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ABSTRACT. In connection with the determination of deformation changes of the
surface of rock models, loaded by centrifugal forces in a special centrifuge, an en-
tirely automatized contactless survey method, based on the application of analytical
stereophotogrammetry, has been developed. The method enables the spatial displace-
ments of identical survey points between two arbitrary deformation phases, which
were documented by photogrammetric measurement always after removal of the rock
model from the centrifuge and its location in adequate position for measurements,
to be determined. It is not necessary, for the evaluation of such measurements, to
define a spatial control point field in the neighbourhood of the object, while preserv-
ing a high determination precision of deformation displacements. Digital models of
deformation surfaces can be constructed from these discrete data, and these can be
further effectively and for the instruction’s sake illustrated by means of the author’s
application software, formerly developed. The application of this method is entirely
general.

INTRODUCTION

This surveying problem had to be dealt with in connection with the solution of the
slope failure of spoil banks in the Northon- Bohemian coal district. The problem
has been investigated by means of rock models, whose loading by gravitational
special centrifugal forces, generated in a special centrifuge, originally constructed
for the solution of geotechnics problems by means of the so-called frozen photoelastic

models (Malek 1977).

1. SCHEME OF THE MODEL EXPERIMENTS.

Fig.1 illustrates the construction diagram of the used centrifuge, its overall di-
mensions, the size of the “cell”, where the rock model was situated, as well the
location of this cell at stillstand of the centrifuge. It should be added to these data
that the generated centrifugal force can be continuously changed up to its value of
200-multiple of the earth’s gravity. The centrifuge does not enable the deformations
to be observed visually during the rotation, so that deformation measurements of
the model body could not be effectuated before stopping the centrifuge and removal
of the steel cell.
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FI1G 1. Scheme of centrifuge

1: reinforced-concrete trough, 2: direct current generator, 3: asynchronous motor,
4: gearbox, 5: centrifuge arm, 6: centrifuge cabin, 7:revolving cradle, 8: cell

2. METHOD OF DEFORMATION MEASUREMENTS OF THE ROCK MODEL.

Due to necessity of application of a contactless measurement methods and to the
requirement of complex assessment of deformations within the entire model surface
range, the so-called normal case of the close-range analytical stereophotogramme-
try has been chosen as the surveying method. The layout of such measurement is
illustrated in Fig.2. The steel cell with the rock model within it, has been always
placed — after removal from the centrifuge — so that it took up approximately
the same position at the distance of about 1,2m from the base of the stereopho-
togrammetrics system Zeiss: “DOPPELAUFHANGUNG” 2x UMK 10/1318. The
deformation measurement in a certain phase of the model experiment consisted of
providing a classic stereophotogrammetric pair of pictures of the steel cell with the
model (Fig.3) at the linear base of 320mm. The automatized stereocomparator
"STECOMETER” was used for the measurement of the picture’s coordinates.

3. EVALUATION OF MEASUREMENTS AND DETERMINATION OF DEFORMATIONS.

The deformations of the rock model between two experimental phases were de-
fined as changes of the spatial position of a certain number of ”survey points”,
adequately chosen on the model surface. The selection of these points was aimed at
an optimum definition of the deformation course on the entire model surface. This
could be made on the basis of stereoscopical observation of pictures, which are doc-
umenting both phases of the experiment and appertain always to the same, either
the left or the right photogrammetric position. The stereoscopic observation of this
couple of pictures — pictures on the so-called time basis — produces, provided the
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FiGg 2. Scheme of photogrammetric measurements

Fi1ac 3. The rock mass model in cell
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model surface contains a sufficient quantity of spot object (mass grains, colour spots
etc.), a stereoscopic model of the ”deformation surface”. The shape of this surface
illustrates very well the model deformations and their character. The selection of
the above-mentioned points is then made so that it would define, in the best way,
the morphology of this deformation surface, much like in the case of evaluation of
*deformation measurements on the planar objects (Vencovsky 1989).

