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ABSTRACT. The author explains, in this paper, that if the average values of density,
velocity, stress tensor, etc. are adequately defined for granular materials,these average
quantities fulfill the continuum mechanics equations. On the other hand, such an
averaging does not yield constitutive relations, which have to be specified empirically.
it is also shown that the method known from thermodynamics cannot be used to
define, for granular materials, the state functions, such as the absolute temperature

and entropy.
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1. INTRODUCTION

In the nature, there occur frequently materials, which can very well be approxi-
mated by a granular material consisting of individual particles, grains, which them-
selves behave as a continuum. The description of such material by describing the
behaviour of individual grains, the microscopic description, is practically unfeasi-
ble, because a large number of equations of motion had to be solved for individual
grains and, in addition to that, we would have to know the initial and bound-
ary conditions. The description of a granular material is therefore approximated
by continuum mechanics; I shall denote this procedure, for granular materials, as
the macroscopic theory. In this paper, I want to deal with the problem, how the
microscopic quantities (quantities describing individual grains) are related to the
macroscopic ones (quantities describing the material as a whole). The macroscopic
quantities will be defined as certain mean values of the microscopic quantities so to
satisfy the motion equations known from continuum mechanics, i.e. the equation
of continuity, equation of conservation of momentum, equation of conservation of
moment of momentum and equation of conservation of energy.

In order to get, in continuum mechanics, a closed system of equations, we should
also set the constitutive relations. However, the used method of definition of macro-
scopic quantities does not give constitutive relations. We must therefore determine
them empirically instead of finding them from relations between macroscopic and
microscopic quantities. Thell"rnodynamics (Truesdell, 1984) plays an important role
in the theory of constitutive relations. I will show that, for granular materials, it is
impossible to introduce, as state function in the way known from thermodynamics



(e.g. Kvasnica, 1965), the entropy and the absolute temperature. In order to con-
struct, for granular materials, a theory similar to thermodynamics, we must accept
the statistical description of granular materials. However, such a description differs
in principle from the deterministic description, used in this paper. Nevertheless,
I think that the statistical description of the granular material is the only one that
can yield both the equations of motions and constitutive relations.

2. EQUATIONS DESCRIBING THE MOVEMENT OF INDIVIDUAL GRAINS

Individual grains, B,, will be described by Lagrange’s coordinates X, and the
grain boundary will be denoted by S,. Let the motion of grain be defined by C'*°
mapping X. : Ba X R — R3, which I will write as

£ = i (50,1). (2.1)
It is assumed, for this mapping, that there exists, for each ¢t € R, an inverse mapping
Xai , which is also infinitely differentiable. In fact, the mapping x, determines the

position of the point 3, of the grain B, at time ¢.
For each grain B,, I define the deformation gradient F (X,,t) by relation
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for which J, = det F, # 0 holds true. It results from the continuity Fj, that the
coordinates X, can be chosen in the way to satisfy always J, > 0. Such a choice of

coordinates will be assumed herein after.
Further, I define the velocity of motion for each grain B, by the relation

. Bt ‘ .
Bi(Tat) = Z2(Zat)  resp.  vi=Tioxa (2.3)

Similarly, I define the acceleration as

e
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It is then evident that it holds
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where I use the summation convention and the dot over the v denotes here after
the material derivation.
Further, the density p,(£,1) is defined, which is related to the density p,(%,) in
Lagrange’s coordinates by
Pa:(/ja‘];l)oxgtl- (2'6)



It is evident, from this definition, that the density of grain B, at time ¢ can differ
from zero only for £ € xat(Ba) = B,(t). Further on, I will use the convention that
all quantities related to grain B, have at the time ¢ a support, which is a subset of
B,(t). Thus, I define them by zero except for B,(t). This convention will be used
even for the veloc1ty v and the acceleration a,

A consequence of the fact that gisa functlon only the coordinates ¥, and not of
the time and of (2.6), is the equation of continuity. This equation is an expression
of the mass balance and has the form

