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ABSTRACT. The author explains, in this paper, that if the average values of density, 

velocity, stress tensor, etc. are adequately defined for granular materials,these average 

quantities fulfill the continuum mechanics equations. On the other handl such an 

averaging does not yield constitutive relations, which have to be specified empirically. 

It is also shown that the method known from thermodynamics cannot be used to 
clefine, for granular materials, the state functions, such as the absolute temperature 
and entropy. 
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1. INTRODUCTION 

In the nature, there occur frequently materials, which can very well be approxi­
rriated by a granular material consisting of individual particles, grains, which them­
selves behave as a continuum. The description of such material by describing the 
behaviour of individual grains, the microscopic description, is practically unfeasi­
ble, because a large number of equations of motion had to be solved for individual 
grains and, in addition to that, we would have to know the initial ano bound­
ary conditions. The description of a granular material is therefore approximated 
by continuum mechanics ; I shall denote this procedure , for granular materials, as 
the macroscopic theory. In this paper, I want to deal with the problem, how the 
microscopic quantities (quantities describing individual grains) are related to the 
macroscopic ones (quantities describing the material as a whole). The macroscopic 
quantities will be defined as certain mean values of the microscopic quantities so to 
satisfy the motion equations known from continuum mechanics, i.e. the equation 
of continuity, equation of conservation of momentum, equation of conservation of 
moment of moment um and equation of conservation of energy. 

In order to get, in continuum mechanics, a closed system of equations, we should 
also set the constitutive relations. However, the used method of definition of macro­
scopic quantities does not give constitutive relations. We must therefore de termine 
them empirically instead of finding them from relations between macroscopic and 
microscopic quantities. Thermodynamics (Truesdell, 1984) plays an important role 

I 
in the theory of constitutive relations. I will show that, for granular materials, it is 
impossible to introduce, as sta.te function in the way known from thermodynamics 
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(e.g. Kvasnica, 1965), the entropy and the absolute temperature. In order to con­
strud, for granular materials, a theory similar to thermodynamics, we must accept 
the statistical description of granular materials. However, such a description differs 
in principle from the deterministic description, used in this paper. Nevertheless, 
I think that the statistical description of the granular material is the only one that 
can yield both the equations of motions and constitutive relations. 

2. EQUATIONS DESCRIBING THE MOVEMENT OF INDIVIDUAL GRAINS 

Individual grains, Ba, will be described by Lagrange's coordinates Ea and the 
grain boundary will be denoted by Sao Let the motion of grain be defined by C= 
mapping Xa : Ba X IR. ---t lR.3, which I will write as 

(2.1  ) 

It is assumed, for this mapping, that there exists, for each t E IR. , an inverse mapping 
x-;;/ , which is also infinitely differentiable. In fad, the mapping Xa determines the 
position of the point Ea of the grain Ba at time t. 

For each grain Ba, I define the deformation gradient F�k(Ea, t) by relation 

(2.2) 

for which Ja = det Fa i- O holds true. It results from the continuity Fa that the 
coordinates E� can be chosen in the way to satisfy always Ja > O. Such a choice of 
coordinates will be assumed herein after. 

Further, I define the velocity of motion for each grain Ba by the relation 

Similarly, I define the acceleration as 

It is then evident that it holds 

resp. 

resp. 

i -i -1 
Va = VaO Xat . 

l . t 8v� 8v� k 
aa = Va = ----ať + a�k Va , 

(2.3) 

(2.4) 

(2.5) 

where I use the summation convention and the dot over the V denotes here after 
the material derivation. 

Further, the density Pa(�, t) is defined, which is related to the density Pa (Ea ) in 
Lagrange's coordinates by 

(- J-1) -1 
Pa = Pa a 0Xat· 
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It is evident, from this definition, that the density of grain Ba at time t can differ 
from zero only for � E Xat(Ba) = Ba(t). Further on, I will use the convention that 
all quantities related to grain Ba have at the time t a support, which is a subset af 
Ba(t). Thus, I define them by zero except for Ba(t). This convention will be used 
even for the veloci ty v � and the acceleration a�. 

