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Abstr act: Numerical testing and gra,phical representation of hypoelastic constitutive relations
of geomateríals using numerical element test s and unit stress res~onse envelopes of Gudehus
(1979). Derivation of basic relations and comparison of five models: isotropíc !inear elastic,
transversely isotropic, hyperbolic with different switch functions, path dependent variable moduli
and elastoplastic (Cam clay) model with hardening.
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1. INTRODUCTION

According to Truesdell's definition (1984) constitutive relations embody the
distinguishing properties of materials and transforrn the history of an arbitrary
thermokinetic process given by rnotion, temperature and time into a calorody-
narnic process deterrnined by stress, rnotion, body force, internal energy, entropy,
heating and tirne. The constitutive equations cornplernent the fundamental laws
of physics in solving boundary value problems of thermodynamics. In nonlinear
continuum mechanics and geomechanics definitions in the narrow sense are used.
The equations relating the internal forces in a material to the rnotion of the ma-
terial are called constitutive equations (Leigh, 1968) and the relations between the
stress tensor, strain tensor and time are denoted as constitutive laws (rnodels) of
geornaterials (Feda, 1982).

The constitution of a physically correct set of these materiallaws is considered
to be the fundarnental task of geomechanics in general and the key problern of
efficient application of numerical methods in this field in particular.

The recent rapid developrnent in constitutive model1ing of geomaterials has al-
ready produced a large number of models (Gudehus et al., 1984; Murayama, 1984;
Beer et ol., 1991) which have not yet been properly cornpared, evaluated and se-
lected. This requires, in the first place, the basic requirernents to the constitutive
relations to be specified and the way of numerical testing to be outlined. A com-
prehensive checklist of the requirements to the constitutive models of geomaterials
has already been published by Gudehus (1985). Along with the engineering aspects
(the processes and properties to be covered, the manageability of the relations) the
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mathematical (existence, convergence, uniqueness and stability of the solution) and
physical principles (determinism, causality, ob jectivity, loeal action, eonsistency)
should be implied by any relevant constitutive model.

The principle of determinism is of particular importance for geomaterials. It
states that every phenomenon is deterrnined totally by the history or sequence of
causes. Thus the magnitude of strese and deformation in a body due to an external
force depends on the past history of the external forces experienced by the body.
During the loading of soils and rocks irreversible deformation and change of their
structure occur due to dissipation of mechanical energy. Accordíngly, the stresses
and strains in soil depend on the sequence of loading states and structural changes,
i.e. they are path dependent. Such behaviour can be only described by incremental
constitutive equations subsequently integrated along the particular stress paths,
The use of the finite form of constitutive relations for geomaterials is highly limited
or even impossible.

The incremental, path dependent constitutive relations can be, from the theo-
retical standpoínt, effectívely checked by so-called numerical element test, i.e. by
numerícal experiments with a soil sample under uniform stress and strain (Gudehus,
1985; Gudehus and Kolymbas, 1985). In this way one can systematically explore the
existence, convergence and uniqueness of any particular constitutive law together
with its manageability and physical correctness. Any simple or complex stress and
strain path, loading history, including paths of standard and non-standard lab ora-
tory tests, can be followed by means of numerical integration.

In this paper axially symmetric, t.riaxial numerical tests are used for testing
some selected hypoelastic constitutive relations. The incremental unit response of
the linear isotropic and transversely isotropic materials are presented in the first
part of the paper using a special graphics (Gudehus, 1979). Then the responses
of the hyperbo1ic and path dependent variable moduli relations are compared for
the Karlsruhe sand. The next part of the paper is devoted to the numerical test-
ing of elastoplastic constitutive models with hardening. Thc basic relation for the
so-called critical state or Cam clay model (Roscoe et al., 1958) and the numerical
procedures necessary for their implementation at a stress point are presented, and
the unit response is calculated. It should be noted that the evaluation and under-
standing of the Cam clay model response is of particular importance as it forms
a basis for many other widely applied elastoplastic models of soils. Finally, the
responses of the tested constitutive models are compared and a plan for further
research outlined.