0pa O(Pavclzc) .
5 aek 0. (2.7)

This equation as well as the other equations in this Section have to be understood
as equations of generalized functions. That means that is holds, for each function
© € C§°(R?), i.e. an infinitely differentiable function with a compact support
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The validity of this equation is easily verified, if, instead of ¢ the value of T¥
defined by (2.1) and (2.6) is used and the independence of the integration range on
time ¢ is introduced.
The law of conservation of momentum can be expressed, by distribution equa-
tions, as
Opuvi | Dpuvivh . oL
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where b is the density of external body force per unit mass, T%* is the stress ten-
sor within the grain B,(t) and f: is the surface density of external force affecting
the grain B,(t), whose support is limited to the boundary S,(¢) of this grain. This
equation involves both the motion equations within the grain and the boundary con-
ditions given by the distribution of forces on the grain surface. The validity of this
equation is checked, similarly as for (2.7), by transition to Lagrange’s coordinates.

The law of conservation of the angular momentum for the grain B, gives the
condition of symmetry of the stress tensor, i.e.

T = Tk (2.9)

Another of the pertinent and generally valid physical law is the energy balance
law. Considering the heat flow and thermal sources, the law of conservation of
energy for the grain B, acquires the form of
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where F, is the density of total grain energy per unit mass, r, is the density of
thermal sources in B,(¢) per units mass and time, o, is the surface density of
thermal sources per unit time, and h* is the heat flux vector in the grain. When

the density of internal energy is introduced by relation ¢, = E, — %v;vé and (2-7)-

(2.10) are applied, the following equations are obtained
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Finally the Clausius-Duhem inequality should hold for each B,(t) grain, which
expresses, In continuum mechanics, the second thermodynamic law, 1.e.

O(pane) = O(panav®) B8(RE)0.)  pare oa
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where 7, is the entropy per unit mass in the B,(¢) grain and 6, > 0 is the absolute
temperature. The inequality (2.13) means that, if the left side is applied to a
non-negative function from C§°, a non-negative number is obtained.

As generally known, constitutive relations are to be added to these equations.
How limited the constitutive relations are, is illustrated, e.g., by rational thermo-
dynamics (Truesdell, 1984). I will not discuss here these constitutive relations, but
I will assume that if b, 7, f¢ and o, are given as functions of ¢¥ and ¢ and functions
Pas XL (Za,to), vi(€,t0) and 6(&,ty), the motion of the grain B, and the temperature
distribution in that grain are unambiguously determined for ¢ > #,.

3. EQUATIONS DESCRIBING THE MOTION OF A SYSTEM OF PARTICLES

Considering now the system of more particles, equations discussed in Section 2
must hold for each individual grain. In addition to these equations, the grain motion
must also satisfy further conditions, which result from bonds between individual
grains. [ will assume that motion takes place within the area limited by surface
So. The surface Sy should be defined more precisely by the equation ¥(£,¢) = 0
and the motion should take place within the area (&,¢) < 0. In such a case, the
function should satisfy, in addition to equations quoted in Section 2, the relations,
which guarantee that the grain motion takes place within the area limited by the
surface Sy(t) and that the grains do not penetrate each other. It should therefore
hold, for each grain primarily that ¥(xq(2a4,t),t) < 0. Moreover, the points for
which the equality holds, must fall to the boundary S,(t). If S,o(t) = Sa(t)N So(¢)
1s denoted, it must hold, for these points

(va = ) 1200 <0, (3.1)
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where v} is the velocity of motion a point of the surface So(t) and ni, is the vector
of external normal to the surface of grain B,(t) at the contact point with the surface
So(t). Let the forces acting on this grain on the contact surface S,o(¢) are denoted
by fly. Similarly, let the thermal sources are denoted by o,

