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Abstract: It is demonstrated that for homogeneous isotropic hyperelastic material, for which 

Poisson's constant is different from 1/4, Hooke's law cannot hold in the theory of finite deforma

tions. It is then proved that this law is a !inear approximation of the constitutive relations. 
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1. INTRODUCTION 

Physical modelling is one of the most popular methods in studying geomechanical 
processes. The admirers of this method make reference mainly to the paper by 
Kuznetsov et aI. (1959) in which the theoretical foundations of this method are 
explained. One of the assumptions of this method is that Hooke's law is valid 
for homogeneous isotropic hyperelastic material. In the present paper we shall 
show that Hooke's law cannot be valid for these materials in the theory of finite 

deformations if Poisson's constant (J is different from 1/4. 

2. BASIC CONCEPTS1) 

Body B in R3 will be described by Cartesian coordinates xi. The motion of the 
body is understood to obey the following equation 

(ll 
\�/ 

which assigns a position to every point of body B in R3 at time t. The deformation 
gradient of the motion will be defined by 

(2) 

and the left Cauchy-Green strain tensor by 

(3) 

l)For more details see Leigh (H16í3). 
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where 9 =. diag (1,1,1), and for a fixed t, xi is substituted by yk which is obtained 
for this t by inverting Eq. �l). In continuum mechanics constitutive relations are 
very important. These relations express the dependence of stress tensor Tij on the 
strain tensor. Leigh (1968) has proved for homogeneous isotropic material 

(4) , 

where 'Po, 'Pl and 'Pz are functions of invariants lj, j = 1, 2,3 of B only, namely 

II = TrB 

I - 1 ( T2 rr 8Z) 2 - Z .Ll - .Lr 

(5) 

(6) 

(7) 
For homogeneous isotropic hyperelastie material it has been proved that function 
T-V, ealled the energy of deformation, exists for whieh 

oW T = 2eB 
oB ' 

where {} is thc density of material. If we carry out the derivations and apply the 
eontinuity equation, we obtain 

(8) 

where (}o is the density of the undeformed body. If we now eompar·e (4) and (8), 
we obtain 

(9) 

(10) 

(11) 

If the material is homogencous, isotropie and hyperelastie, funetion W must exist, 
and relations (9) - (11) have to hold for 'Pi. Neeessary and sufficient conditions for 
the existence of a solu tion to this system of equations are 
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8<po 8'Po 8<P1 1 - + II -- - h - - "i'Pl = O 811 oh 813 

o<Po OCP2 1 
OIZ + f3 813 + zcpz = O 

O'Pl .J.. I OCP2 o<pz - O 012 I 
1 oh + 811 -

(12) 

(13) 

(14) 



3. HOOKE'S LAW 

Hooke's law states that a stress tensor is a linear function of the strain tensor. 
Assume this to be true. We now introduce a strain tensor E, 

2E = B -1. (15) 

In this case 
II = 3 + 2El' (16) 

where El = TrE. In this notation Hooke's law takes the form 

(17) 

where ,\ and J.L are Lamé's constants. If strain tensor Band II from (15) and (16) 
are substituted for E and Ei in (17), I 

Consequently, 
.\ 

<Po = "2 (h - 3) - J.L 
<Pl = J.L 
<pz = O 

Integrability conditions (12) - (14) very easily yield 

If we now define Poisson 's constant as 

). 
tJ = ---2(.\ + f.L) 

(19) 

n:�rrl;ř1r" 1Q.t:;Q\ ;t r"n h" "",,; h, "oon +h.,i- /r - 1/4 Nr-u,;t;", p,.,irlpni-v +vha+v tnl" \�.A. ............................... , ........... '..1''-' 
J

' "'V "' ............ _'-' "" ............. .A.J >..J ........... J,.J" ",,,,,J.(.).rV V - .J../ • .1.''-'"'' J,.V J.U -- ........ --_.. .... .- ..... ... 

homogeneous isotropic hyperelastic material relations (17) cannot hold unless tJ = 
1/4. 