2. NUMERICAL TESTING OF HYPOELASTIC CONSTITUTIVE RELATIONS

The concept of hypoelasticity introduced by Truesdell constitutes a generalized
incrementallaw in which the increment of stress tensor G-ij is a function of stress
tensor ou and increment of strain tensor Ěkl (Desai and Siriwardane, 1984; Bojtár,
1988):

(2.1)
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For time independent materials Eq. (2.1) should be homogeneous in time (all
terms containing exponents of Ěkl higher than one are eliminated), and the incre-
mental form of Eq. (2.1) can be obtained by integration in time. The generallinear
relation between the stress increment and strain increment then reads

(2.2)

where the tangent stiffness tensor Cijkl is a function of the stress tensor only.'
The general hypoelastic model given by Eq. (2.2) requires 12 response functions
Cťo,... , Cť1l,which depend on the stres s invariants:

dO"ij= CťOdEkk8ij+ Cťldé'ij+ Cť2dé'kkO"ij + Cť30"mndEnm8ij+

+ Cť4(O"imdEmj + dEimO" mj) + CťsdEkkO"imO" mj + Cť60"mndé'nmO"ij+

+ Cť70"mnO"nkdEkm6ij + Cť8(O"imO"mkdEkj + dEimO"mkO"kj)+

+ Cť90"mndé'nrnO"ikO"kj + Cťl00"mnO"nkdEkmO"ij+

+ CťnO"mnO"nkdé'kmO"irO"rj; (2.3)

here Dij is the Kronecker delta (1 for i= j andO for i =I- j).
Due to their incremental nature the hypoelastic models have a greater generality

than the hyperelastic models, and they allow not only for nonlinear but also for
inelastic (i.e. plastic) behaviour inc1uding path dependenence, induced anisotropy,
dilatancy and many other important features of geomaterials. The hypoela.stic
models, however, reveal certain reversibility to .infínitesimal stres s increment re-
moval. This is the reason for using the word "hypo", which means "in a lower
sense". Hypoelastic material is only elastic in a lower, i.e. incremental sense.

The general relation with 12 response functions canbe used to obtain hypoelas-
tie laws of different orders. If the right-hand side of Eq. (2.3) is stress independent,
then only two parameters will be retained, and the zero-order hypoelasticity, i.e.
the incremental form of Hooke's law, obtained. This is the ba.sis for 'different in-
crementally linear variable moduli models including the path dependent model
(Doležalová, 1985) and the well-known hyperbolic model of Duncan and Chang
(1970). Assuming linear stres s dependence of the right-hand side of Eq. (2.3), seven
parameters will be retained and the first-order hypoelastic law obtained. It can bé
shown that any incrementally linear elastoplastic relation (compare Eqs. (2.2) and
(4.9)) and even incrementally nonlinear rate type relations (Kolymbas, 1987) can
be treated as special cases of hypoelasticity (Bojtár, 1988).

The numerical element tests with uniform stresses and strains of the sample and
the unit stress response envelope suggested by Gudehus (1979) are powerful tools
for nurnerical testing of incremental type, path dependent laws. The basic idea
is to impose a unit strain increment of various directions on the soil sample and
to calculate the corresponding stress response according to the tested constitutive
law.

For the sake of simplicity axially symmetric stress state (0"1,0"2 = 0"3 or 0"3,0"1 =
= 0"2, if generally principal stresses 0"1 > 0"2 > 0"3) is supposed and the cylindricaI soil
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sample is loaded by unit strain rate defined as VE:i + 2E:~ = const. (E:l,[-2 = E:3
are principal strain rates). The strain rate is fully described by its direction

Ě> const. Strain paths:

1, 5 - purely radia 1 contrac-
tion and expansion

2, 6 - isotropic compression
and expansion

3, 7 - purely axial (oedome-
tric) contraction and
expansion

4. 8 - positive and negative
pure shear

3

cx.t
5.~~ __ ~~~~~

1 fit2

17

A - initial str e ss stct e

F'ig. 1. Strain paths with constant strain increment E: (after Gudehus, 1979).

Increm ental

g

Stress paths:

a, f - purely radial stress
change (triaxial
extension)

b, 9 - isotropic stress change
c, h - oedometric path

( 62 / 61 Kol

d, l - purely axial stress
change (standard
triaxial compressionl

e, j - purely deviatoric
stress change
( G' = const test)oct

str ess response

b

A - initial stress state

Fig. 2. Incremental stress response r & corresponding to constant strain increment i
(a,fter Gudehus, 1979).
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CY",= arctan( ÉI! viz É2) (Fig. 1). The st ress r at e response is represented by a polar
diagram of intensities r a = V<Tf + 2<T~ and directions CYů = arctan( 0-1/12 0-2) in
the diagonal plane 0-1 vs. ~ (;-2 (Fig. 2). Generally CYi #- CY&",anddirectional coin-
cidence is only achieved at the maximum and minimum responses (CYip= CYa-p' see
Eqs. (3.3) - (3.4)) for the zero order hypoelastic laws and the incrementally linear
rate type relations. Since all relations tested are homogeneous in time, the overdot
in the above and subsequent relations means simply an incremental quantity.

