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Abstract

There is growing evidence that alternative earthquake mechanisms other than
shear failure are possible. The most prominent cases of anomalous focal
mechanisms are reported from mine seismicity studies. The moment tensor
approach 1s in this respect the most general one, since moment tensors
describe completely the equivalent forces of a seismic point source. A moment
tensor can be decomposed into an isotropic part, a compensated linear vector
dipole and a double couple. Such a decomposition seems to be the most
interesting one for source studies of seismic events induced by mining. The
isotropic component of the source mechanism corresponds to a volumetric
change, the compensated 1linear vector dipole corresponds to a uniaxial
compression, and the double couple, of course, corresponds to a shear failure.

There are various methods of inversion for moment tensor components. The
inversion can be done in the time domain or in the frequency domain, and
different data can be used. The main difficulty in the inversion is a proper
calculation of Green’s functions for geologically complex media. Moment tensor
inversicns on a global scale have been routinely performed for several years,
but the application of this technique to local events is a relatively recent
innovation. A few works only have been published that are related to the use
of moment tensor inversion in studies of seismic events induced by mining.
This approach is mostly used in South Africa and Poland, and to a limited

extend in Japan and Canada.
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1. Introduction

Recent results from earthquake focal mechanism studies indicate growing
evidence that alternative mechanisms other than shear failure are possible.
The most prominent cases of what appear to be anomalous focal mechanisms are
reported from mine seismicity studies. The results from studies wmostly based
on first-motion polarity and radiation patterns were reviewsd by Gibowicz
(1890). Here the results from moment tensor inversion are considered in some
detail.

Moment tensors describe completely, in a first order approximation, the
equivalent forces of general seismic point sources, the double-couple source
being just one of them. In many applicaticns a point source approximation may
be quite satisfactory, provided that the source dimensions are small in
comparison to the observed wavelenghts of seismic waves. The concentrated
force couples and the corresponding formal introduction of the moment tensor
and its decomposition into various components are discussed at the beginning
of this review. Then various methods of inversion for the moment tensor
elements are briefly considered. Although moment tensor inversions on a
teleseismic scale have been routinely performed for severzal years, the
application of this technique to local seismic events is a relatively recent
innovation. The results of the application of moment tensor inversion
technique to study local seismicity in general and seismicity induced by

mining in particular are described at the end of this presentation.
2. Concentrated Force Couples and Moment Tensor

It is well known that the displacement field ui(xzt) generated by a single
body force is equal to the convolution of this point force F(t) by the Green’s

function G, .
1]

u, (x,t) = F(t)*G, .(x,1), (1)
1 1J

where the asterisk is a commonly used abbreviation for the convolution and the
Green’s function is simply the medium response to the delta function. If the

body force 1is concentrated but 1its orientation 1is arbitrary f(x,t) =




F(t)s(x-£), where F(t}z(Fl,Fz,Fq); then the total displacement is equal to the
: p
sum of the displacements generated by the forces Fl’ F2, and F3 directed along
the X Xo and X directions (e.g., Pujcl and Herrmann, 1890)
u, = F, *G + F.*G. + F.*G., = F *G._ . (2)

Although the single force 1is one of the simplest models of a seismic
source, the supposed external application of a force is unlikely to occur in
natural earthquakes. It 1s more probable that the force action 1is of
self-balancing type, such as a pair of oppesite forces acting simultaneously
on two adjacent parts of the medium with the resultant force equal to zero.

Let us consider a pair of forces of equal magnitude acting along the

positive and negative Xq directions at a small distance € apart in the X,

direction. The two forces are (O,O,FS) acting at point (E+ee2/2) and (O,O,—F3)

acting at (g—ee?/z), where €, is a unit vector in the X5 direction. The total

displacement u; caused by the two forces is the sum of the displacements

caused by each force (e.g., Pujol and Herrmann, 1830)

u, = eFS*[G13(£+e 62/2) - Gig(gwe e2/2)]/e : - (3)

Taking the limit of u, as FS tends to infinity and € tends to zero, in such a

way that the product €F_, remains finite, the following relation is obtained

3

8613
= M * .
u, L " , (4)
2

where H32 = €F This pair of forces is known in classical mechanics as a

couple and the zuantity M32 as the moment of the couple, which has dimension
of force by length and my be a function of time.

