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Abstract: Numerical testing and graphical representation of hypoelastic constitutive relations
of geomaterials using numerical element tests and unit stress response envelopes of Gudehus
(1979). Derivation of basic relations and comparison of five models: isotropic linear elastic,
transversely isotropic, hyperbolic with different switch functions, path dependent variable moduli

and elastoplastic (Cam clay) model with hardening.
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1. INTRODUCTION

According to Truesdell’s definition (1984) constitutive relations embody the
distinguishing properties of materials and transform the history of an arbitrary
thermokinetic process given by motion, temperature and time into a calorody-
namic process determined by stress, motion, body force, internal energy, entropy,
heating and time. The constitutive equations complement the fundamental laws
of physics in solving boundary value problems of thermodynamics. In nonlinear
continuum mechanics and geomechanics definitions in the narrow sense are used.
The equations relating the internal forces in a material to the motion of the ma-
terial are called constitutive equations (Leigh, 1968) and the relations between the

stress tensor, strain tensor and time are denoted as constitutive laws (models) of
(Fe 082)

geomaterials (Feda, 1982).

The constitution of a physically correct set of these material laws is considered
to be the fundamental task of geomechanics in general and the key problem of
efficient application of numerical methods in this field in particular.

The recent rapid development in constitutive modelling of geomaterials has al-
ready produced a large number of models (Gudehus et al., 1984; Murayama, 1984;
Beer et al., 1991) which have not yet been properly compared, evaluated and se-
lected. This requires, in the first place, the basic requirements to the constitutive
relations to be specified and the way of numerical testing to be outlined. A com-
prehensive checklist of the requirements to the constitutive models of geomaterials
has already been published by Gudehus (1985). Along with the engineering aspects
(the processes and properties to be covered, the manageability of the relations) the
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mathematical (existence, convergence, uniqueness and stability of the solution) and
physical principles (determinism, causality, objectivity, local action, consistency)
should be implied by any relevant constitutive model.

The principle of determinism is of particular importance for geomaterials. It
states that every phenomenon is determined totally by the history or sequence of
causes. Thus the magnitude of stress and deformation in a body due to an external
force depends on the past history of the external forces experienced by the body.
During the loading of soils and rocks irreversible deformation and change of their
structure occur due to dissipation of mechanical energy. Accordingly, the stresses
and strains in soil depend on the sequence of loading states and structural changes,
i.e. they are path dependent. Such behaviour can be only described by incremental
constitutive equations subsequently integrated along the particular stress paths.
The use of the finite form of constitutive relations for geomaterials is highly limited
or even impossible.

The incremental, path dependent constitutive relations can be, from the theo-
retical standpoint, effectively checked by so-called numerical element test, i.e. by
numerical experiments with a soil sample under uniform stress and strain (Gudehus,
1985; Gudehus and Kolymbas, 1985). In this way one can systematically explore the
existence, convergence and uniqueness of any particular constitutive law together
with its manageability and physical correctness. Any simple or complex stress and
strain path, loading history, including paths of standard and non-standard labora-
tory tests, can be followed by means of numerical integration.

In this paper axially symmetric, triaxial numerical tests are used for testing
some selected hypoelastic constitutive relations. The incremental unit response of
the linear isotropic and transversely isotropic materials are presented in the first
part of the paper using a special graphics (Gudehus, 1979). Then the responses
of the hyperbolic and path dependent variable moduli relations are compared for
the Karlsruhe sand. The next part of the paper is devoted to the numerical test-
ing of elastoplastic constitutive models with hardening. The basic relation for the
so-called critical state or Cam clay model (Roscoe et al., 1958) and the numerical
procedures necessary for their implementation at a stress point are presented, and
the unit response is calculated. It should be noted that the evaluation and under-
standing of the Cam clay model response is of particular importance as it forms
a basis for many other widely applied elastoplastic models of soils. Finally, the
responses of the tested constitutive models are compared and a plan for further
research outlined.