3. LINEAR, BILINEAR AND MULTILINEAR HYPOELASTIC RESPONSE

3.1. Linear response

Linear response is produced by an incrementally linear law without switch func-
tions.

The linear relationship for the axisyrnmetric case can be formulated as

(;-1 = Mll ÉI + Ml2;f2 f:2
(3.1)

where coefficients Mij are independent of direction O:'i. The material is called
hypoelastic if the Mij depend on stress only. One can rewrite equations (3.1)

r ů sin CY&= Mll sin CYi + MI2 cos CYi (3.2)

II = .4
.--~_..r'-.- ,/

i

1
I

Fig. 3. Response envelope of
a linear isotropic material with

differen t Poisson ratios V.

-1
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The resp onseenvelop e associated with equations (3,2) can be shown to be an ellipse
(Fig. 3) provided that

This ellipse is completely defined by Mij as supported by the following four rela-
tionships:
ai , strain rate direction associated with maximum or minimum intensity r ér, of

p .

stress rate response, given by

(3.3)

aér
p

' stress rate direction of maximum or minimum intensity of stress rate response,
given by

2
Mll M22 + M21 u.,

tan aep = 2 2 2 2 2M22 + M21 - Ml2 - Mll

maximum and minimum intensities of stres s response

(3.4)

with the two solutions aip of equation (3.3).
For a symmetric response matrix, i.e. MIZ = MZl, one obtains aip = ao-p from

equations (3.3) and (3.4). The case of isotropic loading is defined by

a' = a· = arctan (~) = 35.3°
~p Ep vI2 (3.6)

In this case the coefficients Mij can be expressed from general Hooke's law in terrns
of Young's modulus of elasticity E andPoisson's ratio v

M _ E 2(1- v) .
11 - 2(1+ v) (1- 2v) ,

M _ E 2.
22 - 2(1+v) (1-2v)'

M = M = E 2v12 tJ
12 21 2(1 + v) (1 - 2v) .

(3.7)

The shape of ellipses is determined by v only (Fig. 3). v = O (Mu = M22) yields
a circle. v = .5 yields a pair of straight lines.

In the case of transverse isotropy, when e.g. the cylindrical test sample is hori-
zontally layered, coefficients Mij, expressed from general Hooke's law, are evaluated
from equations (3.8). Material constants El, VI (G1 is dependent) are associated
with the behaviour in the plane of strata and E2, V2 (G2 is independent, but it does
not influence the case under consideration) with the direction normal to the strata.
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E2 2 EI
Mll = (1- VI)' n = -(1+ vd(1- VI - 2nv?) , E2

E2
l022 = 2 n(l + VI) (38)(1+ vl)(l- VI - 2nv2) .

E2 ~
M12 = M21 = (1 + vI)(l- VI _ 2nvi) v2 nV2(1 + VI)

The response envelope of a real transversely isotropic rnaterial, whose material
constants satisfy thermodynamic conditions, is shown in Fig. 4.

Ma t e r I a I :

Sandy shale

11G1/G1
i

G
1

E
1

'"20590 [MPa]
45300 [MPa]

E 29600
2

E jE 1.53
1 2

!..J = .1
1

I) = .29
')

'" o
a = 31.7

€
o

Cť = 31.7
(J

[MPa]

-1 I.

Fig. 4. Response envelope of linear transversely isotropic materia! with

n = El! E2 = 1.53 and VI! V2= 0.345.

3.2. Bilinear response

Bilinear response is given by one switch function separating the cases of loading
and unloading. This behaviour can be demonstrated by the hyperbolic model using
different moduli for loading and unloading.