There are nilne possible combinations of force and arm directions, shown in
Fig. -1, represented by the moment Mij of couple with forces» in the X
direction and arm in the Xj direction. When Xi and Xj are the same, the couple
is known as a vector dipol or a couple without moment. All the other couples
have nonzero moment, equivalent to torque. If a general body force

representing a seismic source can be expressed as a linear combination of



couples with moments Mij’ then the displacement caused by this force is the

sum 0f the displacements caused by individual couples

17 BEJ 1)

The set of nine terms Mij is known as the moment tensor of the source,
represented by a matrix M with elements Mij' The full expression for oy in (8)

can be found, for example, in the book of Aki and Richards (1980).
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Fig. 1. Representation of the nine possible couples Mij' The subindexes i and
J denote the directions of the force and the arm of the couple, respectively.

(From Aki and Richards, 1880.)

The seismic moment tensor was introduced by Gilbert (1870) to calculate the
displacement which can be expressed as a sum of moment tensor elements times
the corresponding Green’s function. The linearity between the moment tensor
and Green’s function elements was first used by Gilbert (1973) to calculate

moment tensor elements from observations, known as moment tensor inversion.




The concept of seismic moment tensors was further extended by Backus and
Mulcahy (1876) and Backus (1977a, b).

A convenient description of seismic sources is provided by considering then
as arising from deviations from the elastically predicted stress state. The
stress tensor is divided into purely elastic part and inelastic part, which
Backus and Mulcahy (19768) called the stress glut. The physical source region
is characterized by the existence of the equivalent forces, arising as the
result of differences between the model stress and the actual physical stress.
Outside the source region, the stress glut and the equivalent forces vanish.

The displacement u, generated at a point x at the time ¢ by a distribution

k
of equivalent body force densities fi within a source volume V is given by

(e.g., Aki and Richards, 1980; Kennett, 1888; Jost and Herrmann, 1889)

. (i, 2) = J fc (% t:r,t ) £.(r,t ) Qv dt , (6)
k Ki 1

where Gk:(x,t;r,t ) are the CGreen’s functions containing the propagation
effects between the source (r,t) and the receiver (x,t). The Green’s functions
may be expanded in a Taylor series (Stump and Johnson, 1977) about the point r

= £ as follows

G (x, tir,t ) = Z “.*(r.—Ej ) r - €0 Gy L mBET), (7)

i § 1 n n 1 n

where the comma between indices describes partial derivatives with respect to
the coordinates after the comma. The location of the reference point would
normally be the hypocenter for small sources, whereas for extended faulting an
improved representation is obtained by considering the centroid of the source.

Defining the time dependent force moment tensor as

My &t = J' (rjl— £ boonlr, < £, £le 8 T al, (8)
1%

i
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the displacement can be written as a sum of terms which resolve additional
details of the source, known as multiple expansion (e.g., Backus and Mulcahy,
1976; Stump and Johnson, 1877; Aki and Richards, 1980; Jost and Herrmann,

1989)

ja
e
=]
=)

where * denotes the temporal convolution.

In many applications a point source approximation may be quite
satisfactory. Finite sources, on the other hand, may be generated by direct
superposition of simple point sources. If the source dimensions are small in
comparison to the observed wavelengths of seismic waves, only the first term
in relation (8) needs to be considered, and then the displacement can be

written as

= .f & *
uk(x,t) Gki,j(x"’o’o) Mij(g’t) (10)

for £ = 0. Assuming that =zll components of the time dependent seismic moment
tensor have the same time dependence s(t), the case known as synchronous

source (Silver and Jordan, 1882), the displacement can be expressed as

¥ = [ *
uk(x,v) ij lG}:i,j s(t)], (11)

where s{t) is often called the source time function. Thus the displacement Uy

is a linear function of the moment tensor elements and the terms in the square
brackets. If the source time function is a delta function, the only term left
in the square brackets is Gki,j describing nine generalized couples (e.g.,
Jost and Herrmann, 1983), shown in Fig. 1.

In general, the source moment tensor M of second order, describing a
general dipolar source, has nine components Mij and is represented as a 3x3
matrix in a given reference frame. It can be written as (Ben-Menahem and
Singh, 1981)

1
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where €, and e . are the unit vectors along the Xi and x, directions. The first
term on the right hand side of this equation describes z center of compression
and the successive terms describe three dipoles along the coordinate axes,
three double couples and three torques about the coordinate axes,
respectively. This is known as the decomposition theorem. The center of
compression comes from the isotropic part of the moment tensor, corresponding
to a volume change in the source. The remaining nine sources form the
deviatoric part of the moment tensor. This deviatoric part can be further
decomposed; a multitude of different decompositions are possible.