The mentioned changes of the spatial positions of survey points are derived as
differences of their coordinates, defined within the common rectangular spatial coor-
dinate system XY Z, which remains relatively steady towards the deforming model
a which should thus be defined on the structure of the steel cell. Deformations of
this cell due to the centrifugal force are not assumed.

Photogrammetric measurements described in the preceding paragraph determine
the positions of all survey points within the system of so-called photogrammetric
coordinates zyz, which is defined by the position and setting of the stereopho-
togrammetric equipment and which is relatively steady in relation to the position-

ally unsteady XY Z system.

The problem of evaluation of photogrammetric measurements within each of
the deformation phases of the model experiment consists in finding the so-called
transformation key between the systems XY Z and zyz and in transforming, by
means of this key, the positions of all survey points from the zyz system into the

system XY Z.
This is made by means of the known expressions:

X = [(:I? . :Eo).kl + (y — yo).k‘g + (Z = Zo).kg].ez
Y: [(x—:co).k4+(y—fyo).k5+(z—zo).k6].ey (18,)
Z =[(z—z0).k7+ (y — yo)-ks + (2 — 20).ko].€

which include also the differing scales for e;, ey, e, of transformed coordinates
in all the three axes of the system XY Z. The above mentioned formulae can be

transcribed into the forms of:

X=A+zK, +y.K;+2K;
Y =8B + SL‘I{4 + y.[\"5 + Z.I\'FG (1b)
Z=C+z.K7:+y.Ks+ 2Ky

where
K; = ke (1=1,2,3)
K; =k;.e, (1 =4,5,6) (2)
K; = kie, (:=17,8,9)

and which become the “mediating” functions for the calculation of 12 constants of

the transformation key according to the rules of the adjusting computation.
This computation can only be realized, if coordinates of more than 4 control

points marked on the steel cell structure will be known. Coordinates of these points
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can be determined either by direct measurements by means of mechanical engineer-
ing gauges or tools, as well as by the application of a generally known geodetical
method. However, this complicates considerably the realization of the whole de-
formation measurement. In such a case it is quite convenient, from the viewpoint
of the required precision, when the XY Z coordinates of control points are derived
from their photogrammetric coordinates zyz, obtained during bearing of each de-
formation phase, by the following procedure:

Three control points are chosen on the structure of the steel cell in that way,
that they are situated either in the plane of the bottom or in the plane of the upper
wall (Fig.3, points 1,3,4). This plane becomes then the XY -plane of the spatial
coordinate system XY Z, the beginning of this system being introduced in one of the
chosen point (point 1) and the X-axis being directed towards one of the remaining
points (point 2). The system XY Z is defined as righthanded. Coordinates of all
control points are defined for each 1ieasurement phase, which will give us several
sets of these coordinates. From these sets, a single one is created, in which the
resulting coordinates of control points are derived as arithmetic means.

The orientation of the coordinate system XY Z in relation to the zyz system is
defined by direction cosines k;, ky, k; of the normal vector of the XY plane. Values
of these cosines will be determined from the three linear equations mentioned below,
which are constructed from the photogrammetric coordinates z, y, z of the chosen
three control points:

1. K +y1. Ky + 2. K, = -1
ol 4y Ky +20. K, = -1 (3a)
z3. Ky + y3. Ky + 23. K, = -1

and on the basis of the following relations:

ky = K,.P

ky = K,.P

k,=K,.P (3b)
1

p=

VK + K2+ K?

The spatial coordinates XY Z of the control points are obtained by means of
equations (la), where

e =€y =€, =1

ki = —k,.Q
B, = kz.0

ky =0

ky = —ky. k.0
ks = —kyk,.Q



1
ks = 5 (4)
ke = kg
kgzky
kg =k,
1
L) =

i H

where z,y,z are photogrammetric coordinates of the control point, z¢,yo,z0 are
photogrammetric coordinates of the control point, which has been chosen as initial
point of the XY Z system.

