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1. INTRODUCTION 

Mathematical modelling of geQmechanical processes is based on the assumption 
that the deforming medium behaves like a continuum. Therefore, in geomechanics 
we have to concern ourselves with continuum mechanics. At present, the method of 
mathematical modelling is mainly limited to the assumption of small deformations 
(Procházka, 1990). We are not sure that this assumption is always jus,tified. This 
is the reason why we want to discuss the question as to when the equations of 
motion for finite deformations may be substituted, át least infinitesimally, by the 
well-known equations for small deformations. In this paper we shall only restrict 
ourselves to the case of elastic material, assuming that the density of volume forces 
per unit mass is constant in the whole body. 

2. BASre CONCEPTS AND EQUATIONS OF CONTINUUM MECHANICS1) 

A body is a connected set in R3 on which it is possible to define the structure 
of the C= manifold which has dimension 3. We shall denote the boundary of body 
B by (jB. We assume that the mapping X : B -+ R3 which projects B as a whole 
on R 3, and the inverse mapping

' X-I : X( B) -+ B exist. Any of these functions 

will he called the �onfiguration of body B. The set of configurations <Pt, t E R such 
that the function Xt = <pt o X-I: R x x(B) -+ R' is c= differentiable for any 
configuration X will be referred to as the motion of body B. 

1) For more details see Leigh (1968). 
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To throw some light on these abstract terms we note that body B is an abstract 
topological subset of R3. The structure of the Ce<> manifold allows us to introduce 
local coordinates into this set, and the existence of the configuration allows us 
to define these coordinates global1y (of coursé, this assumption is not necessary) . 
Motion <Pt of the body in some configuration X assigns, to any � E X(B), a curve 
�(t), which is the motion of a point of body B. 

The motion af body B in coordinates will be "denoted by xi = xi(� , t). Next we 
shall define the velo city of motion: Vi (�, t) = (ox i j ot) (�, t)" Since function �t has 
an inverse function for every t, we can express � as a function of x and t, �(x, t) and 
define the velocity: vi (x, t) = Vi(�(x, t), t). Defining the acceleration by Ai(�, t) = 
(f)Vijf)t)(�,t), we have a.i(x,t) = Ai(�(x,t), t) = (ovijot) + (ovijoxi) vi. Next 
we put xi for the velo city and xi for the acceleration regardless of whether it is a 
function of � or x. Now we shall concern ourselves with the description of the de­
formation of body B. Let the motion of the body be described in the configuration 
X by the equations x i = x i (x, t). In this case the function 

yi (t ) _ exi (t ) 
-'-Cl' �,t - e�O! �,t (1) 

is called the deformation gradient of motion xi. X detX� #- O holds for the 
deformation gradient of motion. Consequently, we can assume, as we do further 
on, that X > O for every t. It is convenient to introduce the right Cauchy-Green 
strain tensor by the relation 

(2) 

where gkl is a unit tensor and 9 =diag (1, 1, 1) . To render the definitions for finite 
and small deformations uniform, we shall denote the strain tensor by 

(3) 
We assume that function' (!, the density, is defined on body B. The equation of 
continuity holds for this function, namely 

(4) 

Equation (4) can be expressed in integral form 

{!(x , t) X= § (�, t) (5) 

where § is the density in configuration � and (! the density at point x = x(�, t). 
External forces act on the body. Their density per unit mass is bi. Let bi be 

constant in the whole body. The surface forces in the body are determined by the 
symmetric stress tensor Tij (x, t). If (T is a regular orientable surface inside body 
B, the force acting on this surface is ji = J Tijnj dS, where nj is the unit vector 

(7 
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of the normal to surface (J. We now can express the equation oí motion in this 
notation as 

( ) " i (t) bi & Tij ( t) {! x, t x = (! x, + � x, . , vxJ 
(6) 

Equations (4) and (6) determine the motion of the body if we choose the instanta­
neous state of the body as the reference configuration for every t. If we choose any 
fixed configuration � as the reference configuration, the equations of motion have 
the following form 

(7) 

where Sifr(�, t) is the Piola stress tensor, defined by the relation 

(8) 