The hyperbolic model is based on the assumption of hyperbolic relation between
axial strain 101 and deviatoric stress (0'1 - 0'3) during the standard triaxial test that
can be expressed by the relation suggested by Kondner (1963):

0'1 - 0'3 = b
a + CI

(3.9)
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Duncan and Chang (1970) derived , from thís rela.tionship, the Mohr-Coulomb
faílure criterion expressed as

( )
_ 2c cos <p + 2(J3 sin <p

(JI - (J3 f - l' -1... '-smcp
(3.10)

and from the relationship between the initial deformation modulus and the confin-
ing pressure, shown in Janbu's (1963) experimental studies,

Ei = KPa (;~) n (3.11)

an expression determining the tangent deformation modulus Et:

(3_12)

1
r

''''--'~- . r""--"-'r--'-----r---j-'-"--r"-'-'-"'-1"----r-"--'--l""""""-~I'--"'-'--'--slyl/s eps = .001
initial stresses:
S = s iq l:2*sig3 = 1.5 MPa
sigl/siy3 : 4,211/0.510.25-.8

.6

.4

.2

Fig. ,5. Bilinear hyperbolic response for different initia! states (Joct = const.:
a) switch function: sign Ll(Joct.
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This relationship is used only for the first loading. For unloading or reloading a
value, computed from the following relationship:

_, (1J"3)n
Eur = KurPa Pa ' (3.13)

is assumed.
For deterrnining Poísson's ratio Kulhawy et al. (1969) suggested a hyperbolic

relationship

(3.14)

and a relationship accounting for the dependence of Poisson's ratio on the confining
pressure:

- (1J"3)Vi = G - Flog -
Pa

(3.15)

1 ------··.---r---r
siyl/s

.8

~

J

.6

.1 ~

.2

o .2 .4 .6 .8 1

Fig.5.

b) switch fu nct ion: sign (t\ - i3)j sigl = IJ"1, sig3 = IJ"3, eps = i.
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Using these relationships, an expression for the tangent Poisson's ratio has been
derived:

Vt = (3.16)

The deformational (X, XUrJ n, a, I. d) and shear strength parameters (c, ip, Rf)
appearing in Eqs. (3.10) - (3.16) can be calibrated using standard triaxial test
results and procedures according to the above references. Considering the test
results given by von Wolffersdorf (1990.1, 1990b) the following parameters have
been derived for the Karlsruhe sand (initial porosity eo = 0.6111, contractant part
ofthe stress-strain curve): k = 240, kur = 620, n = 0.85, G = 0.25, F = 0.146, d =
8.4, c = O, ip = 41.50

, Rf = 0.8, atmospheric pressure Pa = 100 kPa.
Using these paramet.ers and Eqs. (3.12), (3.13), (3.15) and (3.16), the coeffi-

cients Mij determining the shapes of the response envelopes consisting of semi-
ellipses, have been calculated. Since no switch functions are given by the authors
of the hyperbolic model, either the condition sign L1O"oct (Fig. 5a) or the function
sign (ÉI - É3) (Fig. Sb) can be used. Both series of hyperbolic response envelopes
are given in Fig. 5 for identical initial states determined by different stress ratios
0"1/0"3 and constant mean pressurerrs.j = ~(0"1 + 0"2 + 0"3) = 0.5 MPa. One can
observe that the loading semi-ellipses with increasing stres s ratio have decreasing
radius vectors which almost vanish near the limit state. This is due to the decrease
of the tangent deformation modulus according to Eq. (3.12).

3.3. Multilínear response

To take into account structu:ral changes of soils induced by different loading paths
in a. simple way, more than one switch function should be introduced which results
in a multilinear response. Strain energy based switch functions can be derived from
the rate of work performed by stresses O"ij during an increment of strain dEij:

(3.17)

lntroducing the octahedral shear stress component Toct = H(0"1 - 0"2)2 + (0"2 -

- 0"3)2+(0"1 - 0"3)2]1/2, the expression for dW and the corresponding loading (dW ~
~ O) and unloading criteria (dW < O) is given by

(3.18)

where G and K stand for shear and volumetric moduli.
In the path dependent constitutive model suggested by Doležalová (1985), the

following criteria and relations have been used for the case of compression (0"1 >
> 0"2 > 0"3 ~ O):

42



dO"oct > O, di > O :

E, = Ep(O"oct/O"O)kl[l - (1- 6) iŽ2]
lit = lip + (lIma,x - lip) i:3

(3.19)

(3.20)

dO"oct 2: O, di :S O :

Et = Ep(O"oct!O"o)kl (3.21)