The conservation of angular momentum for the equivalent forces leads to the
symmetry of the seismic moment tensor (Gilbert, 1870). If the moment tensor is

symmetric, then Mi_ = M.j and the torques in equation (12) vanish. The

eigenvalues ml, m?, and m3 of a symmetrical second-order tensor are all real
and 1ts eigenvectors 2, a,, and a, are mutually orthogonal. Then from

equation (12) it follows that a2 moment tensor can be decomposed into an
isotropic part and three vector dipcles (Ben-Menahem and Singh, 1881; Jost and

Herrmann, 1289)

1 1
W=- (ml tomy + mg) I+ - (Zm1 - m, - m3)3131
3 3 _
1 1
= = - — _ _ 3 (17
+ (2m2 my m1)3282 + (2m3 m, m2)33a3 , (13)




where I = aij is the identity matrix. The isotropic component of the source
mechanism corresponds to a volumetric change which is often thought to be
associated with a phase transition expected to occur in the source o
deep-focus earthquakes. Most recent results show, however, that a sudden
implosive phase change can rather be ruled out as the primary physical
mechanism for deep earthquakes (Kawakatsu, 1881). The source precess of a
shallow earthquake, on the other hand, which occcurred con May 14, 1885 off the
northern Mozambique, has been considered as a combination of a normal fault

3 3 { A~y Aa 1 4%
and a subsequent isotropic source {Honda and Yomogida, 1S81).
s

Equation (13) may al

1 1
T 7 P 1 — = o
H (m1 +om, m,) I + ml(Zalal asa, ajag)
3 3
1 1
+ ; mz(Zazaz T 843y - aial) + ; m3(23333 - aE - 3232), (14)
where 2a.a, - a.a represents a compressional dipole of strength 2 in

11 s T a8

the direction of the eigenvector a, and two dilatational dipoles each of unit

1
strength along the a, and a, axes. This type of source is known as a
compensated linear vector dipole (CLVD). A general dipclar source with =a
symmetric moment tensor, therefore, is equivalent to a center of compression
and three mutually orthogonal compensated linear vector dipoles. A compensated

linear vector dipole is equivalent to two double couples since

- = - - + — . 5
2a,a a_.a a_a (ala1 3232) (ala1 aBaB), (15)

and a double couple is given, for example, by a3, T oayE,.
Alternatively, =a symmetric moment tensor can be decomposed into an

isotropic part and three double couples. Equation (13) can be written as

H =




+ ; (m2 = ma)(aza2 - agas) + ; (ms - ml)(aga3 - alal), (18)
which represents a center of compression and three double couples. Another
decomposition of =z moment tensor is inte an isotropic component and a major
and minor double couple introduced by Kanamori and Given (1981). The major
couple seems to be the best approximation of a general seismic source by a
double couple, since the direction of the principal axes of the moment tensor
remain unchanged (Jost and Herrmann, 1983). To construct the major double
couple, the eigenvector of the smallest eigenvalue (in-the absolute sense) is
taken as the null axis, and it 1is assumed that the purely deviatoric

eigenvalues m? of the moment tensor

g 1 2 3
mgoEm - T T (17)
3
d d le} i 005
are such that Im3| e !mzi = lmll. Then the complete decomposition can be

written as (Jost and Herrmann, 1982)

1
M= (my + 1, + m3) I
3
d d
+ Ty (a3a3 - azaz) + my (a131 a2a2), (18).

in which the second term represents the major double couple and the third term
represents the minor couple. A best double couple can be constructed in a

similar way by replacing md by the average of the largest (in the absolute

3
sense) two eigenvalues (Giardini, 1884).

Following Knopoff and Randall (1970) and Fitch et al. (1880), a moment
tensor can be decomposed into an isotropic part, a compensated linear vector

dipole and & double couple. Assuming again that [mdl = ]mg] = Im?I in relation
(=

3
(17) and that the same principal stresses produce the CLVD and the double
couple radiation, the following decomposition is obtained (Jost and Herrmann,

1989)
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¥ o= (m  + m, + + o, F (2 - a.a_ - z.a_ )
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Fig. 2. The compensated linear vector dipole (CLVD), corresponding to &
uniaxial compression, and the double couple and the corresponding double
dipole system that gives the same radiation pattern as the double couple.

Such a decomposition ceems to be the most interesting one for source
studies of seismic events induced by mining. The compensated linear vector
dipole, corresponding te a uniaxial compression, and the double couple and the
corresponding double dipole system that gives the same radiation pattern as

the double couple are shown in Fig. 2. The CLVD source was considered as a

ot

model for sudden phase transitions in deep earthqguakes (Xnopoff and Randa
1970), tensile failure of rock in the presence of high-pressure fluids {Julian
and Sipkin, 1885; Foulger, 1988), and source complexity f{e.g., Frohlich et
al., 1983). The CLVD source corresponding to a uniaxial compression could
possibly explain one of the mechanisms of pillar-associated seismic events,
observed in situ in deep hard rock mines in South Africa and reported by
Lenhardt and Hagan (1990). The other reported mechanism could be explained by
a source composed of the CLVD and double couple components. The four possible
mechanisms of pilllar-associated seismic events at the Western Deep Levels gold
mine in South Africa are shown in Fig. 3, reproduced from Lenhardt and Hagsn

(1890).
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Fig. 3. Four possible mechanisms of pillar—associated seismic events at the
Western Deep Levels gold mine, South Africa. (From Lenhardt and Hagan, 1990.)

