality Brandýs nad Labem. The quarry wall discloses a geological profile in a plane

parallel with the seismic profile. Table I gives the seismologica! division of the profi!e.
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The seismic measurements were carried out along a profile situated in the wooded
terrain above the upper edge of the quarry. The perpendicular distance from the
quarry wall was about 150 m to avoid lateral refiections. The 24-channel Terraloc
MK-II apparatus was used for the measurements. The seismic energy was gener-
ated by a vertical impact, and the vertical component of ground motion velocity
was recorded. The recorded data could be partly interpreted using methods of
classical refractions seismology. The parameters of the adopted geophysical model
are summarized in Table 1.

Table L Parameters of the adopted geophysical model

Layer No. Thickness m mis mis Lithology

1 6.5+ 300+ 150$ loam

2 6.0++ 2200+ 1200$ argillite

3 - 3500$ 2000$ sandstone

+ values derived from refraction seismology

++ measured on the quarry wall

$ estimate
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Fig. 2. Exarnple of measured data. Distance of geophones 1 m, offset of point of impad 1 m ,

Amplitudes normalized within the separate traces to one common level.
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An example of the observed data is shown in Figs. 2 and 3. Both figures
represent the same record, but in different mapping mode. The amplitudes along
each trace were normalized in Fig. 2, and the AGC mode was applied in Fig. 3.
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Fig. 3. Record in Fig. 2 made in the AGC mode (automatic gain control normalization along
each trace carried out first with a moving window).

6. MATHEMATICAL MODELLING

A parallel theoretical computation using the finite-difference method was carried
out for a 1-D model with the parameters from Table I. The whole problem was
formulated with a view to maximum similarity with the experiment. The problem
was solved using a program implemented on the basis of difference schemes of
fourth-order accuracy in the space domain and second-order accuracy in the time
domain. The computation simulated a free surface at the upper boundary of the
region of computation, at the other boundaries Reynolds boundary conditions,
simulating an absorbing boundary, were introduced. The source was modelled by
a force acting vertically. The program did not account for the attentuation of the
wave field, The size of the grid was taken to be L1x = 0.25 ID. On the whole, a total
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of 6150 time levels had to be computed in a grid of 120x80 points. The computed
seismograms are shown in Figs. 4 and 5. Once again it is the same record with
normalized amplitudes (Fig. 4) and a representation in the AGC mode (Fig. 5).
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Fig. 4. Model seismogramcomputed using the finite difference method.

The set-up corresponds to Fig. 2. Amplitude is normalized along traces.

7. DISCUSSION

Qualitatively speaking, the observed and computed wave :fields have relatively
complex seismograms in common: In both cases they contain a number of different
waves with a wide interval of mutual amplitude relations. This can be seen by
comparing the normalized-amplitude figures (Figs. 2 and 4) the AGC-mode figures
(Figs. 3 and 5). In spite of expectations, the computed seismograms appear to be
more complicated than the observed.

The observed and computed wave fields contain several mutually corresponding
phases which were identi:fied by the ray method. Correspondence between the
observed and computed fields can be observed with the P- (direct wave), PP P-
(head wave) and partly PP-phases (simple refl.ection from the first boundary).
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Apart from travel-time curves, also the amplitude curves of the separate waves,
computed by means of the ray meth'od, proved to be u'seful in identifying the
phases. The ray method, like the finite-difference method, took into account the
free surface, i.e. the conversíon effect at points where the transducers were located
on the surface, was considered. The amplitude curves are depicted in Fig. 6 (PP,
PPP) Fig 7 (QS Q QS) a" d Fig 8 (PS S P) In spite of the restrictions..L.L ,.L. \ J.J , IJ U , .ll. .L. J.. \. ..L , ..L ..1. .1.li v V..lJ. li UJ.V.lJ..

discussed.the ray methods indicate that, in principle, the separate phase can be
distinguished on the seismograms. According to Fig. 6, e.g., boundary because its
amplitude is about one order of magnitude weaker than the PP-reflection from the
first boundary. On the contrary, according to Fig. 7, one may expect a relatively
strong SS-refiection from the first boundary at larger epicentral distances, and,
according to Fig. 8, also rclatively strong converted P S- and SP-types.
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Fig. 5. Model from Fig. 4 made in the AGC mode.

In the computed wave field, several other phases which, however, have no coun-
terpart in the observed data, could be identified in this manner. A simple SS-
reflection and the direct S-wave are involved. The direct S-wave is the dominating
phenomenon of the theoretical seismogram; however, it is lacking in the field data.

The nature of the agreement of the observed and theoretícal seismograms (rel-
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ative agreement af the P-phases" relative disagreement of the S-phases) indicates
one of the possible causes of this phenomenon: Whereas the propagation velocities
of the P-waves were derived at least partly from the experiment, the propagation
velocities of the S-waves were only estimated. Using ray methods, it is possible
to prove that námely the amplitude relatian are sensitive to the wave propagation
velocities. To determine the cause of disagreement of the observed and computed
seismograms it would be necessary, among other things, to determine the actual
propagation velocities of the S-waves; under favourable circumstances, one may, in
principle, consider reverse modelling to determine the velocity pattern.

Another possible cause of the disagreement may be neglecting attenuation in
applying the finite-difference method. In the weathered subsurface parts of the
geological profile one may admit to a substantial a:ffect of attenuation on the wave
field pattern. However, to be able estimate the actual magnitude of attenuation
from field data, a more profound and independent analysis would be required.

The amplitude curves in Figs. 6-8 all display abrupt changes of values in de-
pendence on the horizontal coordinate, sudden jumps are usually associated with
phase changes. The form of the signal changes in interva1s where the phase relation
changes, and this can explain a loss of corre1ation between the traces.

8. CONCLUSION

The following conclusions can be briefiy formulated based on the measured and
theoretical computations we have carried out:

(1) Paral1el computations of theoretical seismograms using the finite-di:fference
method, as well as of the travel-time and amplitude curves using the ray method
supplement one another conveniently.

(2) Partial agreement was achieved between the theoretical and observed seis-
mograms as regards P-type phases, however, no agreement was achieved as regards
the S-type phases.

(3) It appears that the disagreements are due to inadequate estimate of S-wave
propagation velocities and general neglect of attenuation.

(4) Under conditions of shallow seismics (large velocity contrasts) it would be
technically more suitable to use the finite-difference method with a variable step,
or to adept the method of finite element s a1together.

(5) Shallow contrasting boundaries do not create suitable conditions for moni-
toring reflections because of the complicated interferences, and abrupt amplitude
and phase changes of reflected waves in combination with a relatively low signal
frequency.
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SROVNÁNÍ METHOD MATEMATICKÉHO MODELOVÁNÍ
VLNOVÉHO POLE V MĚLKÉ SEISMICE

Bohuslav Růžek a Jan Vilhelm

Článek se zabývá využitím matematického modelování v mělkém reflexněseismickém průzkumu.
S ohledem na specifiku přípovrchového prostředí je srovnáván model využívající metodu konečných
diferencí s paprskovým řešením problému šíření seismických vln. Uvedenje pokusný výpočet na
lokalitě Brandýs.
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