(3.22)

LlO"oct < O, Lli > O :

e. = Eunl(O"oct/O"o)kl[l- (1- 6) iŽ2]
lit = lip +.(lIma,x - lip) i:3

(3.23)

dO"oct < O, Lli < O :

Et = Eunl(O"oct!O"O)k1 (3.24)

where
(3.25)

. / lim
t = Toct Toct , (3.26)

(3.27)

g(8) = 2K/[(1 + K) - (1 - K) sin 38], (3.28)

K = (3 - sin IP) / (3 + sin IP) ,

. (3,;3 J )\
-300 < e = t Slll-l \-2- i7~ < +300

,

J3 = (O"I - O"oct) (0"2 - O"oct) (0"3 - O"oct) ,

- !3
O"= V 2" Toct,

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
(3.34)

N = 2J2 c cos IP/ (3 - sin cp) ,
D = 2viz sin IP/ (3 - sin <p) .

Eqs. (3.33) and (3.34) hald for B + 1 in Eq. (3.27).

43
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I siyl/s
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'eps - .a01 I ~

initíal stresses: ~
s = sig1+l*Sig3 = 1.5 MPa I
siyl!sig3 : 4;2]1;B.5i0.25l
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Fig. 6. Multilinear path dependent response for different initial states (Toct = const.;

a) Vt = const.

The tangent deformation modulus Et and Poisson's ratio Vt are limited to Et ~

~ Emax and Vt ~ vmax.
The deformation (Ep, Eunl , Emax, vp, vmax, k1, k2, k3, 8) and strength parameters

(c, IP) are to be derived from standard triaxial and hydrostatic compression (or
oedometric) tests. With the parameters obtained for the Karlsruhe sand (Ep =
= 30 MPa, Eunl = 62.14 MPa, Emax = 100 MPa, vp = 0.242, Vmax = 0.45, k1 = 0.8,
k2 = 0.42, k3 = 0.3,.5 = O,c = O,IP = 41.50

, ip = 0.10 and (T = 1 MPa, 0'0 = 0.1 MPa
for eo = 0.6111) the stress response envelopes are shown in Fig. 6. Comparing Figs.
6a and 6b the great infl.uenceof the variability ofPoisson's ratio on particular paths
can be noticed.
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1

.8

.6

.1

.2

o .2 1.4 .6 .8

Fig. 6 (continued).
b) Vt =f:. const. for the stress paths with .1O"oct ~ Oand L\i > 0, respectively;

sigl = 0"1, sig3 = 0"3, eps = e.

4. ELASTOPLASTIC RESPONSE WITH HARDENING

4.1. Formulation of cap models

We shall deal with the formulation of hardening cap models. The modified Cam
clay model is described in more detail. Detailed derivation of Cam clay and cap
models is presented in Desai and Siriwardane (1984) where it is passed from the
results ofaxiaIly symmetric triaxia1 tests to the general state of stress. Let us
designate the quantities as follows:
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3 1
q = .j2 Toct = .j2[((/11 - (/22)2+ ((/22 - d3) + ((/11 - (/i3)+

+6(/r2 + 6(/~3+ 6(/r3P/2 = ";3J2D (4.1)

The idea of hardening cap models is based on two yield surfaces, namely, the
" '1 "Dol J.' "T'I' ,. ial uronerties andtauure surtace ..ťf ano vhe cap surrace i'c uepencnng on materia properties anu
stress history, Fr is fíxed in position and the state of stres s cannot lie above this
critical state of stress. The cap surface Fc moves in dependence on the hardening
behaviour of material (Fig. 7). The yield surface F is composed of surfaces Fr and
r:

q

p

Fig. 7. Failure Ff and hardening Fc surfaces for the critical state (Cam clay) model.

For the rnodifiedCarn clay model, it was found that

F='q-Mp=O
(4.2)

E; = q2 - MZppo + M2p2 == M2J{ - MZhJOl + 27JzD = O

where JI is the first invariant of the stress tensor and lzD is the second invariant
of the deviatoric stress tensor, J01 is the value of JI at the intersection of Fc with
the JI axis.

We shall derive the relationship between stress and strain incrernents. Infin-
itesimal increments of strain are assumed to be divided into elastic and plastic
parts:

(4.3)

Let Q = Q(a, Po) be the plastic potential. The normality rule for plastic deforrna-
tions can be written as

p - BQ
dé:"= A-

IJ B(1"ij
: 1.4)

where X is a non-negative parameter. For the Cam clay model Q = F (associated
flow rule).

