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THE BEM APPLIED TO OPTIMIZATION
AND CONTACT PROBLEMS IN GEOTECHNICS
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Abstract: In the paper the application of the Boundary Element Method to selected geotechnical
problems is presented. Special attention is devoted to the analysis of the stress state in rock due
to openings with or without stiffeners (tunnel wall, lining, etc.). The formulation is proposed as
a coupling of contact and optimization problems. A typical example demonstrates the behaviour
of the model.
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1. INTRODUCTION

In this paper we will deal with the application of the boundary element method
(BEM) (see Banerjee and Butterfield, 1981; Brebbia and Walker, 1980; Broz and
Prochdzka, 1987; Crouch and Starfield, 1983) to the solution of some geotechni-
cal problems for which the BEM is extraordinarily advantageous. Among others
we can name problems requiring the underground continuum to be expressed as a
three-dimensional one (e.g. a halfspace problem). The BEM reduces the dimen-
sion of the problem by one and makes it possible to include a point in infinity into
the domain. Another well-suited use of the method is its application to optimiza-
tion (see Céa, 1971; Duvant and Lions; 1972; Haslinger and Neittaanmaki; 1988;
Horak and Prochdzka, 1987) and/or contact problems which cover non-linearities
at boundaries of the domains only (see Broz and Prochdzka, 1985). Then, as op-
posed to the FEM (finite element method) (see Janovsky and Prochézka, 1980) it
suffices to study the influence of the boundary elements on the solution.

In this paper we will concentrate on two-dimensional problems only, while gen-
eralisation to three dimensions has a formal character.

We start with the static equations:

0

0 do
At p) — div u+ pAu; +b; + —2L =0, i, j=1,...,2 1.1
(A+n) 5. [ 5, j (1.1)

where
Ou;  Oug o2 &

div u= 24 4 902 _ o
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and u = (uy,uz) is the vector of displacement, b1,b, are compomnents of the vector
of volume weight, a?j components of the tensor of initial stress.
These equations will be solved in coordinate system Oz z; on domain §2:

2 ={(z1,72) € Ry; %2<0, z1 € (~00,00)} (1.2)
which is a halfspace with boundary I" being the z;-axis:
= {(171,232) € Rz, To = 0, I € (—O0,00)} (13)

In the sense of the BEM it is possible to re-formulate Eq. (1.3) into an equivalent
form (see Broz and Prochdzka, 1987):

crrui(€) = (efx: 075) + [Pl wil = [wdk, pi] — (uia, Xi) (1.4)

where cg; = Og¢ for € € 2,cr = %6“ for £ € smooth boundary of §2,¢ is the
tensor of deformation, p = (p1,p2) are the tractions, and the quantities marked
with asterisks are the appropriate source functions.

Since points in infinity have to be involved into domain, instead of the funda-
mental solution of the adjoint equation, the Green function is often used. It obeys
the equation:

ki k 3 1 3oy s
3:::,-3:5_,-

where 6} is a point load, i.e. vector (61x,82x) 6,6k being the Kronecker symbol,
and § the Dirac function. Moreover, the Green function u* fulfils the condition
that tractions are equal to zero on boundary I'. Such a function was derived by
Melan (1932) and was used for the purpose of the BEM in Broz and Prochazka
(1987, pp. 112-113).
The above-mentioned conditions lead to the following equation, which substitute
for (1.5):
criw(€) = (Efjkaff?j) — (ui, bi) (1.6)

On the other hand, on the halfspace (v is the Poisson coefficient)

1-2v
’I_L[1J = m .Xl.'D% + const., ug =0
(1.7)
0 0 0 v
o =—X171, 01 =0, 03 = T1-, X131

A combination of (1.6) and (1.7) with apropriate conditions describe the stress
state induced by the volume weight.
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2. INFLUENCE OF OPENINGS IN A HALFSPACE

Suppose that due to mining activities a cavern or more caverns are open. Denote
these caverns by §2. and their boundaries by I'.. For the sake of simplicity let us

consider neither volume weight nor the initial stress. Then
m
wn® =3 ([ pile,)w@ - [ wneonEar) @)
e=1 Fe F,_
Denote p{(z) = 0%(z), z € I'.. Assuming that the boundaries are smooth enough,
point £ may be localized at I (this point will run along boundary I) to obtain:
m
@ =Y ([ e u@in- [ w@osead) @)
e=1 e . e
The integral equation (2.2) can be solved by discretizing boundary I, into bound-
ary elements to get the displacements on I, with respect to §2 — 2, induced by
the openings. Now, tractions p? on I, are given and the displacements due to the
openings are known at I; from the system (2.2). Under substitution cx; = 6k sys-
tem (2.1) yields the displacements on {2 — §2,. The stress state on {2 — 2., induced
by the openings, and p? can be obtained from a physical law (e.g. Hooke’s law) .
Denote the components of this tensor by o!. For the components of real stress o;;
it holds
0ij = 035 — 0 (2.3)
so that a superposition of the state under loading of volume weight of the whole
halfspace (see Eq. (1.7)) and the state under loading of boundaries I'¢ so that the
tractions along I, in view of condition (2.3), vanish.