2. NUMERICAL TESTING OF HYPOELASTIC CONSTITUTIVE RELATIONS

The concept of hypoelasticity introduced by Truesdell constitutes a generalized
incremental law in which the increment of stress tensor &;; is a function of stress
tensor o; and increment of strain tensor £x; (Desai and Siriwardane, 1984; Bojtér,

1988):
Gij = fij(or1,€x1) (2.1)
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For time independent materials Eq. (2.1) should be homogeneous in time (all
terms containing exponents of £;; higher than one are eliminated), and the incre-
mental form of Eq. (2.1) can be obtained by integration in time. The general linear
relation between the stress increment and strain increment then reads

doij = Cijridem (2.2)

where the tangent stiffness temsor Cjjx; is a function of the stress tensor only.
The general hypoelastic model given by Eq. (2.2) requires 12 response functions
&g, ...,011, which depend on the stress invariants:

daij = O.’()dEkk(S,‘j + ald&‘i]’ + a2d5kka,~j + agomndsnm&-.ﬁ-
+ s (0imdem; + d€imOmj) + asderkTimOmj + 06 Tmndenmaij+
+ Q7O mnOnkdermbij + 28 (CimOTmrder; + d€imTmrors)+

+ 090 mndEnmTik0r; + €100 mnOnkdErmaij+

(2.3)

+ @110 mnOnkdErmTirCry ;

here §;; is the Kronecker delta (1 for ¢ = j and 0 for ¢ # j).

Due to their incremental nature the hypoelastic models have a greater generality
than the hyperelastic models, and they allow not only for nonlinear but also for
inelastic (i.e. plastic) behaviour including path dependenence, induced anisotropy,
dilatancy and many other important features of geomaterials. The hypoelastic
models, however, reveal certain reversibility to infinitesimal stress increment re-
moval. This is the reason for using the word ”hypo”, which means ”in a lower
sense”. Hypoelastic material is only elastic in a lower, i.e. incremental sense.

The general relation with 12 response functions can be used to obtain hypoelas-
tic laws of different orders. If the right-hand side of Eq. (2.3) is stress independent,
then only two parameters will be retained, and the zero-order hypoelasticity, i.e.
the incremental form of Hooke’s law, obtained. This is the basis for different in-
crementally linear variable moduli models including the path dependent model
(Dolezalovd, 1985) and the well-known hyperbolic model of Duncan and Chang
(1970). Assuming linear stress dependence of the right-hand side of Eq. (2.3), seven
parameters will be retained and the first-order hypoelastic law obtained. It can be
shown that any incrementally linear elastoplastic relation (compare Egs. (2.2) and
(4.9)) and even incrementally nonlinear rate type relations (Kolymbas, 1987) can
be treated as special cases of hypoelasticity (Bojtar, 1988).

The numerical element tests with uniform stresses and strains of the sample and
the unit stress response envelope suggested by Gudehus (1979) are powerful tools
for numerical testing of incremental type, path dependent laws. The basic idea
is to impose a unit strain increment of various directions on the soil sample and
to calculate the corresponding stress response according to the tested constitutive
law.

For the sake of simplicity axially symmetric stress state (07,02 = 03 or 03,07 =
= 03, if generally principal stresses 01 > 03 > 073) is supposed and the cylindrical soil
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a. = arctan(é;/v/2 &2) (Fig. 1). The stress rate response is represented by a polar
diagram of intensities 7; = 4/0% 4+ 262 and directions a;, = arctan(d1/v2 62) in
the diagonal plane &1 vs. 2 &3 (Fig. 2). Generally o, # as, and directional coin-
cidence is only achieved at the maximum and minimum responses (aép = ag,, see
Egs. (3.3) — (3.4)) for the zero order hypoelastic laws and the incrementally linear
rate type relations. Since all relations tested are homogeneous in time, the overdot
in the above and subsequent relations means simply an incremental quantity.

3. LINEAR, BILINEAR AND MULTILINEAR HYPOELASTIC RESPONSE
3.1. Linear response

Linear response is produced by an incrementally linear law without switch func-

tions.
The linear relationship for the axisymmetric case can be formulated as

o1 = Mi1é1 + MiavV2 €, C(3.1)
V2 62 = Mo1é1 + MaaV2 é;

where coefficients Af;; are independent of direction ag. The material is called
hypoelastic if the AM;; depend on stress only. One can rewrite equations (3.1)

Ty sinag = My sinoe + Mis cosag (3.2)

Ty cosay = My sinae + Moy cos oy
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Fig. 3. Response envelope of
a linear isotropic material with

different Poisson ratios V.
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The response envelope associated with equations (3.2) can be shown to be an ellipse
(Fig. 3) provided that

det .ZMZ']‘ = M11M22 — 1M21M12 > 0.