Let us designate
. T{(/d = ((/11,(/22,(/33,(/12,(1"23,(/13)

{Ei} = (El1, Ezz,E33, E12, E23, E13)T
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Cv = EU + c22 + C33 - volumetric strain

Let C" be the elastic matrix. Using (4.3) and (4.4) we have

dO'i = C7j(dEj - dcj) = Cfj(dcj - XAj)

During plastic deformation F( O',Po) = Oand, hence, by differentiation:

(4.5)

(4.6)

For the Cam day model, the hardening parameter Po depends on the plastic part of
the volumetric strain cE, hence p., = pocEn. In equation (4.6), it can be substituted
for

8F(0',po) d _ 8F(0',po(cE)) oPo d P _ oF(O",Po(cE)) - p
!1 Po - a a P Cv - a p dcvop« Po Cv Cv

Substituting (4.4) and (4.5) in (4.6) we obtain

Equation (4.7) yields

(4.7)

(4.8)

Substitution for X in (4.5) yields the required relationship between stress and strain
(in incrernental form):

Equation (4.9) defines the elastoplastic constitutive matrix cep.

(4.9)
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The forrn of all terms in (4.9) will be given far the modified Cam clay model. As
F = Q, we can ~ompute for instance {Ai}. Defining K = !M2(2p -Po) we obtain

f
K + 2(}1l - (}22 - (}331

K + 2(}22 - (}n - (}33 •

{Ar} = 11 K + 2(}11 - (}22 - (}33 JI
6(}12

6(}23

6(}13

It. has been derived
aF }J2ppo(1 + eo)
Oée - ,\ - k

where eo is the void ratio prior to a stress incrernent, and the meaning of >. and
k is obvious from Fig. 8. In the same way, pand Po are quantities related to Fc

(4.10)

e

}d-;P--O
---

dee---t--k

I I X----t----j- c
Fig. 8. Isotropic loading and
unloading in e-ln p space.

ln PA ln P B ln P
prior to a stress increment. The change in the void ratio de = de" + de" has been
determined as

de = -,\ dpo (4.11)
Po

de" = =k dpo (4.12)
Po

Equations (4.11) and (4.12) hold true for q = O. The value of dpo can be expressed
from (4.2) by substitution of pand q after an increment.

For a general value af q, de can be expressed a.s (jl = q/p):

de = - (1 + eo) dfv = -,\ [; + (1 - ~) 2 ~~ /12 ]

AU the terms in (4.9) are thus given far the modified Cam clay model.
The mere formulation of elastoplastic models is insufficient to solve boundary

value problems with non-Iinear stress-strain relationships. The determination of
the elastoplastic stress increment at a given stress point requires further effort and
this is the topic of the next section.

(4.13)
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4.2. Computational procedures for implementing hardening
models at one stress point

This part makes use of the results of Sirwardane and Desai (1983). Two yield
surfaces form two criteria. The incremental stress corresponding to an increment
of strain can violate one ar both of the criteria. Hence, these possibilities have to
be checked at all stress points in implementing elastoplastic hardening models.

For an increment of strain, dz , the corresponding do-can be computed by using
(4.9)_ If the final state of stress lies within or on the yield and failure surfaces, the
following criteria have to be satisfied:

(4.14a)

(4.14b)

where 0-0 is the state of stress prior to an increment. The possibilities of violating
the two criteria (4.14) are shown in Fig. 9.

q A o

Fig. 9. Possible stress incre-
ments for loading from an

elastic point. M

p

The path AB intersects Ff directly from the elastic region, AC and AD from
the plastic region. Since the state of stres s above Ff cannot exist, it is necessary
to find the increment of stress ..10- which will bring the stress point to the failure
state. The material is unable to bear any more stress, and hence an unbalanced
load fraction arises. Solving boundary value problems by FEM this is redistributed
to the surrounding elements by using iterative methods.

q

(v'J2D)

Fig. 10. Stress correction along the normal to the yield surface F.
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We shall correct the stress by bringing the stress point B along the normal to
general surface F. This procedure can be applied both to Ff and F; (Fig. 10).