Since the grains do not penetrate each other, it should hold, for a # b,

B L)1 Bilt) =:8,(1) 0S5 = Sult)- (3.2)
Moreover, it must hold for all point from S,(¢)
(vi —vy)nay <0, (3.3)

where n!; is the external normal to the surface S,(t). Let the forces acting on this
boundary of the grain B,(t) are denoted by f!, and the thermal sources by ;.
Then the surface force on the grain B,(t) will be given by the relation

f;:gsa = Zfai,basab + f(jO(SSao (34)
b#a

and the surface thermal sources for this grain are

To0s, = Zaab&sab + 0406s,, - (3.5)
b#a

If on the contact face of two grains S, there are no other surface forces acting
except the mutual forces between B, and By (for example there does not exist any
surface tension), it must hold that

;b_}_flja:()a (36)

which is the Newton’s third law of motion. Similarly, if the thermal sources on the
surface are caused exclusively by the mechanical force f;,, the expression

Oab + Oba = 0 (37)

must hold. However, for the description of the whole system, the forces f,; and the
thermal sources o, have generally to be specified by constitutive relations.

We shall now assume that the constitutive relations are expressed by means of
functions x¢, v% and 6, or, eventually, by their derivations. It is further assumed
that, if there are specified the motion of limiting surface So(t), temperature distribu-
tion fy(t) on this surface, density of external forces b*, intensity of external thermal
sources 7, and initial state of all grains, i.e. ¥%(Zq,t0), vi(&,t0) and 6,(£, ), the
motion of all grains for ¢t > tg and the temperature distribution within these grains
are unambiguously determined.



4. MEAN VALUES AND THEIR EQUATIONS

As it has been already noted in the Introduction, the states of individual grains
are usually unaccessible to cxperimental measurements. We are, in fact, measuring
only certain mean values of corresponding quantities. I am defining, in this Section,
mean values by means of convolution with a certain non-negative function, whose
integral equals to one. [ can use, in principle, any non-negative function, such
one with existing needed integrals. Here, I will use a function from C§°(R*) in
order to get infinitely differentiable functions. If we use a function with a lower
number of derivations, we would get, of course, functions with less derivations. One
such case is quoted in (Drew, 1971). Another possibility is to use the convolution
with a spatial function only, which may be adequate if the considered functions are
sufficiently continuous functions of time.

Let the function ¢ € C§°(R?) be given such that ¢ > 0 and

/ oz, t) Padt =1.
R4

Let the bounded functions F,(z,t) be given, which are measurable in Lebesquian
sense and let

For = Fo(.,t) R SR
be defined. Then, it holds for each t € R that the supp(F,;) C B,(t). Then I' define

<F>($,tj:2_/ﬂg4 Fult, oz — &t —1)d3¢Edr. (4.1)

Functions thus defined are, for. a fixed ¢, from C§°(R?) and as functions of all four
variables they are infinitely differentiable.
First, the mean density p is defined by relation

p(z,t) =< p > (z,t) (4.2)
and for all (z,t), where p(z,t) # 0, the mean velocity V* by
T pVi(z,t) =< pvt > (z,t). (4.3)

The mean velocity V' is not defined in points with zero density. Outside the
support p it may be defined by zero. However, it is, in general, impossible to define
additionally the functions V* at the boundary of supp(p) so as to be continuous.
Nevertheless, as the velocities v} are bounded for each a, there is on int(supp(p))
also a bounded V*, because

PV = <

Z/[R pava(€,T)p(z — £t — ) d>E dr

< Z/W palvi(é, ) p(z — €t —7)d*Edr < Kp.
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Moreover, it is evident from the definition of V* that it is infinitely differentiable
on this set. If we confine ourselves to this set, then the equation of continuity

must hold. This %+ evitlent Tom (2.7), when we multiply this equation by the
function ¢(z — £,t — 7), integrate and sum it up over a.
When the same procedure is applied to (2.8)