A consequence of the fad that j5 is a function only the coordinates Ea and not of 
the time and of (2.6), is the equation of continuity. This equation is an expression 
of the mass balance and has the form 

(2.7) 

This equation as well as the other equations in this Section have to be understood 
as equations of generalized functions. That means that is holds, for each function 

cp E Cgo(lR4), i.e. an infinitely differentiable function with a compact support 

The validity of this equation is easily verified, if, instead of �k the value of E� 
defined by (2.1) and (2.6) is used and the independence of the integration range on 
time t is introduced. 

The law of conservation of moment um can be expressed, by distribution equa­
tions, as 

(2.8) 

where bi is the density of external body force per unit mass, Tik is the stress ten­
sor within the grain Ba(t) and f� Ís the surface density of external force affecting 
the grain Ba(t), whose support is limited to the boundary Sa(t) of this grain. This 
equation involves both the motion equations within the grain and the boundary con­
ditions given by the distribution of forces on the grain surface. The validity of this 
equation is checked, similarly as for (2.7), by transition to Lagrange's coordinates. 

The law of conservation of the angular moment um for the grain Ba gives the 
condition of symmetry of the stress tensor, i .e. 

Tik = Tki a a' (2.9) 

Another of the pertinent and generally valid physical law is the energy balance 
law. Considering the heat fJ.ow and thermal sources, the law of conservation of 
energy for the grain Ba acquires the form of 

(2.10) 

7 



where Ea is the density of total grain energy per unit mass, fa is the density of 
thermal sources in Ea(t) per units mass and time, O"a is the surface density of 
thermal sources per unit time, and h� is the heat flux vector in the grain. When 
the density of internal energy is introduced by relation éa = Ea - �v� v� and (2-7)­
(2.10) are applied, the following equations are obtained 

(2.11) 

where 

(2.12) 

Finally the Clausius-Duhem inequality should hold for each Ba(t) grain, which 
expresses, in continuum mechanics, the second thermodynamic law, i.e. 

(2.13) 

where 1Ja is the entropy per unit mass in the Ba(t) grain and Ba > O is the absolute 
temperature. The inequality (2.13) means that, if the left si de is applied to a 
non-negative function from Co, a non-negative number is obtained. 

As generally known, constitutive relations are to be added to these equations. 
How limited the constitutive relations are, is illustrated, e.g., by rational thermo­
dynamics (Truesdell, 1984). I will not discuss here these constitutive relations, but 
I will assume that if bi, r a, f� and O" a are given as functions of �k and t and functions 
Pa, X�(.Ea, to), v�(�, to) and ()(�, to), the motion of the grain Ba and the temperature 
distribution in that grain are unambiguously determined for t 2:: to. 

3. EQUATIONS DESCRIBING THE MOTION OF A SYSTEM OF PARTICLES 

Considering now the system of more particles, equations discussed in Section 2 
must hold for each individual grain. In addition to these equations, the grain mot ion 
must also satisfy further conditions, which result from bonds between individual 
grains. I will assume that motion takes place within the area limited by surface 
So. The surface So should be defined more precisely by the equation 'ljJ(�, t) = O 
and the motion should take place within the area 'ljJ(t, t) � O. In such a case, the 
function should satisfy, in addition to equations quoted in Section 2, the relations, 
which guarantee that the grain motion takes place within the area limited by the 
surface So(t) and that the grains do not penetrate each other. It should therefore 
hold, for each grain primarily that 'ljJ(Xa CEJa , t), t) š O. Moreover, the points for 
which the equality holds, must fall to the boundary Sa(t). If SaO(t) = Sa(t) n So(t) 
is denoted, it must hold, for these points 

. . . ( l l ) l <O 
Va - Vo naO 
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where v� is the velocity of motion a point of the surface So(t) and n�o is the vect.or 
of external norma1to the surface of grain BaCi) at the contact point withthe surface 
SoCt). Let the forces acting on this grain on the contact surface SaO(t) are denoted 
by f�D' Similarly, let the thermal sources' are denoted by (T aD. 