Determination of the above mentioned transformation key at predetermined con-
ditions, i.e. adjustment of twelve transformation constants A, B, X, K; , ..., Kq
by means of mediating functions (1b), is possible in two ways. Each of these ways
must be preceded by preliminary, although not perfectly exact adjustment of these
constants, which will be used for determination of scale coefficients e, e,, e, by
following equations:

er = \/K? + K} + K

ey =/ K} + KZ+ K (5)
€, = \/I 2
derived on the basis of orthogonal relations between direction cosines ki, ... ,kg

and considering the equations (2).

a) Direct adjustment of constants A, B, C, Ky, ..., Ky. Owing to the fact that
in such a case all 12 conditions of orthogonality, which hold true for the elements
of the matrix

ki ko ks
ks ks ke
kv kg ko

should be incorporated into an exact adjustment, this computation leads to the
solution of a system of 24 “normal” equations. These equations are constructed
from linear forms of correction equations, derived from the mediating function (1b)
for small changes of arguments of direction cosines kq, ..., kg. Owing to the
complexity of this adjustment procedure, a simpler method, leading to the solution
of a system of only 6 normal equations, should be preferred.

b) Adjustment by means of Euler angles. If these angles are denoted S, T, U,
the following relations (Necas 1977) hold true between them and the constants
ki,..., k.
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ki = —cosS.cosU —sinS.sinU.cosT

ko =sinS.cosU —cosS.sinU.cosT

k3 = —sinU.sinT

ky = cos S.sinl] —sinS. cosU.cos T (6)
ks = —sinS.sinU —cos S.cosU.cosT

ke = —cosU.sinT

k7 = —sin S.sinT

ks = —cos S.sinT

kg = cosT

Equations (1b) can then be formulated in the forms

X =A+k.(5T,U,z,y,2).e,
Y = B+ £y4(S,T,U,z,y,2).ey (7)
Z =C+6,(5,T,U,z,y,2).e,

and these further transformed into linear functions of small changes dS, dT, dU of
the approximate values of angles S, T', U, computed from preliminarily adjusted
constants K1, ..., Kg on the basis of the following equations, obtained from equa-

tions (6) and (2)

Ky
t = —
gS e
I{;J,.By
te U = 8
BY ST e (8)
]"',
cosT = e
€z

For each photogrammetric point, which participates in the adjustment, the following
correction equations can be constructed

0K 0K . Ok, .
vy = A4 *a—S(fS—!-ﬁdT—l—%—dU—}&
B Oky Ok, Oky
TJy—-B+*5§“dS+ 8TdT+ aUdU-—Y (9)
Ok » 0k, 0K,
, = d dT dtu - Z
v C + 55 S+ 5T 4+ U
in which
Okg . :
55 = [z(sinS.cosU —cosS.sinU.cosT)+
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+ y(cos S.sinU +sin S.sinU. cos T)].e,

Oks . : :
8;’ = [z(cos S.sinU —sin S.sinU.cos T)—
—y(sinS.sinU + cosS.cosU.cosT) — z.cosU.sinT)]es
Ok : : :
5,;’ = (z.sin S.sinU.sinT + y.cos S.sinU.sinT — z.sinU.cos T).e,
Oky : .
o [—z(sinS.sinU — cos S.cosU.cos T)—
—y(cos S.sinU —sin S.cosU. cos T)].e;
0
G’LU%I = [z(cos S.cosU +sinS.sinU.cosT)—
— y(sinS.cosU —cosS.sinU.cosT) + z.cos U.sinT).ey
Oky . . .
a7 = (z.sinS.cosU.sinT + y.cos S.cosU.sinT — z.cosU.cos T).e,
Ok, . . .
59 = (—z.cos S.sinT +y.sinS.sinT).e,
Ok
ou =0
Ok, . )
T = (—z.sinS.cosT —y.cosS.cosT — z.sinT).e,

