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Abstract: Linearized equations of motion for finite deformations of an elastic body, previously
deformed by the action of external forces, are derived. It is shown that these equations describe

small deformations iff the stress tensor for rest loading is zero.
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1. INTRODUCTION

Mathematical modelling of geamechanical processes is based on the assumption
that the deforming medium behaves like a continuum. Therefore, in geomechanics
we have to concern ourselves with continuum mechanics. At present, the method of
mathematical modelling is mainly limited to the assumption of small deformations
(Prochdzka, 1990). We are not sure that this assumption is always justified. This
is the reason why we want to discuss the question as to when the equations of
motion for finite deformations may be substituted, at least infinitesimally, by the
well-known equations for small deformations. In this paper we shall only restrict
ourselves to the case of elastic material, assuming that the density of volume forces
per unit mass is constant in the whole body.

2. BASIC_ CONCEPTS AND EQUATIONS OF CONTINUUM,MECHANICSU

A body is a connected set in R? on which it is possible to define the structure
of the C* manifold which has dimension 3. We shall denote the boundary of body
B by 6B. We assume that the mapping x : B — R® which projects B as a whole
on R®, and the inverse map‘ping.x‘1 : X(B) — B exist. Any of these functions
will be called the configuration of body B. The set of configurations ¢;,¢ € R such
that the function x; = p: 0 x7' : R x x(B) — R’ is C* differentiable for any
configuration y will be referred to as the motion of body B.

1) For more details see Leigh (1968).
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To throw some light on these abstract terms we note that body B is an abstract
topological subset of R3. The structure of the C°® manifold allows us to introduce
local coordinates into this set, and the existence of the configuration allows us
to define these coordinates globally (of course, this assumption is not necessary).
Motion ¢; of the body in some configuration x assigns, to any & € x(B), a curve
£(t), which is the motion of a point of body B.

The motion of body B in coordinates will be denoted by z* = z*(¢,t). Next we
shall define the velocity of motion: V(¢ t) = (02%/8t)(¢,t). Since function &, has
an inverse function for every ¢, we can express ¢ as a function of z and ¢, ¢(z,t) and
define the velocity: v'(z,t) = Vi(¢(z,t),t). Defining the acceleration by A(¢,t) =
(8V')8t)(¢,t), we have al(z,t) = A'(E(z,t),t) = (Ov'/0t) + (Ov'/Bz7) v/. Next
we put ! for the velocity and &' for the acceleration regardless of whether it is a
function of £ or z. Now we shall concern ourselves with the description of the de-
formation of body B. Let the motion of the body be described in the configuration
x by the equations ' = z*(z,¢). In this case the function

X460 = 5o 69 )

is called the deformation gradient of motion z!. X = detX? # 0 holds for the
deformation gradient of motion. Consequently, we can assume, as we do further
on, that X > 0 for every t. It is convenient to introduce the right Cauchy-Green
strain tensor by the relation

Cap(é,t) = g Xt X (2)

where gz is a unit tensor and g =diag (1, 1, 1). To render the definitions for finite
and small deformations uniform, we shall denote the strain tensor by

Cap = %(Caﬁ ~ Jop) (3)

We assume that function-g, the density, is defined on body B. The equation of
continuity holds for this function, namely

. Ov
o+o 577 =0 (4)

Equation (4) can be expressed in integral form
o(z (5)

where g is the density in configuration £ and g the density at point z = z(¢,t).
External forces act on the body. Their density per unit mass is b’. Let b* be

constant in the whole body. The surface forces in the body are determined by the

symmetric stress tensor T%/(z,t). If o is a regular orientable surface inside body

B, the force acting on this surface is f' = [ T%n;dS, where n; is the unit vector
[eg
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of the normal to surface c. We now can express the equation of motion in this
notation as

. T
Q(I,t)z —Q(J%t)b +-8—$-}:-T'7(£II,t) (6)

Equations (4) and (6) determine the motion of the body if we choose the instanta-
neous state of the body as the reference configuration for every t. If we choose any
fixed configuration £ as the reference configuration, the equations of motion have
the following form

==& (7)

6(€) & (&,t) = 8(€) b* + 5

where Sia(f, t) is the Piola stress tensor, defined by the relation

S (&) = XT(2(&, 1), t) (X5 (6:1) (8)