3. Momeni Tensor Inversion

There are various methods of inversion for moment tensor elements. The
inversion can be done in the time or frequency domain, and different data can
be used separately or in combination. The moment tensor inversion in the time
domain can be based on the formulation described by equation (11) (e.g.,
Gilbert, 1970; Stump and Johnson, 1877; Strelitz, 1978; Fitch et al., 1980).
If the source time function is not known or cannot be assessed or the
assumption of a synchronous source is not upheld, the frequency domain
approach is chosen (e.g., Gilbert, 1973; Stump and Johnson, 1977; Kanamori and
Given, 1981). The displacement in the frequency domain, corresponding to the

formulation in (11), can be written as

u (x,t) = M, (£) G, . .(f) (20)
k ij ki,j

for each frequency f. Both approaches (11) and (20) lead to linear inversions

in the time or frequency domain, respectively, for which a number of fast

computational algorithms are available (e.g., Lawson and Hanson, 1974; Press
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In the time domain, the vector u consists of n sampled values of the observed
ground displacement at various staticns, &G is 2 n x 6 matrix contalining the
Green’s functions calculated using an appropriate algorithm and earth model,
- [ =] e c ini ix o

and m = \”11’ MIZ’ M22’ H13, MéS’ M33) is a vector containing the six moment
tensor elements to be determined. In the frequency domain, equations (2

N
J e

-

)

written separately for each frequency. The vector u consists of real and
imaginary parts of the displacement spectra, the matrix G and the vector m
contain real and imaginary parts as well, and m contains also the transform of
the source time function of each mcment tensor element. The details of solving
equations (21) for m are given by Aki and Richards (1880). A detailed
description of the procedure for regional and local seismograms is given by
Oncescu (1986). The application of moment-tensor inversion to microseismic
events is described by 0’ Connell and Johnson (13988]).

The first step in a2 moment tensor inversion is the data acquisiticn and
preprocessing.A Data with good signal to noise ratio and that have a good
coverage of the focal sphere (see Satake, 1885) are essential. High frequency
noise in the data is removed by low-pass filtering.

In the second step synthetic Green’s functions are calculated, taking into
account geological structure between the source and receiver, the location of
the point source, and the position of the receiver. The scurce time functicn
in equations (11) is often assumed to be a step function (Knopoff and Gilbert,
1859} or a ramp function (Haskell, 1964) and used in the inversion (e.g.,
Gilbert, 1870; Stump and Johnson, 1977; Dziewonski et al., 1881; Kanamori and
Given, 1981). Powerful waveform inversion methods are available when source
time functions need to be recovered {e.g., Burdick and Mellman, 1978; Wallace
et al., 1981).

The third step is the proper inversion - the solution of equations (21
The inversion is usually formulated in terms of least squares problems (norm
L2; Gilbert znd Buland, 1876; Mendiguren, 1877; Stump and Johnson, 1977),
though other norms (e.g., norm Ll) can have advantages when less sensitivity

to gross errors is required (e.g., Claerbout and Muir, 1973).



The main difficulty in the moment tensor inversion 1s a proper calculation
of Green’s functions for geologically complex media. The Green’s function is
in general different for different displacement components and takes different
values for particular stations. The simplest approach in the time domain is to
use directly the source radiation formulation for P, SV or SH waves. This
approach was used by Fitch et al. (1980) and De Natale et al. (1987) and
others. A more rigorous approach is based on the method of matrix propagators
of Haskell-Thomson (Haskell, 1953), modified by Knopoff (1964) and Dunkin
(1865), and used in the frequency domain. Another method of evaluation of
Green’s functions, especially valuable for highly complex structures including
possible lateral inhomogeneities, 1is empirical one using Green’s functions
determined from observations and a known source. This relative moment tensor
determination was first proposed by Strelitz (1380) in a study of subevents of
complex deep-focus earthquakes. The method was extended by Oncescu (1988) to
individual small events recorded at a few stations.

If the focal depth is not known with sufficient precision, then a linear
inversion can be done for a number of trial depths. The most probable depth
will minimize the corresponding error between observed and theoretical
waveforms (e.g., Mendiguren, 1977; Patton and Aki, 1979; Sipkin, 13882).