This ellipse is completely defined by M;; as supported by the following four rela-
tionships:

@, , strain rate direction associated with maximum or minimum intensity r, of
stress rate response, given by

M11M12 + M21M22

(3.3)
M?, + M3, — M7, — M3,

tan 2ae, = 2

g, , stress rate direction of maximum or minimum intensity of stress rate response,

given by
M1 Moy + Moy My

(3.4)
M3, + M3, — M}, — M7

tan 2ae, = 2

maximum and minimum intensities of stress response

P, =2 \/(Mu sin g, + My cosag,)? + (M sin g, + Moy cos oz, )? (3.5)

with the two solutions ¢ of equation (3.3).
For a symmetric response matrix, i.e. Mz = M>1, one obtains o, = ay, from
equations (3.3) and (3.4). The case of isotropic loading is defined by

A5

1
= @¢, = arctan (75) e 35.3° (3.6)

In this case the coeficients M;; can be expressed from general Hooke’s law in terms
of Young’s modulus of elasticity £ and Poisson’s ratio v

P

_E  21-v)
M = 2(0+v) (1—2v)’
E 9
E 22 1
My = My, = V2

21+v) (1-2v)"

The shape of ellipses is determined by v only (Fig. 3). v = 0 (M1; = Mass) yields
a circle. v = .5 yields a pair of straight lines.

In the case of transverse isotropy, when e.g. the cylindrical test sample is hori-
zontally layered, coefficients M;;, expressed from general Hooke’s law, are evaluated
from equations (3.8). Material constants Fy,v; (G is dependent) are associated
with the behaviour in the plane of strata and Fs, v, (G2 is independent, but it does
not influence the case under consideration) with the direction normal to the strata.
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The response envelope of a real transversely isotropic material, whose material
constants satisfy thermodynamic conditions, is shown in Fig. 4.

1"61/61
Material:
Sandy shale
G, = 20590 [MPa]
E, = 45300 [MPal _
Ez = 29800 [MPal ) 1
E/E= 1.53 ¥ A N264/0y
v = . 1 i e il
. .
v = .29
o - 31.7°
8 o
a = 31.7 i
o
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Fig. 4. Response envelope of linear transversely isotropic material with

n= E1[/Ey = 1.53 and v1 /vz = 0.345.

3.2. Bilinear response

Bilinear response is given by one switch function separating the cases of loading
and unloading. This behaviour can be demonstrated by the hyperbolic model using
different moduli for loading and unloading.

The hyperbolic model is based on the assumption of hyperbolic relation between

axial strain €1 and deviatoric stress (o1 — 03) during the standard triaxial test that
can be expressed by the relation suggested by Kondner (1963):

01 — 03 =

v (3.9)
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Duncan and Chang (1970) derived, from this relatlonslnp, the Mohr-Coulomb

failure criterion expressed as
(01 ~0 3)f =
and from the relationship between the initial deformation modulus and the confin
3

ing pressure, shown in Janbu’s (1963) experimental studies
o} ) "

(3.10)

2ccos @ + 203 sin ¢
b

1—sing
(3.11)

E-_.Kpa<
Pa
(3.12)

Re(1 — sin ¢){o1 — 03)

an expression determining the tangent deformation modulus Et

Et': 1

2ccos ¢ + 203 sin ¢
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Fig. 5. Bilinear hyperbolic response for different initial states 0gct = const
a) switch function: sign Aogct.