The equations of motion and the equation of continuity still do not describe the
motion of the body uniquely. It is necessary to define the constitutive equations
which give the relations between the stress and the strain tensor. These equations
depend, of course, on the material of the body. In the theory of elasticity we assume
that the stress tensor at point = is a function of the deformation gradient of motion
at this point, i.e. with regard to the reference configuration

T (z,t) = F9(X5(£,1),€) (9)
where £ is the solution to the equation z' = xi(€). According to the principle

of material objectivity (Leigh, 1968), which states that the equations describing
physical processes are independent of the observer, it follows that

QLOIFH(X,€) = FU(QIX2,6) (10)
for any orthogonal @), i.e. for any ) for which
gle? Qi— = Gij
From condition (10) it is possible to derive that
T¥(2,8) = X“1X5 X4R (g0, €) (11)
must hold. The other relations for the stress tensor can be derived if we assume

the existence of an isotropy group, i. e. a group of transformations of the reference
configuration for which

FY(XZ,8) = FY(X3GE,€)
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where det & = 1. In view of thermodynamics we can prove that

ow

{83 e
R ﬁ(cgﬂ’é) - 0 (690‘76) (12)
Caf
L (O2W% 10 e,V is the positive defiriite i Q23 o Q2P3 D Tt}
WIIETE { 4 CaﬂuCQo—} 1S the pOos1tive dennlve mapping oS- it” X oS4t to . it is
interesting to note that if the reference configuration & = ¢%(¢) is changed, we

obtain ~ B

Rop(5,€) = K1 K*KP R (KYKEcys + Prw, &) (13)
where K§ = (06%/0¢P) and pap = §(900 KEK] — gap); therefore, the form of
equation (11) is independent of the choice of the reference configuration. However,

this is also one of the requirements imposed on this theory.
In the theory of small deformations we define the tensor of small deformations

by the formula
1 8:13,; 8:1:]'
= = -4+ — | = g;; 14
i 2<a§3+a§z) 9ij (14)

and assume that the stress tensor is a function of ¢;;, i.e.

T (z,t) = HY (ex1, €) (15)

The tensor of small deformations (14) corresponds to strain tensor (3) in which
we omit the terms ggi[(Ou*/9¢™) (Ou'/0EP)], where u¥ = z¥ — ¥, This omis-
sion of quadratic terms is explained by the assumption that the deformations are
small. This corresponds to the small deformations from the reference configuration.
Therefore, these deformations are called small. If we make this omission also in
equation (8), we get equation of motion

af e\t . ;0 »

HOF(E) = 8O ¥ + 57 B (16)
which is known from the classical theory of elasticity (Brdicka, 1959). If we now
choose another reference configuration &, we get the relation

1 k@u‘ Ik 61{,5
=M+ 5 (WG + K 5

where M;; = %(KJ’ + K7) — gi;. It is evident that in this case we cannot express the
tensor of small deformations in terms of the original tensor of small deformations
and functions K?. Therefore, in the case of these transformations the tensor of small
deformations does not behave as a tensor quantity, and the form of the equation
of motion (16) depends on the choice of the reference configuration. Assuming
that functions K]’f differ only a little from unity and omitting the quadratic terms

(K} — 6%) (Oux/OE*), we obtain the transformation relation
eij = Mi; + &5
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Nevertheless, these are only small changes of the reference configuration. Conse-
quently,

can only hold in a particular configuration, but not in general. The existence of
this configuration is essential for the theory of small deformations. In other con-
figurations the stress tensor depends not only on the tensor of small deformations
but generally on the deformation gradient of motion.

3. FORMULATION OF THE PROBLEM

Let us formulate now one problem studied in the theory of elasticity.

be composed of the material for which constitutive equations are known with respect
to any configuration £ and have the form of (11). Let the body be in equilibrium at
time ¢o and be projected onto R® by means of configuration x : B — R?; x%(p) = z,
where p € B. Let stress tensor 7% (z), density g(z) and density of external forces
b’ for any = € x(B) be known in this configuration. The boundary of body B will
be divided into two disjunctive subsets §; B and 62 B where 6B = §; BN 63 B. Now
we shall apply the external forces to the boundary of body B. Consequently,

body will move. This motion will be described by function y* = y(z,t). We know
the distribution the of external surface forces on 6; B in configuration y and values
yi(z,t) on 6 B. The task is to find y*(z, t) and T%/(y, t) within and on the boundary
of body B. It is not simple to solve this problem. We now have three, in general
different, configurations and we must find transformations between them. The first
problem is to find constitutive equations with regard to the reference configuration