Since the grains do not penetrate each other, it should hold, for a # b, 

(3.2) 

Moreover , it must hold for aU point from Sab(t) 

(3.3) 

where n� b is the external normal to the surface Sa(t). Let the forces acting on this 
boundary of the grain Ba(t) are denoted by f�b and the thermal sources by Jab. 
Then the surface force on the grain Ba (t) will be gi ven by the relation 

f16s" = � f�b8s"b + f�08s"o 
b=l=a 

and the surface thermal sources for this grain are 

Ja6Sa = LJabb'Sab + Jaob'sao' 
b=l=a 

(3.4) 

(3.5) 

If on the contact face of two grains Sab there are no other surface forces acting 
except the mutual forces between Ba andBb (for example there does not exist any 
surface tension) , it must hold that 

(3.6) 

which is the Newton's third law of motion. Similarly, if the thermal sources on the 
surface are caused exclusively by the mechanical force f�b' the expression 

Jab + Jba = O (3.7) 

must hold . However, for the description of the whole system, the forces fab and the 
thermal sources J ab have general1y to be specified by constitutive relations. 

We shall now assume that the constitutive relations are expressed by means of 
functions X�, v� and Ba or, eventually, by their derivations. It is further assumed 

that, ií there are specified the moti on of li miting surface SoC t), temperature distribu­
tion Bo (t) on this surface, densi ty of external forces bi, intensity of external thermal 

sources fa and initial state of aU grains, i.e. X�(I;a, to), v�(�, to) and ea (�, to), the 
mot ion of aU grains for t > to and the temperature distribution within these grains 
are unambiguously determined. 
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4. MEAN VALUES AND THEIR EQUATIONS 

As it has been already noted in the lntroduction, the states of individual grains 
are usually un accessible to experim ental m e asurem ents. We are, in fact, measuring 
only certain mean values of corresponding quantities. I am defining, in this Section, 
mean values by means of convolution with a certain non-negative function, whose 
integral equals to one. I can use, in principle, any non-negative function, such 
one with existing needed integrals. Here, I will use a function from Cgo(lR4) in 
order to get infinitely differentiable functions. If we use a function with a lower 
number of derivations, we would get, of course, functions with less derivations. One 
such case is quoted in (Drew, 1971). Another possibility is to use the convolution 
with a spatial function only, which may be adequate if the considered functions are 
sufficiently continuous functions of time. 

Let the function t.p E COX'(jR4) be given such that cp � O and 

Let the bounded functions Fa(x, t) be given, which are measurable in Lebesquian 
sense and let 

Fat = Fa(., t) : jR3 ----t JR 
be defined. Then, it holds for each t E JR that the supp(Fat) C Ba(t). Then I'define 

( 4.1) 

Functions thus defined are, for. a fixed t, from COX'(jR3) and as functions of aH four 
variables they are infini tely. differentiable. 

First, the mean densi ty p is defined by relation 

p(x, t) =< P > (x, t) (4.2) 
and for aH (x, t), where p(x, t) #- 0, the mean velo city Vi by 

pVi(x, t) =< pvi > (x, t). (4.3) 
The mean velo city Vi is not defined in points with zero density. Outside the 

support pit may be defined by zero. However, it is, in general, impossible to define 
additionally the functions Vi at the boundary of supp(p) so as to be continuous. 
Nevertheless, as the velocities v� are bounded for each a, there is on int(supp(p)) 
also a bo unded Vi, because 

IpVil= L r PaV!(�,T)t.p(X-�,t-T)d3�dT < 
a J'iR4 

:S L J. Palv�(e, T)I t.p(x - (, t - T) d3� dT ::; Kp. 
a JR4 
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Moreover, it is evident from the de:finition of Vi that it is in:finitely differentiable 
on this set. If we confine ourselves to this set, then the equation of continuity 

ovk 
P + P oxk = O (4.4) 

must hold. This is evident from (2.7), when we multiply this equatioh by the 
fundion cp(x - ( , t - r) , integrate and sum it up over a. 