The change of F( O",Po) can be expressed as (Po is fixed)

8F(O"o + dO")
dF = F(O"o + dO" + ..10") - F(O"o + do ) == 8fJ;~ L1fJ;j

'J

(4.15)

Let us designate F1 = F(O"o + do ), 0"1 = 0"0 + do . Equation (4.15) in matr ix form
yields

0- r, = {8~~1)}T {L10"}

Frorn here the change of stress {'ó0"} bringing 0"1 along the normal to surface F
can be expressed as

(4.16)

(4.17)

As the value of OF /00" is ca1culated at a point outside F, it need not be exactly
normal to F, and hence 0"1 +..10" need not lie on F. Stress pointrr- = 0"1 + .10" can
be used as the further approximation of this algorithm and value 0"3 = 0"2 + .10" can
be calculated according to (4.17), and so on, until O"k+l = O"k + .10" falls within the
prescribed accuracy.

Let us go back to Fig 9. Paths AD and AE enter the region of elastoplastic
deformations. The final state of stress is computed by gradual expanding Fc, as
described below.

The violation of (4.14a) is dealt with. The increment of stress computed from
the elastic matrix can move the state of stress outside the actual Fc (see Fig. 11).
Until the state of stres s reaches the stress point C, the material deforms elastically.

Fig. 11. Transition to the pla.stic region
with expanding yield caps for subincre-

ments of strain (1- S) dr::/ m.A

The determination of C will be described later. Constant S divides an increment
of stress into elastic and elastoplastic parts:

(4.18)
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The incremental stress corresponding to the incremental str ain has to be corn-
pu ted separately for elastic and elastoplastic behaviour (indices e and ep):

{dO"e} = S[Ce]{ de} = [cel{ dee}

{dO"ep}= (1- S) [Cep]{de} = [cep]{d€ep}

(4.19)

(4.20)

The computation of {(Te} is straightforward once S is determined. However, the
evaluation of {O"ep} requires (1 - S){ ds} to be divided into m subincrements, the
value af m being given by the ratio of the increment of the hardening parameter
dpo (correspanding to states of stress Band C in Fig. 11) to the highest allowed
increment l1F : dpo /11F. It is important to point out the fact that Fc changes its
position after each subincrem~nt (1 - S){ dz ] /mhas been applied.

The hardening paramcter, po,and void ratio eo are updated together with the
stress increment corresponding to each subincrement of strain (1 - S)de/m (see
(4.2), (4.11) - (4.13)). The state of stress has to lie on :the actual surface Pc' There
are twa possible ways of updating po. The value of Po can be determined either
from equation (4.2) (p and q are known, F: = O) or from equations (4.11) and
(4.13) (if Fc j O, the state af stres s is brought to Fc using the procedure described
in (4.15)-(4.17)). If subincrernents (1 - S)de/m are sufficiently small, both ways
yield the same results.

The critical state can be reached in computing the m subincrements (path AD in
Fig. 9). Hence the violation of (4.14b) has to be checked after each su bincrement.
If Ff > O holds true, the correction to bring the state of stress alang the normal to
Ff is applied.

The correct value of {dO"ep} is the accumulated quantity over the m subincre-
ments. If the critical state is reached after k subincrements (k < m), the iteration
is stopped and the correct value of {d(Tep} is calculated by adding k subincrements.
We can thus determine {dO"} in (4.18).

Let us outline the procedure for evaluating S. This can be done by solving the
quadratic equation (e.g. for the modified Cam clay model) or in a general case by
using an iterative procedure similar to (4.15) - (4.17) (see Nayak and Zienkiewicz,
1972). Far the modified Cam clay model, S can be determined as follows.

Equation Fc(O"o+ Sdu) = O is to hold true. Substituting this in (4.2) W€ obtain
quadratic equatian ASz + B S + C = O with

A = 27dhD + M2dJ~
B = 54a - MZJ01dh + 2M2JfdJ1

C = 27hD - M2J1J01 + M2Jf

a = H(O"ll - O"22)(dO"ll- dO"22)+ (O"Z2- 0"33)(d0"22 - d0"33)+

+ (0"11 - 0"33)(dO"ll - d0"33)} + O"lZdO"12+ (TZ3dO"23+ (T13dO"13

where dlzD and dh are invariants of the incremental stress do .
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So far loading has been involved. After yíelding or reaching a critical state, the
state of stress can indicate unloading (see Fig. 12). If this is the case, the computed
stress increments are assumed to be correct, and the unloading constitutive par a-
meters are assígned at those stress points for subsequent unloading. By definition
unloading is elastíc.