This relationship is used only for the first loading. For unloading or reloading a
value, computed from the following relationship:

By, = Krurpa (ﬁ>
Da

(3.13)

-

is assumed.
For determining Poisson’s ratio Kulhawy et al. (1969) suggested a hyperbolic

relationship
€3
e = 3.14
L S, (3.14)

and a relationship accountihg for the dependence of Poisson’s ratio on the confining
pressure: ’

:Gfm%(f) (3.15)

}eps = 001
initial strcs: 5! —
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Fig. 5.

b) switch function: xign (’51 = ég); sigl = 07, sigd = 03, eps = £.
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Using these relationships, an expression for the tangent Poisson’s ratio has been

derived:
G — Flog (Ei)
L (3.16)

Yy =
' fl_d(cfl—dg)]z
!L B |

The deformational (K, Ky, n,G, f,d) and shear strength parameters (c, ¢, R)
appearing in Egs. (3.10) — (3.16) can be calibrated using standard triaxial test
results and procedures according to the above references. Considering the test
results given by von Wolffersdorf (1990a, 1990b) the following parameters have
been derived for the Karlsruhe sand (initial porosity eg = 0.6111, contractant part
of the stress-strain curve): K = 240, K,y = 620,n = 0.85,G = 0.25, F = 0.146,d =
8.4,c = 0,9 = 41.5°, Ry = 0.8, atmospheric pressure p, = 100 kPa.

Using these parameters and Eqgs. (3.12), (3.13), (3.15) and (3.16), the coeffi-
cients M;; determining the shapes of the response envelopes consisting of semi-
ellipses, have been calculated. Since no switch functions are given by the authors
of the hyperbolic model, either the condition sign Ao, (Fig. 5a) or the function
sign (¢, — €3) (Fig. 5b) can be used. Both series of hyperbolic response envelopes
are given in Fig. 5 for identical initial states determined by different stress ratios
o1/03 and constant mean pressure Oocy = %-(01 + 03 + 03) = 0.5 MPa. One can
observe that the loading semi-ellipses with increasing stress ratio have decreasing
radius vectors which almost vanish near the limit state. This is due to the decrease
of the tangent deformation modulus according to Eq. (3.12).

3.3. Multilinear response

To take into account structural changes of soils induced by different loading paths
in a simple way, more than one switch function should be introduced which results

in a multilinear response. Strain energy based switch functions can be derived from
the rate of work performed by stresses o;; during an increment of strain de;;:

dW = o;;de;; . (3.17)

Introducing the octahedral shear stress component 7oc; = %[(0'1 —02)% + (02 -
— 03)24 (01 —3)?]}/?, the expression for dW and the corresponding loading (dW >
> 0) and unloading criteria (dW < 0) is given by

3. Iog
dW = 22;* dToct + T°(i dooct (3.18)

where & and K stand for shear and volumetric moduli.
In the path dependent constitutive model suggested by Dolezalova (1985), the
following criteria and relations have been used for the case of compression (o7 >

>02>0’320):
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Agoet 20,41 >0
Et = Ep(Uoct/U'o)kl [1 == (1 - 6) Ziz]

vt = Vp + (Vmax — Vp) z'],f3

Acgoer 20,4 <0
E, = Ep(apoct:/o'o)k1

Vg = Vp

Aot < 0,41 >0
E. = Bun(0oct/00)"[1 = (1 - 8) if?]

Y= Vp + (Vmax = ) 047

Avge, < 0,4i <0
E; = lgunl(O-t:oct/a'())k1

143 :Vp

where
e = (1 —4p)/(1 —1p) 2 ip,

. lim
t = TOCt/Toct 3

Tiicr? :g(@)[N s Da(aoct/d)B] ’
9(@)=2K/[(1+ K) - (1 - K) sin 36],

K =(3-sinp)/(3+singp),
(33 Js )
° o 3 o
-30 <9=%sm 1(7 33—) < +30°,

J3 = (‘71 - Ooct)(f’z - Uocc)(ffs - Uoct),
o= \/gToct )
N =2v2 ccosp/(3 - sinp),
D =2VZ sing/(3 - sing).
Egs. (3.33) and (3.34) hold for B+ 1 in Eq. (3.27).

(3.19)
(3.20)

(3.21)
(3.22)

(3.23)

(3.24)

(3.25)
(3.26)
(3.27)
(3.28)

(3.29)
(3.30)

(3.31)
(3.32)

(3.33)
(3.34)
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Fig. 6. Multilinear path dependent response for different initial states 0yt = const.;
a) ¥y = const.