It is convenient to characterize the moment tensor by its eigenvalues. This
can be done by a rotation of the moment tensor from geographical coordinates

into its principal axes. Then the moment tensor can be written in the diagonal

form
..=mé, ., , (22)
ij i7ij
where m; are the eigenvalues of M and the Kronecker delta Sij =1 for i = j
and 61' = 0 for i # j. For a general moment tensor all eigenvalues m; are

different. Seismic sources with no volume change can be obtained by

constraining the moment tensor to have zero trace

tr M=m, + m. + m. = 0, (23)

or in a more general form

tr M =M . + M__ + M._ =0. (24)




The sum of the diagonal elements of the moment tensor divided by 3 is a
measure of the volume change associated with the source.

It can be readily shown that for the moment tensor of the double-couple
source, one principal value of ¥ must vanish which means that the determinant

det M must also vanish

or in a general form

, : B - -4 LB ~
Mooty + 2H My M 5 = My iy = MyoH 5 33l = O (25)

The vanishing of det H and tr M are therefore necessary and sufficient
conditions for a double-couple source.

In the more general case, the eigenvalues of the moment tensor M can be
readily found, following for example Kennett (13888). Any isotiropic component

iz removed by bringing the trace to zero, simply by modifying the diagonal

elements of the original moment tensor

M. . =M, - —tr M3, . (27)
i ij 5 1

The diagonalization of this new tensor H’ results in a cubic equation for its
eigenvalues m
3 N ' .
m- - Km - det M’ = 0, (28)
where
K=M_+H 2 + M = MM =~ MM~ MM
12 13 23 11722 22733 $1°33"
If det M’ = 0, the solutions of equation (28) are

= Kl/Z, _K—1/2; (29)

if det H' # 0, the solutions are




m = g cos8, g cos(e + 2n/3), g cos(e + 4n/3), (30)
where
, 1 . 3 det ¥
g = 2(K/3)1/2, 8 = — cos 1{ —“*—————‘].
3 4

Kq

The principal directions may be found by solving the following equations for

the components of the eigenvector a

(M, - m38, Ja.=0. ' (31)
1J 1J J
If the trace of the original tensor M is non-zero, then (1/3) tr M has to be
added to each eigenvalue.

The non-isotropic constraint of zero trace on the moment tensor is linear,
whereas for double-couple sources the constraint of zero determinant on the
moment tensor is nonlinear. To solve the linear system of equations (21) under
these constraints, the method of Lagrange multipliers is used (Strelitz, 13980;
Oncescu, 1986). The system must be solved iteratively until the determinant
det M and the trace tr M converge to zero. The scalar seismic moment MO can be
determined from a given moment tensor, corresponding to a double-couple

source, by
M =—=(1lm| + |m2| ¥, (32)

where m, and ., are the largest eigenvalues in the absolute sense. The seismic

moment can equivalently be estimated by the following relations (Silver and

Jordan, 1982)

N = = : = (33)




After the recovery of moment tensor, the deviation of the solution from the
pure double-couple model can be evaluated from the ratio (Dziewonski et al.

1881)

d
fm™| .
min
€ = , (34)
d
[m™|
max
1 d 2 b d 3 AeY 1 A 3 3 3
where |[m lmin is the smallest and |m Imax is the largest deviatoric eigenvalue

in the absolute sense. The values of this ratio can range from O for a pure
double-couple source to 0.5 for a pure compensated linear vector dipole.
Alternatively, the ratio € can be expressed in percentages of CLVD by
multiplying € by 200. The percentage of a pure double couple is 100(1 - 2e€).
The variation of € against seismic moment and earthquake space distribution
was studied by Dziewonski and Woodhouse (1983) and Giardini (1984).

Silver and Jordan (1982) have developed a method for the estimation of the
isotropic and deviatoric components of the moment tensor, introducing the
isotropic, deviatoric and total scalar seismic moments. Graphical methods have
been recently suggested for 1identifying non-double-couple moment-tensor
components (Pearce et al., 1988; Hudson et al., 1983; Riedesal and Jordan,
1883). A method for the exact mapping of error bounds on seismic waveforms
into bounds on certain moment—-tensor properties was presented by Vasco
(1980). The properties are the three invariants of the moment tensor: the
trace, the determinant, and the sum of the determinants of the diagonal
minors. Finding upper and lower bounds on these unique coordinate-free
invariants allows to determine if significant volume change is associated with
the source or if a non-double-couple mechanism is needed to satisfy the data.
Furthermore, the range of models that fit the data is an indication of how
well constrained the source properties are.