The equations of motion and the equation of continuity stíll do not describe the 
motion of the body uniquely. It is necessary to define the constitutíve equations 
which give the relations between the stress and the strain tensor. These equations 
depend, of course, on the material of the body. In the theory of elasticity we assume 
that the stress tensor at point x is a function of the deformation gradient of motion 
at this point, i.e. with regard to the reference configuration 

(9) 

where � is the solution to the equation xi = X;(�). According to the principle 
of material objectivity (Leigh, 1968), which states that the equations describing 
physical processes are independent of the observer, it follows that 

(10) 

for any orthogonal Q, i.e. for any Q for which 

From condition (10) it is possible to derive that 

(11) 

must hold. The other relations for the stress tensor can be derived if we assume 
the existem:e of an isotropy group, i. e. a group of transformations of the reference 
configuration for which 
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where det G = 1. In view of thermodynamics we can prove that 

(12) 

where (o2WjoC(X{30Cf2CT) is the positive defiriite mapping S2R3 X S2R3 to R. It 18 
interesting to note that if the reference configuration ( = cpC< (�) lS changed, we 
obtain 

Rc<{3(č, () = K�l KCYf2 K!317 Rf217 (K:jKíc,6 + P7rW,�) (13) 

where Kff = (8�C< / 8�!3) and Pc<(3 = Hg!217KgK$ - gc<(3); therefore, the form Of 
equation (11) is independent of the choice of the reference configuration. However, 
this is also one of the requirements imposed on this theory. 

In the theory of small deformations we define the tensor of small deformations 
by the formula 

1 (8Xi 8Xj ) 
Gij = 2 8�j + 8�i - gij (14) 

and assume that the stres s tensor is a function of Cij, i.e. 

(15) 

The tensor of small deformations (14) corresponds to strain tensor (3) in which 
we omit the terms gkz[(8uk j8�a) (8u1j8e)], where uk = xk - �k. This omis­
sion of quadratic terms is explained by the assumption that the deformations are 
small. This corresponds to the small deformations from the reference configuration. 
Therefore, these deformations are call'ed small. If we make this omission also in 
equation (8), we get equation of motion 

(16) 

which is known from the classical theory of elasticity (Brdička, 1959). If we now 
choose another reference configuration [, we get the relation 

w here AIij = � (Kj + K () - gij. I t is evident that in this case we cannot express the 
tensor of small deformations in terms of the original tensor of small deformations 
and functions Kj. Therefore, in the case of these transformations the tensor of small 
deformations does not behave as a tensor quantity, and the form of the equation 
of motion (16) depends on the choice of the reference configuration. Assuming 
that functions Kj differ only a little from unity and omitting the quadratic terms 
(Ký - 8;) (8ukj8[i), we obtain the transformation relation 
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N evertheless, these are only small changes of the reference configuration. Conse­
quently, relation (15), which defines the dependence of the stress and strain tensors, 
can only hold in a particular configuration, but not in general. The existence of 
this configuration is essential for the theory of small deformations. In other <;:on­
figurations the stress tensor depends not only on the tensor of small deformations 
but generally on the deformation gradient of motion. 

3. FORMULATION OF THE PROBLEM 

Let us formulate now one problem studied in the theory of elasticity. Let body B 
be composed of the material for which constitutive equations are known with respect 
to any configuration � and have the form of (11). Let the body be in equilibríum at 
timeto and be projected ontoR3 by means of configurationx : B � R3; Xi(p) = xi, 
where p E B. Let stress tensor Tii(x), density e(x) and density of external fon::es 
bi for any x E X(B) be known in this configuration. The boundaryof body B will 
be divided into two disjunctive subsets ólB and Ó2B where óB = ólB n Ó2B. Now 
we shall apply the external forces to the boundary of body B. Consequently, the 
body will move. This motion will be described by function yi = yi(x, t) . We know 
the distribution the of external surface forces on DIB in configuration y and values 
J/(x, t) on ozB. The task is to find yi(x, t) and Tij (y, t) within and on the boundary 
of body B. It is not simple to solve this problem. We now have three, in general , , 
different, configurations and we must find transformations between them. The first 
problem is to find constitutive equations with regard to the reference configuration 
xi, i.e. to solve the equations 