.. . 9T ;
V= pB* F* 4.5
o pB'+ = + (4.5)
results, where
pB' =< pb* >, (4.6)
F' =< fis > (4.7)
Tzk = Tzk . pvzvk > _pvzvk = Tzk . puluk > (48)

where we introduced the relative velocity u} by
ug = va(§,7) = Vi(z,1). (4.9)

Using (3.4) it is possible to write the (4.7) in a more suitable form as

Fi:Z/ [Z(ﬁibésﬂb(ﬁm)+f;'055-ﬂ0(§,r) dtdr =F! ,+ F',,, (4.10)
a R Ly,

where '
Fhu=3 3 [ s+ fi)8s(6,nola — &t - 1) e ar
a,b R*
a#h
and

Fi,=Y" j{{ Fiabs.a(t,) € dr.

It is evident, from these definitions, that F?_, are forces by which the boundary Sy
affects the body’s interior and F} , are internal forces. If (3.6) holds, F? , vanish,
but if there is a surface tension between individual grains, this fact about F! ,
cannot be asserted a priori.

By averaging the (2.9) for angular momentum, the only result can be obtained

that the stress tensor, defined in (4.8) is symmetrical, i.e.
T = T% (4.11)
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Rather than by direct averaging of the relation (2.11) for €,, then mean values
of the density of internal energy will be defined as

pe =< pE > —%pV'iVi =< p(e + %vévi) > —%pViV" =< p(e + %uiui} > . (4.12)
It can be seen from this relation, that also the kinetic energy of relative motion

of individual grains is included into
relation can be obtained by averaging of relevant equations:

: oH*
s =T%[, R+ S— —x, 4.13
pé K+ pR+ 5oF (4.13)
where

pR =< p(b'ut 4 1) >, (4.14)
S =< (fiu' +0)bs >, (4.15)
HF =< b* + peu® + %puiuiuk — Ty > (4.16)

and . .

1oV oV
L = 2 [axk + Ozt ] ' (4.17)

Using the same procedure, which led from the equation (4.7) to (4.10), the expres-
sion

Sh= Sint + Sert (418)

is obtained, where

Sine = ) A 4 [i(f:;b + Fra) (e +up) + §(fap — foa)(ua — up)+
a,b -
a#b

+ Y(ows + 0ba) | b5, p d3E dr

and

Sapt = Z[QQ( ;Uui + 040) b5,,(€,7) p(z — &t — 1) d*¢ dr.

These expression have the same interpretation as similar ones for force.

It is quite natural to expect that the inequality for mean entropy will be derived
accordingly. However, that is not so. It is evident,though, that the inequality for
quantity pn =< pn > can be obtained by averaging, but it does not result from
anywhere that the quantity n can be identified with the mean entropy of the entire
system of grains. This may be seen, e.g. from the fact, that we cannot generally
succeed to define, by similar averaging, the mean values of the absolute temperature
of the system. The problem consists in the fact that the entropy is a quantity defined
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for the entire set of systems and expresses the statistical properties of this set. For
one system here discussed, the entropy is not defined at all. The same holds for
the absolute temperature of the system. In order to be able to introduce these
quantities, we have to investigate the thermodynamics of the system or describe
the granular materials by means of statistics of the entire set of systems.

5. RELATION TO SOME CONSTITUTIVE MODELS

In the preceding Section, the mean values of some interesting quantities have
been defined for a granular material with the intention to develop similar motion
equations to those holding for usual continuum. System of these equations has
vet to be completed by constitutive relations, which, however, do not result from
this theory. Obviously, the definition equations from preceding Section cannot be
used as constitutive relations, even if we introduce into them constitutive relations
for material of individual grain, which we consider known, since they are supposed
interconnect the macroscopic variables, while the definition relations connect the
macroscopic quantities with certain functions of microscopic variables. It is evident
from the definition of macroscopic quantities that we would need to exclude, from
definition equations, the mean values of microscopic quantities and thus obtain re-
lations between macroscopic quantities only. However, this is generally impossible.
In principle, new mean quantities can be defined with defined physical significance
and it can be tried to use these quantities for obtaining constitutive relations. How-
ever, this procedure cannot be consider too promising, either. The author himself
is considered that such theory cannot meet with results in the form of constitutive
relations.