The tangent deformation modulus F; and Poisson’s ratio v; are limited to E; <
< Emax and ¢ < Unmax-

The deformation (Ep, Eunl, Emax; Vp, Vmaxs k1, k2, ks, ) and strength parameters
(c,) are to be derived from standard triaxial and hydrostatic compression (or
oedometric) tests. With the parameters obtained for the Karlsruhe sand (E, =
= 30 MPa, E,; = 62.14 MPa, En.x = 100 MPa, v, = 0.242, vmax = 0.45,k; = 0.8,
ko =0.42,k3 =0.3,6 =0,c =0, = 41.5°,1;, = 0.10 and 0 = 1 MPa, ¢ = 0.1 MPa
for eg = 0.6111) the stress response envelopes are shown in Fig. 6. Comparing Figs.
6a and 6b the great influence of the variability of Poisson’s ratio on particular paths
can be noticed.
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Fig. 6 (continued).
b) V4 # const. for the stress paths with Agocy < 0 and A > 0, respectively;
sigl = 01, sigd = 03, eps = €.

4. ELASTOPLASTIC RESPONSE WITH HARDENING
4.1. Formulation of cap models

We shall deal with the formulation of hardening cap models. The modified Cam
clay model is described in more detail. Detailed derivation of Cam clay and cap
models is presented in Desai and Siriwardane (1984) where it is passed from the
results of axially symmetric triaxial tests to the general state of stress. Let us
designate the quantities as follows:

__ 011+ 022+ 033
3

2
3
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3 1
qg= 7§ Toct = —\7—5[(011 - 722)2 + (0‘22 = U§3> + (‘711 = U§3)+

+603, + 602, + 60%]/% = \/3Jp (4.1)

The idea of hardening cap models is based on two yield surfaces, namely, the

~ ry

5 GiIiTre el S o

failure surface Ff and the Cap suriace Fc depeudiug Ol 1Iiav
stress history. Fy is fixed in position and the state of stress cannot lic above this
critical state of stress. The cap surface F. moves in dependence on the hardening
behaviour of material (Fig. 7). The yield surface F is composed of surfaces F; and
F,.

eriai properties and

Fig. 7. Failure Ff and hardening F. surfaces for the critical state (Cam clay) model.
For the modified Cam clay model, it was found that
F=¢q-Mp=0
(4.2)
F.=q¢* — M?ppo + M*p? = M*J? — M2 J1Jo1 + 27J2p = 0
where Ji is the first invariant of the stress tensor and Jop is the second invariant
of the deviatoric stress tensor, Jy; is the value of J; at the intersection of F, with
the J; axis.
We shall derive the relationship between stress and strain increments. Infin-

itesimal increments of strain are assumed to be divided into elastic and plastic
parts:

de = de® + deP (4.3)
Let Q = Q(o,po) be the plastic potential. The normality rule for plastic deforma-
tions can be written as
def. = X o9 ‘1.4)
o 30’;_7' o

where A is a non-negative parameter. For the Cam clay model @ = F (associated
flow rule).
Let us designate

{oi} = (011,022,033, 012, 023, 013) "~

T
{&'} = (811, £22,€33,€12,€23,€13)

46



(= (29 99 99 09 69 o9 )T
B 80’11’3022’3033,60’12,00'23’60"13
8F OF OF O8F OF OF )T

B;} = > ) ’ ’ ’ .=17"' 6
{ } ((90’11 80'22 8(733 80’12 30’23 60’13 ¢ ’

€y = £11 + €22 + €33 — volumetric strain
Let C¢ be the elastic matrix. Using (4.3) and (4.4) we have
= C§;(dej — de?) = Ci(dej — AA4;) (4.5)
During plastic deformation F(o,po) = 0 and, hence, by differentiation:

oF OF oF
d — dpg = 4.6
dors doyg + -+ + Boms o13 + 90 po =0 (4.6)

dF =

For the Cam clay model, the hardening parameter po depends on the plastic part of
the volumetric strain €9, hence pg = po(eb). In equation (4.6), it can be substituted
for