With the parameters obtained for the Karlsruhe sand (M = 1.715, A = 0.01036,

q

Fig. 12. Possible unloading paths

after reaching the failure Ff or yield

surface Fc.
M

p

Fig. 13. Response envelopes of the critical state model for different init ial states Cf oct. = const.;

a) in q - p space.
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Fig. 13 (continued).
b) in CTI - V2 CT3 space; sigl = CTI, sig3 = CT3, eps = E,

k = 0.00197, eo = O.6111,p = 0.5 MPa, E = 100 MPa, V = 0.25, c = 0, ip = 41.83°)
the critical state or Cam clay model response is shown in Figs. 13a and 13b. The
different shapes of the response envelopes in these figures eorrespond to the different
spaces (q - pand <TI - V2 CTz) used. The shaded areas of the response envelopes
indicate thc difference between the pure elastic and the elastoplastic responses. It
should be noted that for computing the unit stress response envelopes S = O holds.

5. COMPARISON OF THE MODELS

The response envelopes allow rapid discrimination and evaluation of both the
physical and mathematical aspeets of particular constitutive models. One can easily
realize the effect of selected switch functions or material parameters. Regarding
space limitation, however, only a few remarks are made here.

The irrip ortant condition of response envélope continuity is satisfied by the linear
elastic models (Figs. 3 and 4), but this response does not mateh the real behaviour
of geomaterials. The response of the hyperbolic model is fairly discontinuous and
depends considerably on the selected switch function (Figs. 5a and Sb). The
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path dependent model also displays discontinuous response controlled by the switch
functíons. The continuous response of the elastcplastic critical state model (Figs.
13a, b) proves that this model is mathematically considerably better posed than
the precedíng varíable moduli models.

Concerning the physical correctness of the tested nonlinear models, the hyper-
bolic response wíth the switch function sign (él - c3) (Frg. 5b) is more realistic
than the response with the alternativa switch function in Fig. 5a. Similarly, for
the paths where loading in shear occurs (,di> O) the multilinear response of the
path dependent model with v i O (Fíg. 6b) is more correct than its response with
v = const. in Fig. 6a. The comparable Cam clay model is plot ted in Fig. 13b. All
these models simulate the standard triaxial test paths with 0-3 = const. or o-oct =
= const. well, i.e. the above-mentioned paths with loading in shear. The dífference
between the models can only be established by more complicated tests, e.g. by a
sudden change of path direction clue to unloacling in shear (,di S; O). This stress
path group notecl for a significant stiffening effect (Doležalová and Hoření, 1982) is
shown in Figs. 5b, 6b ancl 13b. It can be saicl that only the path dependent model
takes into account this effect which is of great importance for realistic displacernent
prediction of geotechnical structures.

6. CONCLUSION

The numerical element tests and unit stress response envelopes have proved
to be powerful tools for numerical testing of incremental constitutive relations of
geomaterials. The physical and mathematical aspects of the particular relations
can be easily compared and understood. Furthermore, the effect of various switch
conditions and material parameters can be simply visualized. In this way quick
and inexpensive parametric studies can be carried out for both the right choice of
the constitutive model and the check of selected parameters of particular materials.
Such a parametric study should precede any FEM analysis of a real geotechnical
structure.

Concerning the future research specification of detailed conditions to be imposed
on constitutive models, testing of other elastoplastic and rate type relations, and
implementation of some selected relations in the FEM codes are planned. The
next step, according to the accepted grant project, is the solution of some typical
boundary value problems using different constitutive laws and their comparison
with the field measurement results.
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NUMERICKÉ TESTOVÁNÍ A POROVNÁNÍ
KONSTITUTIVNÍCH MODELŮ GEOMATERIÁLŮ

Marta Doležalová, Zdeněk Boudík a Ivo Hladík

Numerické testování a grafické zobrazování hypcelastických konstitutivních vztahů geomate-
riálů užitím elementárních numerických testů a jednotkové napěťové odezvy podle Guclehuse
(1979). Odvození základních vztahů a srovnání pěti modelů: izotropního lineárně elastického,
transverzálně izotropního,hyperbolického s různými přepínacími funkcemi, dráhově závislého
(variable moduli) a elastoplastického (Cam clay ) modelu se zpevněním.
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