In general, moment tensor inversions involve two major assumptions. First,
it is assumed that the earthquake may be treated as a point source for a given
frequency of seismic waves; second, that the effect of the earth structure on
the seismic waves is properly modeled. If the earthquake cannot be represented
as a point source or the assumed model of structure is incorrect, the apparent
moment tensor may contain a large non-double-couple component; even if -the
source mechanism is a double couple (Strelitz, 1878; Barker and Langston,

1882). Increasing the complexity of the source structure model, improving the




azimuth coverage, and leaving the time function free to compensate for the
deficiences of the Greeen’s functions decrease the size of the non-double-

couple component (Johnston and Langston, 1984).

4. Investigations of Local Seismic Events

Moment tensor inversions have been routinely performed for several years by
the U. S. Geological Survey. Centroid-moment tensor solutions (simultaneous
inversion of the waveform data for the hypocentral parameters of the best
point source and for the six independent elements of the moment tensor) are
regularly published by the Harvard University group for all larger earthquakes
recorded at teleseismic distances.

The application of a moment tensor inversion technique, however, to local
events is a relatively recent innovation. Saikia and Herrmann (1985, 1986)
used this technique for the interpretation of the observed body wave
amplitudes at local distances for two aftershocks of the 1982 Miramichi,
Canada, earthquake and three 1982 Arkansas, USA, swarm earthquakes. Oncescu
(1986) wused a simple and efficient method for relative moment tensor
determination of 95 intermediate depth small earthquakes from the Vrancea
region, Romania, recorded by a local seismic network. A moment tensor
inversion was performed by De Natale et al. (1987) for ten small volcanic
events from the Campi Flegrei in Italy. O0’Connell and Johnson (13888) made
moment tensor inversions in the frequency domain for three microearthquakes
from The Geysers geothermal field in California.

Most recently, Ebel and Bonjer (1980) performed moment tensor inversion of
small earthquakes, with magnitudes from 0.5 to 2.2, in southwestern Germany
and confirmed that direct P- and S-wave amplitudes can be inverted for the
source focal mechanism. Koch (1981a) examined two methods for moment tensor
“inversion of waveform data for applicability to high-frequency near-source
data. An algorithm was developed for near-source data, in which =a
stabilization procedure was introduced. Both methods, one in the time domain
and one in the frequency domain, allow the retrieval of the complete
time-dependent moment tensor. The technique was applied to eight aftershocks
of the May 1880 Mammoth Lakes earthguakes (Koch, 189391b). Ohtsu (1991) applied
moment tensor analysis to acoustic emission recorded during an in-situ
hydrofracturing test. He used moment tensor components to classify crack types

and to determine crack orientations.




5. Investigations of Seismicity Induced by Hining
ha ¥ g

A few works only have been published that are reslated to the use of nroment

tensor inversion in studies of the source mechanism of seisnic even

[9)]

by mining. Spottiswoode (1984) has studied the focal mechanism of 11 mine
tremors at Blyvooruitzicht gold mine, South Africa, in the frequency demzin,
and he found that the data were consistent with zero volume change -in the
seismic source area and were then interpreted as shear failures on plane

striking parallel to the advancing face or to either of two dikes cutting

cress the face.
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Fig. 4. Relation between the major and minor principal values of the moment
tensor for 15 seismic events that occurred on January 28, 1986 during a large
outburst at the Sunagawa coal mine, Japan. Solid circles indicate non-double-
couple events. (From Sato and Fujii, 1989.)

Sato and Fujii (1888) have studied the source mechanism of a large-scale
gas outburst at Sunagawa coal mine in Japan, which occurred in January 1986.

They used a new method to evaluate the moment tensor in the frequency domain
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and applied it to 15 seismic events recorded by the mine underground seismic
network. The procedure consists of two steps. In the first step an iterative
ieast sguares method wes used to determine the quality factor Q (representing
attenuation and scattering effects) and the apparent seismic moment for each
record from the P-wave displacement spectrum in the frequency range from 4.9
to 48.8 Hz. In the second step, once the apparent seismic moment had been
calculated for each station, the moment tensor was determined from simple
ations between Lthe apparent seismic moment and the moment tensor, taking
into azccount the geometrical spreading, free-surface effect, and direction
cosines. Out of 15 situdied tremors assoclated with the outburst, 12 seismic
events could be interpreted in terms of a double-couple focal mechanism (see
Fig. 4). In conirast to these results, the moment tensor inversion performed
on the observations from two small seismic events at Horonal coal mine in
Japan has shewn that they are non-double-couple events (Fujii and Sato, 1890).
The tremors were associated with longwall mining and were located in the

vicinity of the longwall face.
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Fig. B. Location of the main seismic event (marked by a large double triangle)
and two aftershocks (small double triangles) in a vertical dyke (shaded area),
which occurred on April 9, 1881 at the Western Deep Levels gold mine, South
Africa. Their source is characterized by large isotropic components.