5F(O‘,p0) (:)F(U,po(é'p\) 6}}0 a,F(O‘. ’!)Q(ﬁ.pn : &
— 2 7 dps = 4 deP = "2 ATV P
8]70 0 6p0 685 & 665 Ev
Substituting (4.4) and (4.5) in (4.6) we obtain
oF
dF = BC’e(dEJ—/\A) apdep"—
. oF
= B;C§;(dej — A4;) + 57 A(A1 + As + Aj) (4.7)
Equation (4.7) yields
- By CtiA,;
X L (4.8)

- oF
BECY;A; = o (A1 + Aa + 49)

Substitution for A in (4.5) yields the required relationship between stress and strain
(in incremental form):

e T e
do; = | Cs; — C"C;;;B’"C”" = Cijde;  (49)
B;CPC,?].A]- (A1 + Az + A3)

Equation (4.9) defines the elastoplastic constitutive matrix C°P.
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The form of all terms in (4.9) will be given for the modified Cam clay model. As
F = @, we can compute for instance {4;}. Defining K = 1M?%(2p — po) we obtain
(K + 2011 — 032 — 033 )
K + 2093 — 011 — 033

K +2011 — 022 — 033

Ty =
{Al } < 60'12 [
6023
1 6013 J
It has been derived - S0 e \
(9.0 g7 PPO\L+60}
_ 4.10
Jeb A—k ( )

where eg is the void ratio prior to a stress increment, and the meaning of A and
k is obvious from Fig. 8. In the same way, p and pg are quantities related to F

e

Fig. 8. Isotropic loading and

. unloading in e—In p space.
inp A in Pg Inp

prior to a stress increment. The change in the void ratio de = de® + deP has been
determined as

d

de=-x 2 (4.11)
Po

det = -k 0 (4.12)
Po

Equations (4.11) and (4.12) hold true for ¢ = 0. The value of dpy can be expressed
from (4.2) by substitution of p and ¢ after an increment.
For a general value of ¢, de can be expressed as (g = ¢/p):

dp k pdp
de=—(1+e)dey=-A|l—+|[1=-=]) 2 —— 4.13
Chiii {p ( A) M? + p? (13)
All the terms in (4.9) are thus given for the modified Cam clay model.
The mere formulation of elastoplastic models is insufficient to solve boundary
value problems with non-linear stress-strain relationships. The determination of
the elastoplastic stress increment at a given stress point requires further effort and

this is the topic of the next section.

48



4.2. Computational procedures for implementing hardening
models at one stress point

This part makes use of the results of Sirwardane and Desai (1983). Two yield
surfaces form two criteria. The incremental stress corresponding to an increment
of strain can violate one or both of the criteria. Hence, these possibilities have to
be checked at all stress points in implementing elastoplastic hardening models.

For an increment of strain, de, the corresponding do can be computed by using
(4.9). If the final state of stress lies within or on the yield and failure surfaces, the
following criteria have to be satisfied:

Fu(oo +do) <0 (4.14a)

Fi(oo +do) <0 (4.14b)

where o is the state of stress prior to an increment. The possibilities of ﬁolating
the two criteria (4.14) are shown in Fig. 9.

D
qi c
C f
B
E

Fig. 9. Possible stress incre-
. G E
ments for loading from an A c

- M
elastic point. e

The path AB intersects F} directly from the elastic region, AC and AD from
the plastic region. Since the state of stress above F; cannot exist, it is necessary
to find the increment of stress Ao which will bring the stress point to the failure
state. The material is unable to bear any more stress, and hence an unbalanced
load fraction arises. Solving boundary value problems by FEM this is redistributed
to the surrounding elements by using iterative methods.

F(G,po)

B(So+d5= 51)

q
tors

=
C€61+A6=62)

o (Jg)

Fig. 10. Stress correction along the normal to the yield surface F.
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We shall correct the stress by bringing the stress point B along the normal to
general surface F. This procedure can be applied both to Fr and F. (Fig. 10).
The change of F(o,pg) can be expressed as (pg is fixed)

dF (oo +d
dF:fﬁm+da+A@—fmm+¢ﬂz-—%%iiﬂAmj (4.15)

Let us designate Fy = F (o9 + do), 01 = 0g + do. Equation (4.15) in matrix form
yields

0-F = {?—%(})-}T (A} (4.16)

From here the change of stress {Ac} bringing o; along the normal to surface F

can be expressed as
[ 8F(0‘1)
—,
L Oa

REDRES

As the value of 0F /00 is calculated at a point outside F, it need not be exactly
normal to F', and hence o1 + Ao need not lie on F'. Stress point oy = o1 + Ao can
be used as the further approximation of this algorithm and value o3 = 03+ Ao can
be calculated according to (4.17), and so on, until o1 = 0% + Ao falls within the
prescribed accuracy.

