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Abstract: It is demonstrated that for homogeneous isotropic hyperelastic material, for which
Poisson’s constant is different from 1/4, Hooke’s law cannot hold in the theory of finite deforma-

tions. It is then proved that this law is a linear approximation of the constitutive relations.
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1. INTRODUCTION

Physical modellingis one of the most popular methodsin studying geomechanical
processes. The admirers of this method make reference mainly to the paper by
Kuznetsov et al. (1959) in which the theoretical foundations of this method are
explained. One of the assumptions of this method is that Hooke’s law is valid
for homogeneous isotropic hyperelastic material. In the present paper we shall
show that Hooke’s law cannot be valid for these materials in the theory of finite

deformations if Poisson’s constant ¢ is different from 1/4.

2. BASIC CONCEPTSY

Body B in R? will be described by Cartesian coordinates z'. The motion of the

body is understood to obey the following equation
v =y'(z, t) 1)

which assigns a position to every point of body B in R3 at time t. The deformation
gradient of the motion will be defined by

Fiz, ) = 2 )

= 92k
and the left Cauchy-Green strain tensor by
BY(y, t) = g FiF] (3)

1) For more details see Leigh (1068).



where g = diag (1,1,1), and for a fixed ¢, ' is substituted by y* which is obtained
for this ¢ by inverting Eq. (I). In continuum mechanics constitutive relations are
very important. These relations express the dependence of stress tensor 7%/ on the
strain tensor. Leigh (1968) has proved for homogeneous isotropic material

T = o + 1B + 2 B® (4)°

wlere ¢g, ¢1 and g2 are functions of invariants [;, j = 1, 2, 3 of B only, namely

I, =TrB (5)
I, = L(1} - TtB?) (6)
Iy = detB = I, + }(TtB® - I}) (7)

For homogeneous isotropic hyperelastic material it has been proved that function
W, called the energy of deformation, exists for which

ow
T=20B —
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where p is the density of material. If we carry out the derivations and apply the

continuity equation, we obtain
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where go is the density of the undeformed body. If we now compare (4) and (8),
we obtain
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If the material is homogencous, isotropic and hyperelastic, function W must exist,
and relations (9) — (11) have to hold for ¢;. Necessary and sufficient conditions for
the existence of a solution to this system of equations are
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3. HOOKE’'S LAW

Hooke’s law states that a stress tensor is a linear function of the strain tensor.
Assume this to be true. We now introduce a strain tensor E,

2E=B-1. (15)

In this case
I =3+ 28, (16)

where F; = TrE. In this notation Hooke’s law takes the form
T=AE; +2uE ' (17)
where A and g are Lamé’s constants. If strain tensor B and I; from (15) and (16)
are substituted for E and E; in (17), !
A
TZE(I]_—B)—/L-I-/LB
Consequently,
A
vo=5(hL=3)-p
1= H
2 =0
Integrability conditions (12) — (14) very easily yield
A= p

If we now define Poisson’s constant as

A
0= —— 19
2(A+ ) (19)
(Brdicka, 1959), it can be easily seen that ¢ = 1/4. Now it is evident that for
homogeneous isotropic hyperelastic material relations (17) cannot hold unless o =
1/4

It is remarkable that, according to Brdicka (1959), we can derive relation (18)
from the concept that an elastic body is composed of material points which interact
by means of central intermolecular forces. However, experiments have proved that
this relation is not valid in general, and that Hooke’s law contains two independent
constants. A consequence of the above analysis is that, if ¢ # 1/4, the linear
relation between the stress and the strain tensors cannot exist. To explain this
apparent contradiction between experiment and theory, we assume that general
relation (4) between the stress and strain tensors holds and, in the power series
of this relation, we restrict ourselves to the lowest powers in E. Let E;, F; and
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E3 be invariants of tensor E, defined similarly as I;, I, and I3 for tensor B. Let
T=0forB=1. Inthiscase; =, =3and Iz =1lor T =0 for E =0 and
Ey, = By = B3 = 0. We develop equation (4) in the neighbourhood of this point
into a power series and we restrict ourselves to the quadratic term in E. Longer but
straightforward calculations yield

T=S4+2(2,1425,,45,3) B1 + 29E+ 4(5,2+2,3) Eo+
+2(Z,1 +48,12 425,13 + 5,22 +48,23 + 5,33 ) Bl +
+4(¢,1 +2¢)2 +¢)3 ) El E + 4()02 E2 & 0(||EH2) (20)

where
E=po+p1+¢2

Y =p1+ 202

and ¥,, or 9,, denote differentiation with respect to I, etc., and all values of
¥, 1, ¢2 and their derivatives are taken at point (3,3,1). Since T = 0 for E = 0,
¥ =0, and thus

T =AE) +2uE + a1 E} + 02 By + a3 E1E + ax E* + 0 (|[E|]?) (21)

where A, p, o; are constants. It is easy to satisfy oneself that the conditions of
integrability impose no constraints on constants A and ;¢ in (21). Therefore, the
linear part of thic power series contains two independent constants and, if we restrict
ourselves to the linear approximation, we obtain Hooke’s law.

Moreover, experiments indicate that in some neighbourhood of point T = 0
the relation between the stress and strain tensors is invertible. According to the
implicit function theorem (Jarnik, 1976)

ij
det (%) #0 atpoint B=1

Some easy algebra yields
[+ 3(S1 +28,2 45,3 )] #0

for this determinant. This nonequation holds iff ¢ # 0 and ¥+3(Z,; +2,2 +5,3) #
# 0. It is evident from (20) and (21) that this condition is equivalent to

p#0 and 3XA#0.

If we extend our deliberations also to thermodynamic processes, it is possible to
prove (Leigh, 1968) that for A and g the inequalities

pk>0 and 3A+2¢ >0,



must hold, respectively. This is, for example, what Brdicka (1959) claims. In the
hyperelastic case, the above-mentioned relations lead to the following relations for

w
W1 +2We +W3 =0 (22)

and
0 < Wy —W,3 < 3(Wy11 +4W,12 +2W,13 +4W,00 +4W23 + W33 ) (23)

where all derivatives of W are again taken at point (3,3,1). Conversely, for homoge-
neous isotropic hyperelastic material, any function W for which conditions (22) and
(23) are satisfied defines a canstitutive equation with the property that for some
neighbourhood of point T = 0 the relation between the stress and strain tensors is
bijective.

4. CONCLUDING REMARKS

The above analysis of the constitutive relation between the stress and strain
tensors for homogeneous isotropic hyperelastic materials clearly indicates that, if
Poisson’s constant is different from 1/4, the assumption of the validity of Hooke’s
law implicitly made by Kuznetsov et al. (1959), which is one of the main assump-
tions of physical modelling, is a mere linearization of the constitutive equations.
Consequently, not even in the case of the simplest materials can it be assumed that
"a model is equivalent to the original, even if we conform to all criteria of similarity,

given in Kuznetsov’s et al. (1959) paper.
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K HOOKOVU ZAKONU
Ondfej Navratil

V ¢ldnku je dokdzdno, ze pro homogenni izotropn{ hyperelasticky materidl, pro néjz je Pois-
sonova konstanta riiznd od 1/4, nemize v teorii koneénych deformaci platit Hookdv zdkon. Déle

se ukazuje, ze tento zédkon je linerdn{ aproximaci konstitutivnich vztaha.
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