Unlike the usual motion equations for continuum, our motion equations include
terms Fz-int and S;,¢, which characterize the interaction within the system of grains.
These quantities do not depend on external fields and represent therefore the prop-
erties of material. They should be therefore specified by constitutive equations.
The possibility is suggested to consider F} , the divergence of some tensor field A,
1.e. to assume %

. GA“C
Fine = 35 (5.1)
and define a new "stress” tensor by
P = L gt (5.2)

In such a case , the equation (4.5) will be transformed, within the body, into the
usual equation of continuum mechanics and we could try to find the constitutive
relations for 7% . However, in such case the ”stress” tensor 7" is not necessarily
symmetric, because, as it results from (4.11), the law of conservation of the angular
momentum requires only the symmetry of T**. The assumption of non-symmetry
of the stress tensor appeared already in some formulation of the constitutive rela-
tions for geomaterials, but there, the non-symmetry is explained by force moment,
originating from the rotation of individual grains. Such an approach differs, how-
ever, substantially from the author’s concept. There can be put a general question,
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whether there exists any choice of the ”stress” tensor 7%, which would be physi-
cally justifiable, i.e. whether there exists an experiment, which would decide, how
to choose correctly an A fulfilling (5.1) or whether it would not be more natural
to determine constitutive relations for F!_,.

Let us come back to the ambiguity of the stress tensor in (4.8). This is especially
important in the case, when F} , vanishes, because, in such a case, the stress tensor
plays the decisive part in (4.5). This happens when there isn’t any surface tension
between grains or when this term can be neglected, which will be a frequent case.
Because only the divergence of the stress tensor is specified in the equation (4.5),
it is possible to add to the stress tensor an arbitrary tensor A, for which

aAz’k
Dok = ) (5.3)
holds. It can be therefore chosen
Tik = Tk 4 Atk (5.4)

where A** fulfills the eq.(5.3). Even such a choice of the stress tensor can involve its
non-symmetry. However, when the stress tensor form (5.4) is used in the equation
for energy, we get

) =, oVt OH*k
pe:Tka$k+pR+S—"-a“:E—k', (55)
where
HF =< BF 4 peuk - —%puiniuk e b By AVEYS (5.6)

It may be seen, from this relation, that in the choice of the stress tensor (5.4), the
vector of the heat flux depends explicitly on the average velocity. As the heat flux
vector is specified by a constitutive equation, the constitutive relations would have
to be dependent, in such a case, on the velocity of the system. This is a dispute
about the principle of objectivity of constitutive relations, which is required by
rational thermodynamics. It will be therefore assumed that the mean stress tensor
is defined by (4.8) and thus being symmetric.

It should also be noted that we did not at all define the strain tensor, which plays
an important role in many constitutive models. This is caused by the fact that I use,
for the description of the macroscopic system, Euler’s coordinates and consequently,
I choose, for the reference system, the instantaneous state of the body, where the
strain tensor equals to identity. Also another reference system could, of course, be
defined, but this would result only in another equivalent description of the system.
In granular materials there does not exist any physically relevant reference system
with permanent zero stress as for the elastic materials. It is therefore more natural
to look out, for granular materials, for incremental constitutive equations. It would
be interesting to compare how the otherwise suggested constitutive incremental
equations for granular materials agree with definition equations of this theory. To
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this purpose, the time derivation of the stress tensor from the equation (4.8) should
be carried out. After long algebra, the following equation is obtained

Tik +Tzk‘/):+TzT‘/)l; +Tkr‘/’zr:
= — < p(buf +0Fut) > — < ( k4 fFut) 8s > +

_+_

Bk < putufu" — Ty — ik PRyt S 4
T

+ < T* +T%u, + Tk + TF !, > . (5.7)

However, computation — compared with constitutive method — is so intricate, that
no reasonable results could be obtained.