&', i.e. to solve the equations
T (z) = X' X, X5 R (co0)

If posssible, we determine the deformation gradients X? from these equations. Let
the solutions to these equations exist. This is, of course, already a condition being
imposed on stress tensor T/ (z). The next condition, which must be fulfilled by
stress tensor T/, is the equation of equilibrium

AT

ozI

o(@) '+ —=0 (17)

If also the external forces, which act on the boundary of body B, are known, then
T (z) nj(z) = o' (a) (18)

must hold on this boundary, where n; is the a unit vector of the normal external
to boundary 6 B. When all these conditions are fulfilled we must solve the system
of partial differential equations of the second order

(=) §(2,8) = 0(z) b + 50z (P (v, 2) (19)
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where p;- = 0y'/0z7 is the deformation gradient of the motion y* with regard to
configuration z, E;; = 3(

deformation gradient, and J = detp > 0. The solution to these equations must
satisfy the boundary conditions, which we can formulate in the following way: Let
part 61 B of the boundary of body B be described in configuration ¢ by the equation
¢(z) = 0. During motion this surface changes into another surface, described by
the relatien @(y,2) = @(y(z,t), t) = @(z) = 0. The solution on this surface must

conform to the condition

T (y)N;(y) = J " 'php{ R*(E
where IV is the unit normal to surface @(y,¢) = 0 and *(y, t) is the known density
of external surface forces on 6;B. For part §;B of boundary 6B, on which we
assume that functions y*( ,
hold, where 9(z) = 0 describes boundary §;B before the deformation. We can see
that equations (19) and boundary conditions (20) are nonlinear. It is, therefore,

very difficult to solve these equations.
In solving this problem in the theory of small deformations, we must first ascer-

tain that the deformations which correspond to the initial stress tensor are small
with regard to the configuration for which the constitutive equations are khown,
and that formula (15) holds for these equations. These are the conditions for which
we have derived the equations of motion (16). In the same approximation, which
we have already made, we can express the boundary condition as

H(e,€)n;(§) = 7'(€) (21)
where n; is the unit normal external to the boundary in reference configuration &.

Thus, after all these approximations we obtain the equations of the classical theory
of elasticity (

4. LINEARIZED EQUATIONS OF FINITE ELASTICITY

In this section, we shall derive the linearized equations corresponding to the
equations of motion (19) and boundary condition (20). There is some analogy here
to the equations which describe small deformations. These equations describe small
deformations with regard to the previously known finite deformation for which the
stress tensor is 7% (z).

Let the stress tensor satisfy equation (17) and boundary condition (18), and
constitutive equations be given with regard to the configuration = by the following

relations Ny o

T (y,t) = J 7 pip] B* (Er, (22)
The equation of motion (19) and boundary conditions (20) hold. We shall seek
the solution to this equation of motion in the form of y* = z* + 79*(
substituting into (19) and (20), we obtain

N P 2 .
o(z)if*(z,t) = o(z) V" + 307 [(51; + ;) R (Ters + % Jrom: ns,x)J
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and . _ _
7' (z + ) = o*(z) + 75 (z,t) + o(7)

where i = (0n'/0z*) and e;; = %(girn; + gjrn7) and Xi(z,t) is the linear part
of the change in the density of the surface forces. We shall develop the equations
of motion and boundary condition into a power series restricting ourselves to the
linear part only. After some easy algebra involving Eqs. (19) and (20) we get

& [ e, ORY 1
o(a)ii (e, 8) = 53 | T @k + 5 (0,2) ers) (23)

Introducing wers = £(grim: — gsim%) we can put
g 4 ORY 75 ir js ir \
elz)i(z,t) = e EC——-(G,:L') +T7%(z) ¢ | ers +T7%(z) g wrs (24)
b T8

In this approximation the boundary condition has the following form

afii_‘f ry i ir r r i
ers + T ) nj=o'(er —e™nm,) + X (25)
Ocrs

which holds along boundary §; B of body B in configuration z. It is interesting to
note that, if 'Y = 0,0" = 0 and ¢* = 0 and, in configuration z, the constitutive
equations take the following form:

QR

40

dcrs

T (y) = (0,2) ers

We have obtained the same equations as for the small deformations. But it is not
true that for these conditions and in this approximation we should obtain the theory
of small deformations because in our case the constitutive equations are linear in
ers whereas this need not be true in the theory of small deformations. Equations
(24) and (25) do not depend only on terms e,; as with small deformations but also
on variables w,s which determine infinitesimal rotations. We shall now introduce

ij,rs jr & is i 6Rt3
ATT = 3(T7g" +T7°g") + 5 (26)

Crs
Zﬁj,rs - %(Tjsgz'r . Tjr'gi.S) (27)

In this notation we can express (24) and (25) in the form
Qﬁi — i (Aij,rse - Zz’j,r*sw” \ (28)
! 62:] \ 8 s/ y

and - N _

(AW %ens + Z P weg) ny = o*(ef.~— e™°nqn,) + 2 (29)
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We can see that A" and Z*/"% determine the equations of motion and the bound-
ary conditions. However, these quantities cannot be arbitrary. Equations (26) and

(27) indicate that - -
Az],rs:Azy,sr (30)

and _
Zz_';,rs - _sz,sr 5 (31)

But A77% and Z*"* must satisfy more relations. Let
Bz’j,rs — Aij,rs _Aji,rs (32)
Of course B"s = Bijsr — _ pii,rs. Let
Dj,r = B‘ij,r'sgis (33)

For a solution to (26) to exist in A*"*, D/" and Bi/""s must satisfy the following

relations

Dj,r —_ Drlj (34)
DiTg; =0 (35)

and B L .. T .
RBiirs — %(D},f‘gis +D3,sg:r _ Dz,f-g}s _ D:,sgjfr) (36)

The symmetri¢c part A% 4+ A7 and DJ", for which (34) and (35) hold true,
determine A*"$ uniquely. Therefore, A is defined by 36 values of its symmetric
part and by five values of D, i.e. by 41 parameters. For the hyperelastic case (12)
holds and, therefore, the symmetric part of A is invariant to the change (ij) < (rs)
and, consequently, the symmetric part is only defined by 21 parameters.

We shall now study the conditions under which (27) has a solution. Let

GY = ke, 20 (37)

where ¢,5¢ is the Levi-Civita tensor. In this case (27) has a solution iff

gijGJ =0 (38)
and .
9riGY + 9GP =0 (39)

These equations have solutians iff T*!, for which
47 = (40)

and

Gy =39 eral T (41)
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exists. It can be easily proved that T is the initial stress tensor. Therefore Z is
defined by six parameters T' and, conversely, Z defines T' uniquely. The solvability
of the system of equations (26) and’(27) implies the relation between D?" and T7":

D" = 3T9" — T3 gir (42)

Therefore, the solution to systems (26) and (27) is defined by 36 values of the
symmetric part A (in the hyperelastic case by 21) and by six values of T*. This is
not surprising because in linear terms we can put

Tij(.’l:—f-TT]) — Tij(z) s _;_[(Aij,rs +Aj£,rs) + (Zij,rs+ Zji,rs)wrs _Tij(a:) 6:]

As opposed to Hooke’s law (Brditka 1959), stress tensor 7%/ (z) appears here. But
we can express the terms by which this relation differs from Hooke’s law with the
ald of the known stress tensor T". It is interesting that the antisymmetric part of
A does not depend on the trace of the stress tensor and only is a function of the
deviator of this tensor.

5. CONCLUSION

From the above analysis it is evident that the linearized equations of motion for
finite deformations are reduced to the equations for small deformationsiff the tensor
of initial stress T%(z) is equal to zero. But this is never the case in geotechnics
because the forces of gravity always exist. Therefore, not even in a linearized case
can we solve the problem defined in Sect. 2 of this paper by means of the theory
of small deformations. This is a question of how much the solution to this problem
in the linearized theory of finite deformations differs from its solution in the theory
of small deformations.
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O VZTAHU MEZI LINEARIZOVANOU TEORI{ KONECNYCH DEFORMACIK
A TEORIf MALYCH DEFORMACT

Ondfej Navratil
V éldnku jsou odvozeny linearizované pohybové rovnice pro elastické téleso, které bylo pfedem
deformovano pusobenim vnéjsich sil. Je ukdzdno, ze tyto rovnice jsou rovnice popisujici malé

deformace, pravé kdyz je tenzor napéti pro pocdtecni zatizeni nulovy.
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