The Integrated Seismic System (ISS) recently introduced in the Welkom gold
mining district in South Africa (Mendecki, 19390; Mendecki et al., 13830)
includes a software package which calculates all components of the higher
order moment tensor. Calculations are done in the frequency domain using
maximum entrepy methed for the inversion (Brawn, 19838). The use of higher than
second order moment tensors permits to assess a number of source properties,
besides those provided by the inversion of a standard second order. moment
tensor, such as the direction of the rupture propagation, the rupture
velocity, duration and size, and the source geometry, in terms of the
orientation of the plane of rupture and overall shape of the source. Although
a few examples of the higher moment tensor inversions for mine tremors were
given by Mendecki (1880), no systematic studies of this complex problem have
been published so far.

Inversions of a standard second order moment tensor are routinely performed
within the ISS Welkom system at Western Deep Levels gold mine in South Africa,
though the results are not readily available in the professional literature.
Moment tensor inversions for three seismic events with volume sources, which
occurred within a dyke on April 89,1881, provide good examples to illustrate
the kind of information becoming available from moment tensor analyses. The
main event with moment magnitude M = 2.1 occurred at O7h09m and two
aftershocks with the same moment magnitude M = 1.8 occurred at 09h24m and
12h27m, recpectively. Their location in a dyke is shown in Fig. 5, elaborated
by H. Aswegen from Western Deep Levels mine. The dyke is vertical and strikes
EW. The reef being mined is planar and dips 16 degrees easterly. The main
event created intense but highly localized damage, and the dyke "exploded".
The routine moment tensor inversion provided the following results (in a

diagonalized form in coordinate system defined by eigenvectors):

MOMENT TENSOR ISOTROPIC CLVD DC
0.14 0.00 0.00 100 -1 0 O 0 0 O
0.00 -0.06 0.00(=0.484|0 1 0|+0.355| 0 -1 0}]+0.202{0 -1 O
0.00 0.00 1.41 001 0 0 2 0 0 1

with the largest isotropic component corresponding to extension and the
smallest double-couple (DC) component.
Two aftershocks occurred also in the dyke. Damage during the first

aftershock was more wide-spread than that during the main event, but it was



less intense. The moment tensor inversion shows more shear than volume change

corresponding this time to contraction:

MOMENT TENSOR ISOTROPIC .~ CLVD DC

~0.44 0.00 0.00] 100 -1 0 0
0.00 -1.13 0.00|=-0.281|0 1 0|+0.162| 0 -1 0[+0.685
0.00 0.00 0.73 001 0 0 2

OO O
1
O 0O
= O O

The third event caused no apparent damage and is characterized by even larger

double-couple component and smaller volume change corresponding to extension:

MOMENT TENSOR ISOTROPIC CLVD DC
0.15 0.00 0.00 100 -1 0 O 0 0 O
0.00 -0.66 0.00|=0.241{0 1 0|+0.085} 0 -1 0}+0.809|0 -1 O
0.00 0.00 1.21 001

0 0 2 0O 0 1

Wiejacz (1991) has studied the source mechanism of 60 small seismic events

LS 1012 N-m) at Rudna copper mine in the

(in the seismic moment range 10
Lubin mining district in Poland, which occurred in 1890 and 1891. He performed
the moment tensor inversion in the time domain using the first motion
amplitudes and signs of P and the amplitudes of SV waves recorded by the mine
underground network composed of over 20 vertical seismometers.

Wiejacz (1991), before performing the inversion on real observations,
carried out a number of numerical tests to check his algorithm. These tests
are highly informative and I have selected a few examples to illustrate the
problems involved in focal mechanism studies. Three solutions — general
six-free-component moment tensor, constrained moment tensor with no volume
changes, and constrained moment tensor corresponding té double couple — were
sought for a fixed network composed of 24 stations with exact synthetic
observations, for the same network with observations disturbed by 10% noise
generated by random numbers, and for the network with randomly distributed
stations and 10% random noise in the observations. The results of a numerical
tést for a purely explosional source are shown in Fig. 6. They are rather
obvious and only last two solutions are of some interest, as they show that a
poor focal sphére coverage may lead even to a not-too-bad-looking
double—couple solution of the explosional source.