If posssible, we determine the deformation gradients X� from these equations. Let 
the solutions to these equations exist. This is, of coume, already a condition being 
imposed on stress tensor Tij (x). The next condition, which must be fulfilled by 
stress tensor Tij, is the equation of equilibrium 

. frrij 
e(x) b' + �!)- • = O uxJ (17) 

If also the external forces, which act on the boundary of body B, are known, then 

(18) 

must hold on this boundary, where nj is the a unit vector of the normal external 
to boundary bB. When all these 'conditions are fulfilled we must solve the system 
of partial differential equations of the second order 

(19) 
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where p� = [)yi / [)xi is the deformation gradient of the motion yi with regard to 

configuration x, Eij = � ( gklP7pj -gij) is the strain tensor corresponding to this 
deformation gradient, and J = detp > O. The solution to these equations must 
satisfy the boundary conditions, which we can formulate in the following way: Let 
part blB of the boundary af body B be described in configuration x by the eqnation 
<p(x) = O. During motion this surface changes into another surface, described by 
the relation r:p(y, t) = r:p(y(x, t), t) = <p(x) = O. The solution on this surface must 
'conform to the condition 

Tij(y)Nj(y) = J-1p%p{Rkl(E , x) Nj( y(x ,t), t) = (ji( y(x, t), t) (20) 

where Nj is the unit normal to surface r:p(y, t) = O and (ji(y, t) is the known density 
of external surface forces on blB. For part Ó2B af boundary bB, on which we 
assume that functions yi( x, t) are known, ijj(y, t) = ijj(y(x" t), t) = '1f;(x) = O must 
hold, where </J( x) = O describes boundary 62B before tne deformation. We can see 
that equations (19) and boundary conditions (20) are nonlinear. It is, therefore, 
very difficult to solve these equations. 

In solving this problem in the theory of small deformations, we must first ascer­
tain that the deformations which correspond to the initial stress tensor are small 
with regard to the configuration for which the constitutive equations are known, 
and that formula (15) holds for these equations. These are the conditions for which 
we have derived the equations of motion (16). In the same approximation, which 
we have already made, we can express the boundary condition as 

(21) 
where ni is the unit normal external to the boundary in reference configuration f 
Thus,after aH these approximations we obtain the equations of the classical theory 
of elasticity ( Brdička, 1959). 

4. LINEARIZED EQUATIONS OF FINITE ELASTICITY 

In this section, we sha11 derive the linearized equations corresponding to the 
equations of motion (19) and boundary 'condition (20). There is some analogy here 
to the equations which describe sma11 deformations. These equations describe small 
deformations with regard to the previously known finite deformation for which the 
stress tensor is Tij (x). 

Let the stress tensor satisfy equation (17) and boundary condition (18), and 
constit.utive equations be given with regard to the configuration x by the following 
relations 

Tii(y,t) = J-lp�p{Rkl(Ers, x) (22) 

The equation of motion (19) and boundary conditions (20) hold. We shall seek 
the solution to this equatibn of motion in the form af yi = xi + 71Ji( x, t) . After 
substituting into (19) and (20), .ve abtain 
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and 
(fi(X + rq) = (lí(x) + Tz::;i(x, t) + O(T) 

where 711 (07Jijoxk) and eij = Hgir7Jj + gjr7J[) and z::;i(x,t) is the linear part 
of the change in the density of the surface forces. We shall develop the equations 
of motion and boundary condition into a power series restricting ourselves to the 
linear part only. After some easy algebra involving Eqs. (19) and (20) we get 

. O lr ., . .  aRij 
] 

e(x)r;t(x,t) = -;:;-:- TJ K: (X)7Jk + '-;:-- (O,x) ers vxJ vers 

IntToducing Wrs = � (gri7J� - gsi7J�) we can put 

In this approximation the boundary condition has the following form 

(23) 

(24) 

(25) 

which holds along boundary blB of body B in configuration x. It is interesting to 
note that, if Tij = O, bi = O and ui = O and, in configuration x, the constitutive 
equations take the following fOfIn: 