From the correction equations (9), the system of six “normal” equations is con-
structed by the normal well-known procedure from the adjustant computation and
the solution of this system yields the adjusted unknowns A, B, C', S, T, U. Owing
to the fact, that the linear forms (9) are only an approximate expression for mediat-
ing functions (7), the values of unknowns obtained from this first iteration should be
considered merely their approximate values and the whole computation should be
repeated by second, third, or eventually further iterations. For each iteration, the
sum of all correction squares (9) is determined within the range of all participating
n control points. The definitive adjustment of the unknowns looked for and thus
the termination of the iteration computing corresponds to the situation, when the
minimum of this sum is attained:

n
Z(UI'UI + vy.0y + V;.0;) = min
=1
After obtaining the adjusted angles S, T', U, the constants Ky, ... , Kg are computed
by using equations (6) and (2), which, together with the definitive unknowns A, B,
C, represent the transformation

key, which has been looked for.

4. MEASUREMENT RESULTS AND THEIR PRECISION.

The realization of the described procedure of deformation measurement brought
fairly acceptable results concerning both the obtained precision and the global and
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F1G.4: Graphical representation of deformation measurements

detailed determination of deformation strain of the surface of studied rock models.
The necessary program for automatic computer treatment of all numerical oper-
ations has been designed. The resulting fields of XY Z coordinates of all survey
points from all realized measurements of deformation phases of the model exper-
iment have been configurated and put into the external store of the PC, so that
a digital model of deformations between two arbitrary deformation states of these
experiments could be created and mentioned model further processed by means of
some author’s program for graphical representation of three-dimensional point fields
(Vencovsky 1989).

As far as the precision is concerned, the following table indicates both the mean
errors mx, my, mz, in the derivation of coordinates XY Z of control points by
the above-mentioned method, and also the mean errors mpx, mpy, mpz of the
determination of coordinate components of deformations, 1.e. of the differences of
coordinates of identical survey points. Mean errors my, my, mz were obtained
from the coordinate sets of control points, derived for 5 deformation phases. Mean
errors mpx, mpy, mpz were then determinated from the dispersion variance of
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XY Z coordinates of 36 survey points, assessed by 5-times repeated above-mentioned
deformation measurements of a certain physical model, whose surface has been
subjected to deformation changes.

mx = 0,02mm mpx = 0,05 mm
my = 0,02 mm mpy = 0,05 mm
mz = 0,07 mm mpz = 0,12mm

Figures 4a,b,c illustrate the graphical form of evaluation of deformation measure-
ment between two phases of the model experiment. Figs.4a,b contain the isoline
descriptions of the relief of the investigated physical slope model, in the phase be-
fore and after loading, the Fig.4c represents the component of model deformations,

which lies in the direction of centrifugal forces.

5. CONCLUSION.

The described method of deformation measurement proved completely successful
in connection with the given survey problem, giving the expected and accurate
results. The method is entirely general and has been used lated, with similar success,
also for other deformation measurements in mechanical and civil engineering.
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MERENI DEFORMACI HORNINOVYCH MODELT
ZATEZOVANYCH ODSTREDIVYMI SILAMI

Mailos Vencovsky

V souvislosti s ur¢ovanim deformaénich zmén povrchu horninovych model& zatéZovanych odstfedi-
vymi silami ve specidlni odstfedivce byla vypracovana a plné automatizovidna nekontaktni méficka
metoda zaloZend na uZiti analytické stereofotogrammetrie. Metoda umoZiuje urcovani pros-
torovych posuni identickych mé&fickych bodi mezi dvéma libovolnymi deformadcnimi fazemi, které
byly dokumentoviny fotogrammetrickym mafenim vZdy po vyjmut{ horninového modeiu z odstfe-
divky a po jeho umisténi do polohy umoziujici toto méfeni. K vyhodnoceni provedeného méteni
neni tfeba definovat v okoli objektu prostorové vlicovaci pole bodil, pfi¢emz je zachovana vysoka
prfesnost v ureni deformaénich posund. Z téchto diskrétnich \idaji je moZno zkonstruovat dig-
itadlni modely deformaénich ploch a ty déale zobrazovat pomoci autorova softwaru vyvinutého v

minulosti. Metoda méa zcela obecné pouZiti.
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