3. INFLUENCE OF STIFFENED OPENINGS ON HALFSPACE

In practical cases openings are somctimes stiffened by linings or tunnel walls.
If we proceed via the solution of Eq. (1.1) for a halfspace, it is obvious that the
volume weight will again present difficulties. Therefore, we will present a procedure
originating from the superposition of the stress state induced by volume weight and
the state after opening and stiffening of the tunnel. It is necessary te specify the
second state. We will suppose (the procedure is theoretical but can be used in some
special cases) that, first of all, the stiffening is carried out and the stiffened tunnel
is then opened (the rock removed).

Let us denote the conjunction of I, by I,. The quantities denoted by upper
index 1 are related to 2 — 2. and those by upper index 2 are related to §2.. For
points £ on contact Iy it holds

Pus© =3 (f 5o o) aro-
_/;1 Yuly(x, ) 'pi(w) dfu) ;7 I(3.1)
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e=1
X
24 (0,6) pile) ATy ) (3.2)
er /l

Egs. (3.1) and (3.2) generate a linear system of four integral equations (Fredholm
equations of the second kind) in eight unknown functicns. It implies that some
additional conditions have to be formulated. In our case these are the interface

conditions:

Yui(€) =% ui(8), €T (3.3)
pi(€) P pi(€) =0, £€h (3.4)

[©]

System (3.1) to (3.4) can be solved by the BEM considering the linear states. h-
displacements and tractions along the boundary I are obtained and, from (2.1
¢z = Oki, alsc the displacements on both the subdomains. Followmg Hooke’s law
the stresses induced by this process of construction will be at disposal.

So far, the elastic states of material have only been considered. Also, we have not
employed the initial stress o¢ 1;- We have modelled (for the reason mentioned above)
its effect in another way. We will briefly mention a possible way of mathematical
modelling the non-linear behaviour (plasticity) of the material. This is similar to
the procedure described in Broz and Prochazka (1987, Chap. 5.3).

Since the BEM does not permit the change of material constants, the non-
linear behaviour has to be expressed by virtue of an incremental method, and the
necessary change of quantitites is delivered from the initial stresses.

Let us consider the previous problem under the assumption of non-linear be-
haviour of material. With respect to Eq. (2.3), instead of (3.3) and (3.4) we get

.4\/}.-

sur(€) = (/ pi(w, &) uil=) dfe—/ uiz(2,€) pi(w) dF3>+
e—1 \JT, I
[ x \ 7 =
+j9 eie (e, €) oi;(z) A2 (3.5)

The procedure can be divided into the following steps:

1. Input the initial stress a = 0.

2. Solve the basic equamons to obtain displacements on [j.

3. Suppose b; = 0 and c; = 83 the displacements on domain {2 are obtained
and from Hooke’s law we get U;‘j,

4. The real stress of quasilinear state follows (2.3).

5. Test the criterion of plasticity and define the distribution of 0'?}. in such a
manner that the sum o;; + a?j fulfils the criterion.

6. If the correction is larger than the given error, go to step 2, otherwise termi-
nate the process.
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4. COMPUTATION OF INITIAL STRESSES

Jiang (1985) succeeded in finding the Galerkin tensor G';;, which obeys the iden-

tity:
b; 0Gi, 0G5
* — — — _ -d
/puikbkdp 2p /;2 [2('1 ) vz, 3~'BkJ .

where P is a domain, on which b; is constant and nonvanishing, n; is the j-th
component of the unit outward normal to boundary () of domain P.

By definition
1 671',":]‘, our
I J ik
gljk 2 ( 8m1~ g 31:3‘)

The last two equations describe the effect of the initial stresses on a special
domain in terms of the value of the integral along its boundary.

Algorithmization leads to triangulation similar to that of the FEM (in this case
the internal elements — cells — do not increase the number of unknowns). The
non-linearity criterion has to be satisfied on each internal element.