Let us go back to Fig 9. Paths AD and AE enter the region of elastoplastic
deformations. The final state of stress is computed by gradual expanding F., as
described below.

The violation of (4.14a) is dealt with. The increment of stress computed from
the elastic matrix can move the state of stress outside the actual F¢ (see Fig. 11).
Until the state of stress reaches the stress point C, the material deforms elastically.

(4.17)

{Ad}

Fig. 11. Transition to the plastic region
with expanding yield caps for subincre-
ments of strain (1—25) d€/m.

A°

The determination of C' will be described later. Constant S divides an increment
of stress into elastic and elastoplastic parts:

{do} = S[C°{de} + (1 — S)[CP|{de} = {do®} + {do*P} (4.18)
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The incremental stress corresponding to the incremental strain has to be com-
puted separately for elastic and elastoplastic behaviour (indices e and ep):

{do®} = S[C]{de} = [C°]{de"} (4.19)
{do®P} = (1 — §)[CP|{de} = [C®P]{deP} (4.20)

The computation of {o®} is straightforward once S is determined. However, the
evaluation of {0°P} requires (1 — S){de} to be divided into m subincrements, the
value of m being given by the ratio of the increment of the hardening parameter
dpo (corresponding to states of stress B and C in Fig. 11) to the highest allowed
increment AF : dpo/AF. It is important to point out the fact that F. changes its
position after each subincrement (1 — .5){de}/m has been applied.

The hardeniﬁg parameter, pg, and void ratio ey are updated together with the

stress increment corresponding to each subincrement of strain (1 — §)de/m (see
(4.2), (4.11)—(4.13)). The state of stress has to lie on the actual surface F.. There

are two possible ways of updating py. The value of py can be determined either
from equation (4.2) (p and g are known, F, = 0) or from equations (4.11) and
(4.13) (if F. # 0, the state of stress is brought to F; using the procedure described
in (4.15)—(4.17)). If subincrements (1 — S)de/m are sufficiently small, both ways
yield the same results.

The critical state can be reached in computing the m subincrements (path AD in
Fig. 9). Hence the violation of (4.14b) has to be checked after each subincrement.
If F¥ > 0 holds true, the correction to bring the state of stress along the normal to
F% is applied.

The correct value of {do®P} is the accumulated quantity over the m subincre-
ments. If the critical state is reached after k subincrements (k < m), the iteration
is stopped and the correct value of {do®P} is calculated by adding k subincrements.
We can thus determine {do} in (4.18).

Let us outline the procedure for evaluating S. This can be done by solving the
quadratic equation (e.g. for the modified Cam clay model) or in a general case by
using an iterative procedure similar to (4.15)—(4.17) (see Nayak and Zienkiewicz,
1972). For the modified Cam clay model, S can be determined as follows.

Tt T @A N e i 1T b QT dtiiigi o alie e SR, N
Bquation £c(og + Sdo) = 0 is to hold true. Substituting this in (42} we obtain

quadratic equation AS% 4 BS + C = 0 with

A =27dJsp + M*dJ}
B =54a — M?Jy1dJy + 2M2JEdT,
C =27Jap — M2 J1Joy + M2J?

a = %{(011 — Gzz)(dUu —dogs) + (022 — 033)(do2s — doss)+

+ (011 — 033)(doy; — doss)} + o12dos + oe3dors + oy3doys

where dJop and dJy are invariants of the incremental stress do.
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So far loading has been involved. After yielding or reaching a critical state, the
state of stress can indicate unloading (see Fig. 12). If this is the case, the computed
stress increments are assumed to be correct, and the unloading constitutive para-
meters are assigned at those stress points for subsequent unloading. By definition
unloading is elastic. '