The nine solutions from the numerical test for a CLVD source, corresponding




to vertical compression, are shown in Fig. 7. Once again, the double-couple

solutions corresponding to normal faulting look rather good, with a few

Q

inconsistent observations only, but they are entirely unstable showing a wide
range of possible distributions of nodal planes for the three considered
cases. All the nine solutions for a shear source corresponding to dip-slip
reverse faulting, shown in Fig. 8, are practically identical. The isotrcpic
and CLVD components contribute no more than about 1% to the total solution.
The nine solutions from the moment tensor inversion for a seismic source
composed of the double couple (dip-slip reverse fault), 10% CLVD and 10%
explosional components are shown in Fig. 9. The unconstrained solutions show
8% of explosicnal components. The solutions for a general deviatoric source
have from 5 to 9% of CLVD components, whereas the double-couple solutions are
highly stable and well constrained. This test shows how difficult it is to
detect the non-double-couple components when they are relatively small and the
double-couple sources are dominant.

The horizontal distribution of selected seismic events and seismic stations
at Rudna copper mine, selected by Wiejacz (1991) for the moment tensor
inversion; is shown in Fig. 10. The time-independent solutions were obtained
for a general six-free-component moment tensor, constrained solutions
corresponding to sources without volume changes, and constrained solutions
corresponding to double-couple sources. Examples of such solutions for 10
selected events are shown in Fig. 11. In general, the solutions that are well
constrained by observations (good coverage of the focal sphere) have dominant
shear components, though occasionally the isotropic component (showing both
extension and contraction) could be as large as 25 percent of the mechanism.
The CLVD component corresponds to uniaxial compression in all cases and is

usually larger than the isotropic component.

Fig. 6. Numerical test of the moment tensor inversion for an expolosional
source; a lower hemisphere equal-area projection is wused. Shaded areas
represent the regions of up motion for P waves (individual observations marked
by +) and unfilled areas represent the regions of down motion (observations
marked by -). Three solutions were sought for a fixed network composed of 24
stations with exact synthetic observations, for the same network with
observations disturbed by 10% noise generated by random numbers, and for the
network with randomly distributed stations and 10% random noise in the
observations (solutions are shown in three horizontal rows). These three
solutions are: for a general six-free-component moment tensor, for a
constrained moment tensor corresponding to sources with no volume changes, and
for a constrained moment tensor corresponding to double couple sources; they
are shown in three vertical columns. (From Wiejacz, 1831.)
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Fig. 7. Numerical test of the moment tensor inversion for a compensated linear
vector dipole (CLVD) source corresponding to vertical compression. The nine
solutions are described in Fig. 6. (From Wiejacz, 19391.)
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Fig. 11. Nodal lines deduced from moment tensor inversion for 10 selected
seismic events which occurred in 1981 at BRudna copper mine, Poland. Three
solutions are shown for each event: (a) for a general six-free-component
moment tensor, (b) for a constrained moment tensor corresponding to sources
with no volume changes, and (c) for a constrained moment tensor corresponding

to double-couple sources. (From Wiejacz, 13891.)




Another case of the application of moment tensor inversion to study the
mode of failure of small seismic events induced by mining was recently
reported by Feignier and Young (1992). They studied 33 microevents (in the
-4<M<-2 moment magnitude range) induced by drilling a tunnel at 420 m depth in
the Canadian shield granite at the Underg?ound Research Laboratory in Pinawa,
Manitoba. From the moment tenser inversion they obtained the ratio of
isotropic to deviatoric components and they found a number of explosional and
implosional sources. Furthermore, the location of events displayiné
extensional components corresponded to a breakout observed in the roof of the
tunnel. Although they also found a number of purely deviatoric sources, no
attempt was made to decompose the deviatoric moment tensors inﬁo, for example,
the CLVD and double-couple components. Thus the presence of purely shear
seismic events could not be detected.

Most recently, McGarr (1982) reported three tremors in the magnitude range
from 2.1 to 3.4, recorded in early 1888 on the surface and at an underground
station in one of the major gold mines in South Africa, with seismic moment
tensors having substantial implosional components. In the mines generating
these tremors the subborizontal tabular ore bodies are offset (typically by
several hundred meters) by major faults. Mining in the vicinity of the faults
stimulates seismicity resulting in renewed fault slip as well as excavation
closure, which manifests as a volumetric contribution to seismic moment

tensors.

7. Conclusions

9]

Moment tensor inversion, as long as the seismic source can be considered a
a point source, is probably the best approach to study the mode of failure of
seismic events induced by mining. The immediate proximity of openings in
underground mines creates favorable conditions for generation of non-shearing
seismic events, especially in the stope area. Decomposition of a moment tensor
into an isotropic part corresponding to volumetric changes, a compensated
linear vector dipole corresponding to a uniaxial compression, and a double
couple corresponding to shearing seems to be the most interestinngnerforv
source studies in mines, especially where pillar-associated seismic events are
observed. It should be noted, however, that relatively small nonfshearing
components of the source mechanism are difficult to detect; the dominant shear

component leading to well-constrained classical double-couple solutions.
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