When the same procedure is applied to (2.8) 

results, where 

and 
Tik =< Tik 

_ pvivk > _pViVk =< Tik 
_ puiuk >, 

where we introduced the relative .velocity u� by 

Using (3.4) it is possible to write the (4.7) in a more suitable form as 

where 

and 

( 4.6) 

( 4.7) 

( 4.8) 

( 4 .9) 

(4.10) 

It is evident, from these definitions, that Fixt are forces by which the boundary So 
affeds the body's interior and Fint are internal forces. If (3.6) holds, Fint vanish, 
but ii there is a surface tension between individual grains, this fad about Fint 
cannot be asserted a priori. 

By averaging the (2.9) for angular momentum, the only result can be obtained 
that the stress tensor, defined in (4.8) is symmetrical, i.e. 

Tik = Tki . (4.11 ) 
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Rather than by dired averaging of the relation (2.11) for éa , then mean values 
of the density of internal energy will be defined as 

It can be seen from this relation, that also the kinetic energy of relative mot ion 
of individual grains is included int-o the system's internal energy. The following 
relation can be obtained by averaging of relevant equations: 

where 

and 

. TikL R S 8Hk 
pe = ik + P + - 8xk ' 

pR =< p(biui + r) > , 
S =< (put + (5)8s > ,  

Hk = < hk + PéUk + �puiuiuk _ Tikui > 

1 [8Vi 8Vk 1 
Lik = 2" 8xk + 8xi . 

(4.13) 

(4.14 ) 

(4.15) 

(4.16) 

( 4.17) 

Using the same procedure, which led from the equation (4.7) to (4.10), the expres-
SlOn 

s = Sint + Sext ( 4.18) 
is obtained, where 

and 

These expression have the same interpretation as similar ones for force. 
It is quite natural to expect that the inequality for mean entropy will be derived 

accordingly. However, that is not so. It is evident,though, that the inequality for 
quantity PTJ �< PTJ > can be obtained by averaging, but it does not result from 
anywhere that the quantity TJ can be identified with the mean entropy of the entire 
system of grains. This may be seen, e.g. from the fact, that we cannot generally 
succeed to define, by similar averaging, the mean values of the absolute temperab.;'re 
of the system. The problem consists in the fad that the entropy is a quantity defined 
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for the entire set of systems and expresses the statistical properties of this set. For 
one system here discussed, the entropy is not defined at all. The same holds for 
the absolute temperature of the system. In order to be able to introduce these 
quantities, we have to investigate the thermodynamics of the system or describe 
the granular materials by means of statistics of the entire set of systems. 

5. RELATION TO SOME CONSTITUTIVE MODELS 

In the preceding Sedion, the mean values of some interesting quantities have 
been den.ned for a granular material with the intention to develop similar motion 
equations to those holding for usual continuum. System of these equations has 
yet to be completed by constitutive relations, which, however, do not result from 
this theory. Obviously, the dennition equations from preceding Section cannot be 
used as constitutive relations, even if we introduce into them constitutive relations 
for material of individual grain, which we consider known, since they are supposed 
interconned the macroscopic variables, while the definition relations connect the 
macroscopic quantities with certain functions of microscopic variables. It is evídent 
from the definition of macroscopic quantíties that we would need to exclude, from 
den.nition equations, the mean values of microscopic quantities and thus obtain re­
lations between macroscopic quantities only. However, this is generally impossible. 
In principle, new mean quantities can be defined with defined physical significance 
and it can be tried to use these qU<tntities for obtaining constitutive relatiolls. How­
ever, this procedure cannot be consider too promising, either. The author himself 
is considered that such theory cannot med with results in the form of constitutive 
relations. 