Another very similar theory is the theory of multicomponent mixtures, known
from rational thermodynamics (Truesdell, 1984). It can be seen easily that the
derivation of motion equations in this theory and in the theory of mixtures is very
similar. The multicomponent mixture introduces, additionally, the material ratio
® 4 for each individual component A. In our theory the following expression corre-
sponds with this ratio

Dulot) =< vy o= z / va(€,7)(z — €,t — 1) d*E dr, (5.8)
acA”’ R

where v, is the characteristic function of the set B,(t) and A is the set of all such
instances, where the grain B, belongs into the component A. However, the theory
of mixtures assumes that for functions ® 4 equations of motion hold true, which
have the form similar to laws of conservation. When the material derivation (5.8)

1s carried out, the expression
& k_k Py -
Dy =< UAT 408, > (53)

is obtained. Generally it is not possible to give to this equation the significance of a
balance equation. In fact, such an assumption is again a constitutive relation. Such
assumption is used for derivations of constitutive relations for granular materials in
(Goodman and Cowin, 1972). Moreover, the existence of entropy is assumed in this
paper, as well as, from the second thermodynamic principle, the Duhem-Clausius
inequality, the limiting conditions for constitutive relations are derived, as it is usual
in rational thermodynamics. As it has been noted before, the entropy cannot be
defined simply by averaging the microscopic equations. Even the thermodynamic
axioms themselves do not guarantee the existence of entropy and it remains therefore
a question, whether the entropy can be introduced for granular materials at all. This
problem is discussed in the following Section.

6. GRANULAR MATERIALS AND THERMODYNAMICS

In this part, the procedure, which leads, in thermodynamics to the definition
of absolute temperature and entropy, will be applied to granular materials. The
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procedure is described in (Kvasnica, 1965). It is assumed, in thermodynamics, that
the state of a system is determined by the entirety of all external conditions, in
which the studied system occurs, and by the entirety of its independent properties.
Thus, 1t 1s assumed that the state of a system is determined by the entirety of all
its external and the independent internal parameters. Obviously, the number of
external and independent internal parameters has to be assessed, for given system,
empirically.

The first thermodynamics axiom: Each macroscopic system; which appears, since
a certain moment ¢ = tg at given temporally constant external conditions unavoid-
ably attains the so-called state of thermodynamic equilibrium, where macroscopic
processes and changes do not exist any longer. At the state of thermodynamic equi-
librium, all state parameters have constant values. Whatever additional change of
the macroscopic state, after formation of thermodynamic equilibrium, is possible
only by a new external intervention. Let this axiom be considered well checked
experimentally also for granular materials.

A thermally homogeneous system at the state of thermodynamic equilibrium will
be investigated now. It should be noticed that as a thermally homogeneous system
such a system is considered, where there do not exist any adiabatically isolated
parts and a heat exchanges between whatever parts of the system 1s thus possible.
The second thermodynamics axiom reads as follow: The state of thermodynamic
equilibrium of the thermally homogeneous system is unambiguously determined by
set of external and one internal parameter, for which the energy of system may
be chosen. All others parameters of this system can be expressed as functions of
external parameters and energy of the system. This axiom enables to us introduce,
in a thermally homogeneous system at the state of thermodynamic equilibrium, an
experimental temperature and the second thermodynamic axiom to be formulated
as follow: At the state of thermodynamic equilibrium of a thermally homogeneous
system all internal parameters are functions of external parameters and temperature
of this system.

In order to satisfy this axiom for granular materials, a sufficient number of ex-
ternal parameters must be chosen to distinguish various systems at the state of
thermodynamic equilibrium. The following external parameters will be considered:
shape of the limiting surface Sy, external force field %, in a N-component sys-
tem, the density of individual components p4 and N -1 material ratios ® 4. Let us
assume that the state of a thermally homogeneous system at the state of thermo-
dynamics equilibrium is unambiguously determined by the temperature and these
parameters.