With the parameters obtained for the Karlsruhe sand (M = 1.715, X = 0.010386,

q 4 5

FC Fig. 12. Possible unloading paths
M o after reaching the failure Fr or yield
D surface Fp.
1 | o T I“' G i 1 T f T i 2 2 ; T r T T T I 3 T T
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Fig. 13. Response envelopes of the critical state model for different initial states 0oct = const.;
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Fig. 13 (continued).
b)in 01 — ﬁdg space; sigl = 01, sigd = 03, eps = €.
k = 0.00197,¢y = 0.6111,p = 0.5 MPa, E = 100 MPa, v = 0.25,c =0, <,0——4183°)

the critical state or Cam clay model response is shown in Figs. 13a and 13b. The
different shapes of the response envelopes in these figures correspond to the different

spaces (¢ —p and o1 — V2 o) used. The shaded areas of the response envelopes
indicate the difference between the pure elastic and the elastoplastic responses. It
should be noted that for computing the unit stress response envelopes .S = 0 holds.

5. COMPARISON OF THE MODELS

The response envelopes allow rapid discrimination and evaluation of both the
physical and mathematical aspects of particular constitutive models. One can easily
realize the effect of selected switch functions or material parameters. Regarding
space limitation, however, only a few remarks are made here.

The important condition of response envelope continuity is satisfied by the linear
elastic models (Figs. 3 and 4), but this response does not match the real behaviour
of geomaterials. The response of the hyperbolic model is fairly discontinuous and
depends considerably on the selected switch function (Figs. 5a and 5b). The
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path dependent model also displays discontinucus response controlled by the switch
functions. The continuous response of the elastoplastic critical state model (Figs.
13a, b) proves that this model is mathematically considerably better posed than
the preceding variable moduli models.

Concerning the physical correctness of the tested nonlinear models, the hyper-
bolic response with the switch function sign (¢ — €3) (Fig. 5b) is more realistic
than the response with the alternative switch function in Fig. 5a. Similarly, for
the paths where loading in shear occurs (A7 > 0) the multilinear response of the
path dependent model with v # 0 (Fig. 6b) is more correct than its response with
v = const. in Fig. 6a. The comparable Cam clay modelis plotted in Fig. 13b. All
these models simulate the standard triaxial test paths with 3 = const. or Goct =
= const. well, i.e. the above-mentioned paths with loading in shear. The difference
between the models can only be established by more complicated tests, e.g. by a
sudden change of path direction due to unloading in shear (A7 < 0). This stress
path group noted for a significant stiffening effect (Dolezalovd and Hofent, 1982) is
shown in Figs. 5b, 6b and 13b. It can be said that only the path dependent model
takes into account this effect which is of great importance for realistic displacement
prediction of geotechnical structures.

6. CONCLUSION

The numerical element tests and unit stress response envelopes have proved
to be powerful tools for numerical testing of incremental constitutive relations of
geomaterials. The physical and mathematical aspects of the particular relations
can be easily compared and understood. Furthermore, the effect of various switch
conditions and material parameters can be simply visualized. In this way quick
and inexpensive parametric studies can be carried out for both the right choice of
the constitutive model and the check of selected parameters of particular materials.
Such a parametric study should precede any FEM analysis of a real geotechnical
structure.

Concerning the future research specification of detailed conditions to be imposed
on constitutive models, testing of other elastoplastic and rate type relations, and
implementation of some selected relations in the FEM codes are planned. The
next step, according to the accepted grant project, is the solution of some typical
boundary value problems using different constitutive laws and their comparison
with the field measurement results.
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Numerické testovani a grafické zobrazovan{ hypoelastickych konstitutivaich vztahl geomate-
ridld uZitim elementdrnich numerickych testl a jednotkové napéfové odezvy p Cudehuee
(1979). Odvozen{ zdkladnich vztahd a srovndni péti modelt: izotropnifho linedrné elastu:keho,
transverzalné izotropnfho, hyperbolického s riznymi pfepinacimi funkcemi, drédhové zdvislého

(variable moduli) a elastoplastického (Cam clay) modelu se zpevnénim.
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