5. OPTIMIZATION ON HALFSPACE

Most structures are assessed a posteriors. The computational techniques together
with modern numerical analysis allow substantially more prospective analytical
processes. In this section we will deal with the optimization of admissible shapes
of structures in connection with the contact problems.

The optimization problems can be formulated in various equivalent forms. For
the purpose of applying the BEM a variational formulation with constraints appears
to be relatively most suitable. The stationary point of the following functional is

to be sought:

H(Q):%‘/ﬂgi‘j‘ﬂjdﬂ—-/r uigng+A(LdQ—V), i,j=1,2 (51)
2 g

gi are components of the given tractions and, for the sake of simplicity, the volume
weight forces are neglected.

The admissible domain §2 with a sufficiently smooth boundary I" has volume V.
The boundary consists of two parts, I} and I%; in the first part the displacements
are prescribed whereas in the second the tractions are given.

Using Gauss’ theorem and static equations the functional (5.1) may be rewritten

as follows:

H(Q):%/uipidf~/ uigidf—}—/\(/dQ—V), i=1,2 (5.2)
r i o)

where p; are components of the admissible tractions. Set
u:{ulﬁuzﬁu:g}'r: p:{p'l:pQ}pS}T: g:{glngzrg:]}rrs
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then
H(Q):E/qudr—/ ungF+A({dQ—V), (5.3)
I 2 i rz J 2

Let us approximate vectors # and p as
u=0Dnu, p=Dp

where D is the matrix of base functions and the barred quantities are free parame-
ters of the problem. These parameters are related to the boundary only. The direct
BEM leads to the relation (see iq. (2.2)):

1

Ha=Gp (5.4)

where both H and G are square matrices. Moreover, G is a regular matrix. This
allows an alternative expression:

p=G 'Hu=2Za1u, (5.5)

By inserting it into Eq. (5.3) one obtains
ﬂ:ﬁTKﬁ~ﬂTF+A(/ dF—V) (5.6)
12

where i
K= "f D*zdr, F:f DT gdl
2 T r

It remains to express volume V in terms of the parameters characterizing bound-
ary I', which is a polygon (in 3D boundary I is generated by triangular parts of
a plane). Choose an appropriate point C' and connect it with each vertex of the
polygon. We obtain IV triangles T} (in 3D tetrahedrons). The volume of domain
{2 will then be

/ d2 = meas (Tr), (5.7)
J 2 k=1

where meas (.) is an algebraic measure. The functional now has the form:

N
II=3"Ka—a"F+ (Z meas (Tk)—V) (5.8)
k=1
Define the vector of internal parameters p = {p;,...,par }, which can stand, for

example, for the distances between C and the vertices. Variation with respect to
u leads to the first system of Euler equations

LIK+KHa=F, or Ku=F (5.9)
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The derivative with respect to the shape parameters p;,l =1,..., M, yields

N
i
=
Q)\Q)
o

D

or

The last condition for constant volume V yields

N
z meas (Tx) =0
k=1

N

_ dmeas (Tr)

g=2) Tk o, 1=1
i op1

yoo

M

(5.10)

(5.11)

The system of Euler equations is strongly non-linear. But the following formu-
lation seems to be auspicious and provides a relatively clear technical opinion.

E; is related to the density of the surface deformation energy at node I. Eq.
(5.10) requires the surface deformation energy at each node to be of the same
value. For this reason the part of the boundary where E is greater than the real
—A has to be extended, and in case of F is less than —A it has to be contracted.
The current approximation of the real A will be chosen in the following way:

M

E
_,\=§Mi

The new values of the shape parameters are given as follows:

where p is the given superrelaxation coeflicient.

(5.12)

(5.13)

The numerical process can be divided into the following steps:

The current vector @ is soived.

The shape of I' is modified.
Test the convergence criterion, e.g.

S SR AL SO s

M
o -pp)?<e

=1

Define the initial configuration of the structure.
Boundary I' is approximated by the boundary elements.
The stiffnes matrix K is generated for the current shape.

The value of E; and the approximation of A is computed for each p;.

where ¢ is the admissible error, p] are the old and p} are the new values of the
shape parameters. If the criterion is not satisfied, go to step 3, otherwise terminate

the iteration.
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6. CONTACT BETWEEN THE LINING AND THE ROCK

We will show the application of the above procedures to the lining analysis
using a substructure technique. Consider the configuration given in Fig. 1, where I
describes the terrain, Iy is the part of the boundary where tractions are prescribed,
on I, the displacements are given, and ¢ is the contact line between the lining
and the rock splitting domain {2 into two parts: into domain f2; (surrounding rock)
and {2, (the lining).