From the thermodynamic viewpoint the quasistatic processes are important, i.e.
processes leaving the system at any moment in the state of thermodynamic equi-
librium. The state of such a system is unambiguously determined, according to the
second thermodynamic axiom, by instantaneous values of its external parameters
and temperature. It is usually assumed that the external parameters and tempera-
ture of the system can be changed arbitrary in the neighbourhood of each state point
and thus, the quasistatic processes are also reversible ones. For a thermally homoge-
neous system at the state of thermodynamic equilibrium, the existence of absolute
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temperature as an integrating factor of the differential form d@ and existence of
the state function, entropy, can be derived from the above-mentioned property of
quasistatic processes and from the Caratheorory’s formulation of the second ther-
modynamic principle. In fact, the second thermodynamic principle for quasistatic
process is reduced, in this case, to the existence of these two state functions.

However, external parameters and the temperature of the quasistatic process
cannot be changed arbitrary in granular materials. This can be seen, for example,
from the experiment with the compression of sand: the sand in a vessel can be
compressed, but not expanded. Consequently, for granular materials, the second
thermodynamic principle does not result in the existence of an integration factor of
differential form d(Q, and thus neither of temperature and entropy. It is impossible,
for granular materials, to reduce the second thermodynamic principle for reversible
processes to existence of absolute temperature and entropy of the system. This is
the reason, why the procedure known from rational thermodynamics, which leads
to restriction of constitutive relations and which still uses the entropy, 1s virtually
useless for granular materials.

7. CONCLUSION

The method of averaging, used in this paper, is very simple and should only prove
that the description of granular materials by mean values can be transformed into
a form, very similar to the description of continuum. Moreover, it explains, which
constitutive relations in the theory have to be specified from experiments. However,
it is quite obvious that this theory cannot yield constitutive relations because, when
specifying the macroscopic variables, the microscopic systems corresponding to the
same values of macroscopic variables, can develop differently. It would be therefore
more adequate, even if much more difficult, to approach the problem of description
of granular materials statistically. This would mean not to investigate a single
microscopic system, as it has been done here, but the entire set of microscopic
systems with similar macroscopic properties. To this purpose, it would be, of course,
necessary to define adequately the probability space and investigate, within it, the
distribution of probability. The fact that we did not succeed to define the entropy
in the same way as in thermodynamics, proves, that the distribution of probability
will not be so simple as in thermodynamics. However, I am convinced that only
such a statistical description could yield not only macroscopic equations of motion,
but also constitutive relations for granular materials.
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POPIS ZRNITYCH MATERIALU POMOCI PRUMERNYCH HODNOT

Ondiej] Navraiil

V pfirodé se velmi Casto vyskytujl materidly, které lze v dobrém ptibliZeni povaZovat za materidly
zrnité. V ¢&lanku je popsidna metoda stfedovani, kterd popis zrnitého materidlu, mikroskopicky
popis, prevadi na popis zrnitého materidlu pomoci rovnic mechaniky kontinua, makroskopicky
i:»opis, Tato metoda vyuzivd stfedovani mikroskopickych rovnic pfes né€jaky objem a ¢asovy inter-
val. Stfedni hodnoty mechanickych a termodynamickych veli¢in definuji tak, abych ziskal rovnice
mechaniky kontinua. BohuzZel toto stfedovani nedavd zadné podminky na konstitutivni vztahy
pro zrnité materidly. Ty je p¥i takovém stfedovani nutné uréit empiricky. Déle analyzuji pro zr-
nité materialy pojem absolutni teploty a entropie z hlediska obecnych postulatd termodynamiky.
Touto analyzou dospivam k zavéru, Ze tyto veliéiny nelze dobfe pro zrnité materidly definovat.
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