It is remarkable that, according to Brdička (1959), we can derive relation (18) 
from the conéept that an elastic body is composed of material points which interact 
by means of central intermolE'cular forces. However, experiments have proved that 
this relation is not valid in general, and that Hooke'slaw contains two independent 
constants. A consequence of the above analysis is that, ií' cr =1= 1/4, the linear 
relation between the stress and the strain tensors cannot �xist. To explain this 
apparent contradiction between experiment and theory, we assume that general 
relation (4) between the stress and stra,in tensors hold s and, in the power series 
of this relation, we restrict ourselves to the lowest powers in E. Let Bl, Bz and 
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E3 be invariants of tensor E, defined similarly as II, 12 and 13 for tensor B. Let 
T = O for B = 1. In this case II = h = 3 and 13 = 1 or T = O for E = O and 

El = Ez = E3 = O. We develop equation (4) in the neighbourhoo d  of this point 
into a power series and we restrict ourselves to the quadratic term in E. Longer but 
straightforward calculations yield 

where 

T = E + 2(E,l +2E,z +E,3 ) El + 2</;E + 4(E,2 +E,3 ) E2+ 
+2(E,1� +4E'12 +2E,13 +E,n +4Em +E,33 ) E�+ 

+4(</;,1 +2</;'2 +</;,3) ElE + 4CP2E2 + o(IIEW) 

E = CPo + CPI + cpz 

</; = CPI + 2CP2 

(20) 

and E,a or </;,0' denote differentiation with respect to 10" etc., and aH values of 
E, 'lj;, CP2 and their derivatives are taken at point (3,3,1). Since T = O for E = O, 
E = 0, and thus 

wherc .A, jl, Ú'j are constants. It is easy to satisfy oneself that the conditions of 
integrability impose no constraints on constants .\ and JL in (21). Thereforc, the 
Iinear part of thc power series contains two independent constants and, if we rf'strict 
ourselves to the lihear approximation, we obtain Hooke's law. 

Moreover, experimcnts indicate that in some neighbourhood of point T = O 
the relation between the stress and strain tensors is invertible. According to the 
implicit function theorem (Jarník, 1976) 

(BTjj) 
det BEkl =j:. O at point B=l 

Some easy algebra yields 

for this determinant. This nonequation holds iff </; =p O and </;+3 (E,1 +2E,2 +E,3 ) =p 
=p O. It is evident from (20) and (21) that this condition is equivalent to 

tL =p O and 3.\ i= O . 

If we extend aur deliberations also to thermodynamic processes, it is possible to 
prove (Leigh, 1968) that for .A and tL the inequalities 
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JL > O and 3,\ + 2JL >0) 



must hold, respectively. This is, for example, what Brdička (1959) daims. In the 
hyperelastic case, the above-mentioned relations lead to the foUowing relations for 
W 

(22) 

and 
0< W,1 -W,3 < 3(W,1l +4W,12 +2W,13 +4W,22 +4W,23 +W,33) (23) 

where aU derivatives of W are again takcn at point (3,3,1). Conversely, for homoge
neous isotropic hyperelastic matcrial, any function W for which conditions (22) and 
(23) are satisfied defines a. constitutive equation with the property that for some 
neighbourhood of point T = O the relation between the stress and strain tensors is 
bijective. 

4. CONCLUDING REMARKS 

The above analysis of the constitutive relation between the stress and strain 
tensors for homogeneous isotropic hyperelastic materials dearly indicates that, if 
Poisson's constant is different from 1/4, the assv.mption of the validity of Hooke's 
law implicitly made by Kuznetsov et al. (1959), which is ane af the main assump
tions of physical modelling, is a mere linearizatian af the canstitutive equations. 
Consequently, not even in the case of the simplest Ínaterials can it be assumed that 

-a model is equivalent to the original, even if we conform to aU criteria of similarity, 
given in Kuznetsov's et al. (1959) paper. 
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K HOOKOVU ZÁKONU 

Ondřej Navrátil 

V článku je dokázáno, že pro homogenní izotropní hyperelastický materiál, pro nějž je Pois

sonova konstanta různá. od 1(4, nemůže v teorii konečných deformací platit Hookův zákon. Dále 

se ukazuje, že tento zákon je linerání aproximací konstitutivních vztahů. 

Received 27 August 1991 

9 