9
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0-—0—0—-—0—20—————0 -O—
Fig. 1. Geometry of the problem and denotation.

After discretization of the relevant boundaries we obtain two systems of equa-
tions relating displacements u and tractions p with respect to the i-th domain
(upper indices), ¢t = 1,2:

FE I E T F N

cL - 6.1)
_Hél H%z_ C5) Gy, G%z_ P Flc
)13 F- e
| Hy; Ho | L v Gy G| g F*

The lower index C denotes a variable defined at contact C, g denotes the prescribed
tractions, F includes the volume weight effect. After some manipulation (g is a
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known vector) we arrive at

Gh 91

RS R i R PR S S
Hy, Hy, ug Gy, Pg Fo + G g
MR (SRR S 9]
Hgl H3, u’ G%l P%: F o+ G, g

It is obvious that matrices H}; and H%, as well as matrices G¥, i, k = 1,2,
are regular. This is so because the elasticity problem can be solved. Canonical
transformation (in practical cases we may use the Gaussian elimination — matrices
A;-j need not be diagonal, which is due to the singularity of matrix H):

A;, 0 w | [G pe]_[B (6.5)
0 Azlaz ug G%z Pcl By )

8] (3 A5 e

where 0 is a null matrix. If equilibrium and compatibility hold along the contact

line , i.e.
plc + pzc =0 ulc = uZ (6.7)
then:
_ 92— 2 1— -
([Géz] ! A%z + [G74] 8 A‘fl) u}: = [G11] ! B?: + [G%:z] ! BlC (6.8)

and uc follows immediately. In general, only the equilibrium along C holds, i.e.
A}, ug = Gy, pc + Be
A}, u% = -G}, pc + BE (6.9)

where po = p]'c = —p%.
Suppose now that the following conditions are prescribed along C"

= u,ll = u% >0, pn>0, [u.p.=0
!ptl S fpn + G
il =Fpn+C=3w >0, [ =—wp (6.10)

Then the Uzawa’s algorithm can be used (see Céa, 1971):

1. Choose the initial value of pc, say pc = 0. Compute u} and u%
2. Verify the contact conditions at each node of the contact line. In case [«], <0
put (¢, > 0 is a given number):

pe = Pilpe — piule], Pifa] =a fora >0 else P la] =0

In case the second condition of (6.10) is valid the compatibility holds: [u]; =

=u; —u? = 0. Choose a positive number p; and put:

Dt =Pt — Pt[U]t
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If |p;| > Fpn + C, then [u]; # 0, p: = (Fpa + €) sign p;.

3. Vectors u}, and uZ are computed for this new generated vector pc. If the
error criterion is violated, repeat step 2, otherwise compute the displacements on
[‘p U Fu

4. Compute the displacements and stresses on (2; and (2;. Note that because
of the singular solution on (2; it is necessary to ensure some regularization. We
recommend the procedure with the artificial bolt after Janovsky and Prochdzka
(1980), see also Broz and Prochdzka (1985).

7. EXAMPLE

In this section we will test the distribution of tangential forces at the contact
between the lining and surrounding rock according to Fig. 1. The boundary con-
ditions are as follows: along I} zero tractions, along I, displacements in the z-
direction and tractions in the y-direction are zero and on I3 displacements are
prescribed to be zero. The system is loaded by volume weight v = 0.024 kN/m?,
Erock = 6000 kN/m?, vocx = 0.40, B}, = 188,000 kN/m, ;s = 0.15. The physical
law (6.10) is employed under the assumptions F = 0,C = 1.4 kN/m (thick line, p)
and ¢® = 1.0 kN/m (bold line, p?) (see Fig. 2).

Fig. 2. Geometry and distribution of radial contact forces.
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OPTIMALIZACE A RESENI KONTAKTNICH PROBLEMU V GEOTECHNICE
METODOU OKRAJOVYCH PRVKU

Petr Prochazka

V tomto piispévku se zabyvdme aplikaci metody okrajovych prvkd na vybrané geotechnické
problémy. Pozornost je vénovana zejména napjatostni analyze podzemnich konstrukci s a bez
ztuzen{ (obezdivky apod.). Formulace vychdz{ ze spojeni kontaktnich a optimalizacnich probléma.

Typicky ptiklad demonstruje chovani modelu.
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