.. oRij T�J(y) = -8- (O,x) ers 
Crs 

wé have obtained the same equations as for the small deformations. But it is not 
true that for these conditions and in this approximation we should obtain the theory 
of small deformations because in our case the constitutive equations are linear in 
ers whereas this Iieed not be true in the theory of small deformations. Equations 
(24) and (25) do not depend only on terms ers as with small deformations but also 
on variables wrs which determine infinitesimal rotations. We shall now introduce 

In this l1otation we can express (24) and (25) in the form 

and 

. o ·· .. 
nii' = - (A'J,rse -f Z'J,7'SW \ 
"' "  oxj \ rs l'S) 

(26) 

(27) 

(28) 

(29) 
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We can see that A ij,rs and Zij,rs determine the equations of motion and the bound­

ary conditions. However, these quantities cannot be arbitrary. Equations (26) and 

(27) indicate that 

and 
zij,rs == _zij,sr 

But Aij,rs and Zij,rs must satisfy more relations. Let 

Of course Bij,rs = Bij,sr = _Bji,rs. Let 

(30) 

(31) 

(32) 

(33) 

For a solu ti on to (26) to exist in Aij,rs, Dj,r and Bij,rs must satisfy the following 
relations 

and 

(34) 

(35) 

(36) 

The symmetri<; part Aij,rs + Aji,rs and Dj,r, for which (34) and (35) hold true, 
determine Aij,rs uniquely. Therefore, A is defined by 36 values of its symmetric 
part and by five values of D, i :e. by 41 parameters. For the hyperelastic case (12) 
holds and, therefore, the symmetric part of A is invariant to the change (ij) t--t (r s) . 
and, consequently, the symmetric part is only defined by 21 parameters. 

We shall now study the conditions under which (27) has a solution. Let 

Gij - L· zíj,rs t - 2 crst 

where crst is the Levi-Civita tensor. In this case (27) has a solution iff 

and 

gijG�j = O 

g ·Gíj + g ·Gij - O rl S Sl r -
These equations have solutians iff Tkl, for which 

and 
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exists. It can be easíly proved that Tij is the initial stress tensor. Therefore ,Z is 
defined by six parameters T and, conversely, Z defines T uniquely. The solvability 
of the system of equations (26) and'(27) implies the relation between Dj,r and Tjr: 

, Dj,r = 3Tjr - T; gjr (42) 

Therefore, the solution to systems (26) and (27) is defined by 36 values of the 
symmetric part A (in the hyperelastic case by 21) and by six values of Tij. This is 
not surprising because in linear terms we can put 

" " T " "  " "  . .  
T'J(x + TTl) = T'J(x) + 2[(A'J,rs + AJ"rs) + (Z'J,rs + ZJt,rs)wrs - T'J(x) e�l 

As opposed to Hooke's law (Brdička 1959) , stress tensor Tij(x) appears here; But 
we can express the terms by which this relation differs from Hooke�s law with the 
aid of the known stress tensor T. It is interesting that the antisymmetric part of 
A does not depend on the trace of the stress tensor and (mly is a function of the 
deviator of this tensor. 

5. CONCLUSION 

Prom the above analysis it is evident that the linearized equations of motion for 
finite deformations are reduced to the equations for small deformations iff the tensor 
of initial stress Tij (x) is equal 

O
to zero. But this is never the case in geotechnics 

because the forces of gravity always exist. Therefore, not even in a linearized case 
can we solve the problem defined in Sect. 2 of this paper by means of the theory 
of small deformations. This is a question of how much the solution to this problem 
in the linearized theory of finite deformations differs from its solution in the theory 
of small deformations. 
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o V ZTAHU MEZI LINEARIZOVANOU TEORIÍ KONEČNÝCH DEFORMACÍ 
A TEORIÍ MALÝCH DEFORMACÍ 

Ondřej Navrátil 

V článku jsou odvozeny linearizované pohybové rovnice pro elastické těleso, které bylo předem 

deformováno působením vnějších sil. Je ukázáno, že tyto rovnice jsou rovnice popisující malé 

deformace, právě když je tenzor napětí pro počáteční zatížení nulový. 
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