U nlike the usual mot ion equatíons for continuum, our motion equations include 
terms Fint and Sínt, which characterize the interadion within the system of grains. 
These quantities do not depend on external fields and represent therefore the prop­
erties of material. They should be therefore specified by constitutive equations. 
The possibility is suggested to consider Fint the divergence of some tensor field Aik, 
i .e. to assume 

. 8Aik 
Filnt = 8xk 

and define a new "stress" tensor by 

Tik = Tik + A ik . 

(5.1 ) 

(5.2) 

In such a case , the equation (4.5) will be transformed, within the body, into the 
usual equation of continuum mechanics and we could hy to find the constitutive 
relations for Tik. However, in such case the "shess" tensor Tik is not necessarily 
symmetric , because, as it results from (4.11), the law of conservation of the angular 
momentum requires only the symmetry of Tik. The assumption of non-symmetry 
of the stress tensor appeared already in some formulation of the constitutive rela­
tions for geomaterials, but there, the non-symmetry is explained by force moment, 
originating from the rotation of individual grains. Such an approach differs, how­
ever, substantially from the author's cODcept. There caD be put a general questioD, 
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whether there exists ally choice of the "stress" tensor Tik, which vvould be physi­
cally justifiable, i.e. whether there exists an experiment, which would decide, how 
to choose correctly an Aik fulfilling (5.1) or whether it would not be more natural 
to determine constitutive relations for F/nt. 

Let us come back to the ambiguity of the stress tensor in (4.8). This is especially 
important in the case, when F/nt vanishes, because, in such a case, the stress tensor 
plays the decisive part in (4.5). This happens when there isn't any surface tension 
between grains or when this term can be neglected, which will be a frequent case. 
Because only the divergence of the stress tensor is specified in the equation (4.5), 
it is possible to add to the stress tensor an arbitrary tensor Aik, for which 

(5.3) 

holds. It can be therefore chosen 

(5.4) 

where Aik fulfills the eq.(5. 3). Even such a choice of the stress tensor can involve its 
non-symmetry. However, when the stress tensor form (5.4) is used in the equation 
for energy, we get 

where 

. -k . -ikaVl aH pe = T axk + pR + S - axk ' (5.5) 

(5.6) 
It may be seen, from this relation, that in the choice of the stress tensor (5.4), the 
vedor of the heat fl.ux depends explicitly on the average velo city. As the heat fl.ux 
vedor is specified by a constitutive equation, the constitutive relations woulcl have 
to be dependent, in such a case, on the velo ci ty of the system. This is a dispute 
about the principle of objectivity of constitutive relations, which is required by 
rational thermodynamics. It will be therefore assumed that the mean stress tensor 
is defined by (4.8) and thus being symmetric. 

It should also be notecl that we did not at all define the strain tensor, which plays 
an important role in many constitutive models. This is caused by the fad that I use, 
for the description of the macroscopic system, Euler's coordinates and consequently, 
I choose, for the reference system, the instantaneous state of the body, where the 
strain tensor equals to identity. Also another reference system could, of course, be 
defined, but this would result only in another equivalent description of the system. 
In granular materials there does not exist any physically relevant reference system 
with permanent zero stress as for the elastic materials. It is therefore more natural 
to look out, for granular materials, for incremental constitutive equations. It would 
be interesting to compare how the otherwise suggested constitutive incremental 
equations for granular materials agree with definition equations of this theory. To 
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this purpose, the time derivation of the stress tensor from the equation (4.8) should 
be carried out. After long algebra, the following equation is obtained 

Tik + TikVr + TirVk + TkrVi = ,r ,r ,r 
= ...:.. < p (biuk + bkui) > - < (ruk + Jkui) 65 > + 

+ �8k < puiukur _ Tikur _ Tiruk _ Tkrui > + 
uX 

However, computation - compared with constitutive method - is so intricate, that 
no reasonable results could be obtained. 

Another very similar theory is the theory of multicomponent mixtures, known 
from rational thermodynamics (Truesdell, 1984). It can be seen easily that the 
derivation of motion equations in this theory and in the theory or mixtures is very 
similar. The multicomponent mixture introduces, additionally, the material ratio 
q, A for each individual component A. In our theory the ťollowing expression corre­
sponds with this ratio 

w here vais the characteristic function of the set Ba (t) and A is the set of all such 
instances, where the grain Ba belongs into the component A. However, the theory 
of mixtures assumes that for functions <l? A equations of motion hold true, which 
have the forrn similar to laws of conservation. When the material derivation (5.8) 
is carried out, the expression 

(5.9) 

is obtained. Generally it is not possible to give to this equation the significance of a 
balance equation. In fact , such an assumption is again a constitutive relation. Such 

assumption is used for derivations of constitutive relations for granular materials in 

(Goodman and Cowin, 1972). Moreover, the existence of entropy is assumed in this 
paper, as well as, from the second thermodynamic principle, the Duhem-Clausius 
inequality, the limiting conditions for constitutive relations are derived, as it is usual 
in rational thermodynamics. As it has been noted before, the entropy cannot be 
defined simply by averaging the microscopic equations. Even the thermodynamic 
axioms themselves do not guarantee the existence of entropy and it remains therefore 
a question, 'whether the entropy can be introduced for granular materials at all. This 
problem is discussed in the following Section. 

6. GRANULAR MATERIALS AND THERMODYNAMICS 

In this part, the procedure, which leads, in thermodynamics to the definition 
of absolute temperature and entropy, will be applied to granular materials. The 
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procedure is descrihed in (K vasnica, 1965). It is assumed, in thermodynamics, that 
the state of a system is determined by the entirety of aH external conditions, in 
which the studied system occurs,'and by the entirety of its independent properties. 
Thus, it is assumed that the state of a system is determined by the entirety of aH 
its external and the independent internal parameters. Obviously, the number of 
external and independent internal parameters has to be assessed, for given system, 
empirically. 

The first thermodynamics axiom: Each macroscopic system; which appears, since 
a certain moment t = to at given temporally constant external conditions unavoid­
ably attaiils the so-called state of thermodynamic equilibrium, where macroscopic 
processes and changes do not exist any longer. At the state of thermodynamic equi­
librium, a11 state parameters have constant values. Whatever additional change of 
the macroscopic state, after formation of thermodynamic equilibrium, is possible 
only by a new external intervention. Let this axiom be considered well checked 
experimentally also for granular materials. 

A thermally homogeneous system at the state of thermodynamic equilibrium will 
be investigated now. It should be noticed that as a thermally homogeneous system 
such a system is considered, where there do not exist any adiabatically isolated 
parts and a heat exchanges between whatever parts of the system is thus possible. 
The second thermodynamics axiom reads as follow: The state oí thermodynamic 
equilibrium of the thermally homogeneous system is unambiguously determined by 
set of external and one internal parameter, for which the energy of system may 
be chosen. All others parameters of this system can be expressed as functions of 
external parameters and energy of the system. This axiom enables to us introduce, 
in a thermal1y homogeneous system at the state of thermodynamic equilibrium, an 
experimental temperature and the second thermodynamic axiom to be formulated 
as follow: At the state of thermodynamic equi1ibrium of a thermally homogeneous 
system all internal parameters are functions of external parameters and temperature 
of this system. 

In order to satisfy this axiom for granular materials, a sufficient number of ex­
ternal parameters must be chosen to distinguish various systems at the state of 
thermodynamic equilibrium. The following external parameters will be considered: 
shape of the limiting surface So, external force field bi, in a N-component sys­
tem, the density oí individual components PA and N -1 material ratios <I> A. Let us 
assume that the state oí a thermally homogeneous system at the state ofthermo­
dynamics equilibrium is unambiguously determined by the temperature and these 
parameters. 

From the thermodynamic viewpoint the quasistatic processes are important, i.e. 
processes leaving the system at any moment in the state of thermodynamic equi­
librium. The state oí such a system is unambiguously determined, according to the 
second thermodynamic axiom, by instantaneous values of its external parameters 
and temperature. It is usually assumed that the external parameters and tempera­
ture of the system can be changed arbitrary in the neighbourhood of each state point 
and thus, the quasistatic processes are also reversible ones. For a thermally homoge­
neous system at the state of thermodynamic equilibrium, the existence of absolute 
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temperature as an integrating fador of the differential fonu dQ and existence of 
the state fundion, entropy, can be derivecl from the above-mentionecl property of 
quasistatic processes and from the Caratheorory's fonnulation of the second ther­
modynarnic principle. In fact, the second thermodynamic principle for quasistatic 
process is reduced, in this case, to the existence of these two state fundions. 

However 1 external parameters and the temperature cf the quasistatic process 
cannot be changed arbitrary in graimlar materials. This can be seen, for example, 
from the experiment with the compression of sand: the sand in a ves sel can be 
compressed, but not expanded. Consequently, for granular materials, the second 
thermodynamic principle does not result in the existence of an integration fador of 
differential form dQ, and thus neither of temperature and entropy. It is impossible, 
for granular materials, to reduce the second thermodynamic principle for reversible 
processes to existence of absolute temperature and entropy of the system. This is 
the reason, why the procedure known from rational thermodynamics, which leads 
to restriction of constitutive relations and which stilI uses the entropy, is virtually 
useless for granular materials. 

7. CONCLUSION 

The rnethod of averaging, used in this paper, lS very simple and should on ly prove 
that the description of granular materials by mean values can be transformed into 
a form, very similar to the description of continuum. Moreover, it explains, which 
constitutive relations in the theory have to be specified from experiments. However, 
it is quite obvious that this theory cannot yield constitutive relations because, when 
specifying the macroscopic variables, the microscopic systems corresponding to the 
same values of macroscopic variables, can develop differently. It woulcl be therefore 
more adequate, even if much more difficult, to approach the problern of description 
of granular materials statistically. This would mean not to investigate a single 
microscopic system, as it has been done here, but the entire set of microscopic 
systems with similar macroscopic properties. To this purpose, it would be, of course, 
necessary to define adequately the probability space and investigate, within it, the 
distribution of probability. The fact that we did not succeed to define the entropy 
in the same way as in thermodynamics, proves, that the distribution of probability 
will not be so simple as in thermodynamics. However, I am convinced that on ly 
such a statistical description could yielcl not on ly macroscopic equations of motion, 
but also constitutive relations for granular materials. 
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POPIS ZRNITÝCH MATERIÁLŮ POMOCÍ PRŮMĚRNÝCH HODNOT 

Ondřej Navrátil 

V přírodě se velmi často vyskytují materiály, které lze v dobrém přiblížení považovat za materiály 

zrnité. V článku je popsána metoda středování , která popis zrnitého materiálu, mikroskopický 

popis, převádí na popis zrnitého materiálu pomocí rovnic mechaniky kontinua, makroskopický 

popis. Tato metoda využívá středování mikroskopických rovnic přes nějaký objem a časový inter­

val. Střední hodnoty mechanických a termodynamických veličin definuji tak, abych získal rovnice 

mechaniky kontinua. Bohužel toto středování nedává žádné podmínky na konstitutivní vztahy 

pro zrnité materiál y. Ty je při takovém středování nutné určit empiricky. Dále analyzuji pro zr­
nité materiály pojem absolutní teploty a entropie z hlediska obecných postulátů termodynamiky. 

Touto analýzou dospívám k závěru, že tyto veličiny nelze dobře pro zrnité materiály definovat. 
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