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ABSTRACT. In connection with the determination of defol'mation changes of the 
sUl'face of rock models, !oadecl by centrifuga! forces in a specia! centrifuge, an en­
tirely automatized contact!ess survey method, based on the application of ana!ytical 
stereophotogrammetry, has been developed. The method enables the spatial disp!ace­
ments of identica! survey points between two arbitrary deformation phases, which 
were documented by photogrammetric measurement always after remova! of the rock 
model from the centrifuge and its !ocation in adequate position for measurements, 
to be determined. It is not necessary, for the evaluation of such measurements, to 
de:fine a spatiaI controI point :field in the neighbourhood of the object, while presel'V­
ing a high determination precision of deformation displacements. Digita! models of 
deformation surfaces can be constructed from these discrete data, and these can be 
further effectively and for the instruction's sake illustrated by means of the author's 
application software, formerly developed. The application of this method is entirely 
general. 

INTRODUCTION 

This surveying problem had to be dealt with in connection with the solution of the 
slope failure of spoil banks in the Northon- Bohemian coal district. The problem 
has been investigated by means of rock models, whose loading by gravitational 
special centrifugal forces, generated in a special centrifuge, originally constructed 
for the solution of geotechnics problems by means of the so-called frozen photoelastic 
models (Málek 1977). 

1. SCHEME OF THE MODEL EXPERIMENTS. 

Fig.l illustrates the construction diagram of the used centrifuge, its overall di­
mensions, the si ze oť the "cell", where the rock model was situated, as well the 
location of this cell at stillstand oť the centriťuge. It should be added to these data 
that the generated centrifugal force can be continuously changed up to its value of 
200-multiple of the earth's gravity. The centrifuge do es not enable the deformations 
to be observed visually during the rotation, 80 that deformation measurements of 
the model body could not be effectuated before stopping the centrifuge and removal 
of the steel cell. 
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FIC 1. Scheme of centrifuge 

1: reinforced-concrete trough, 2: direct current generator , 3: asynchronous motor, 
4: gearbox, 5: centrifuge arm, 6: centrifuge cabín, 7:revolving cradle, 8: cell 

2. METHOD OF DEFORMATION MEASUREMENTS OF THE ROCK MODEL. 

Due to necessity of application of a contactless measurement methods and to the 
requirement of complex assessment of defon;nations within the entire model surface 
range, the so-called normal case of the close-range analytical stereophotogramme­
try has been chosen as the surveying method. The layout of such measurement is 
illushated in Fig.2. The steel cell with the rock model within it, has been always 
placed - after removal from the centrifuge - so that it took up approximately 
the same position at the distance of about 1,2 m from the base of the stereopho­
togrammetrics system Zeiss: "DOPPELAUFHANGUNG" 2x UMI< 10/1318. The 
deformation measurement in a certain phase of the model experiment consisted of 
providing a classic stereophotogrammetric pair of pictures of the steel cell with the 
model (Fig.3) at the linear base of 320 mm. The automatized stereocomparator 
"STECOMETER" was used for the measurement of the picture's coordinates. 

3. EVALUATION OF MEASUREMENTS AND DETERMINATION OF DEFORMATIONS. 

The deformations of the rock model between two experimental phases were de­
fined as changes of the spatial position of a certain number of "survey points", 
adequately chosen on the model surface. The selection of these points was aimed at 
an optimum definition of the deformation cour se on the entire model surface. This 
could be made on the basis of stereoscopical observation of pictures, which are doc­
umenting both phases of the experiment and appertain always to the same, either 
the left or the right photogrammetric position. The stereoscopic observation of this 
couple of pictures - pictures on the so-called time basis - produces, provided the 
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FIG 2. Scheme of photogrammehic measurements 

FIC 3. The rock mass model in cell 
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model surface contains a sufficient quantity of spot object (mass grains, colour spots 
etc. ) , a stereoscopic model of the "deformation surface". The shape of this surface 
illustrates very well the model deformations and their character. The selection of 
the above-mentioned points is then made so that it would define, in the best way, 
the morphology of this deformation surface, much like in the case of evaluation of 

. deformation measurements on the planar objects (Vencovský 1989). 
The mentioned changes of the spatial positions of survey points are derived as 

differences of their coordinates, den.ned within the common rectangular spatial coor­
dinate system XY Z, which remains relatively steady towards the deforming model 
a \vhich should thus be den.ned on the structure of the steel cell. Deformations of 
this cell due to the centrifugal force are not assumed. 

Photogrammetric measurements described in the preceding paragraph determine 
the positions of all survey points within the system of so-called photogrammetric 
coordinates xyz, which is den.ned by the positíon and setting of the stereopho­
togrammetric equipment and which is relatively steady in relation to the position­
ally unsteady XY Z system. 

Tbe problem of evaluation of photogrammetric measurements witbin each of 

tbe deformation pbases of tbe model experiment consists in Ending tbe so-called 
transformation key between the systems XY Z and xyz and in transforming, by 

means of tbis key) tbe positions of all survey points from the xyz system lnto tbe 

system XYZ. 
This is made by means of the known expressions: 

x = [(x - xo).kl + (y - yo).k2 + (z - zo).k3].ex 

Y = [(x - xo).k4 + (y -:- yo).ks + (z - zo).k6].ey 

Z = [(x - xo).k7 + (y - yo).kg + (z - zo).kg].ez 

(la) 

which include also the differing scales for ex, ey, ez of transformed - coordinates 
in all the three axes of the system XY Z. The above mentioned formulae can be 
transcribed into the forms of: 

where 

X = A + x.Kl + y.K2 + Z.!<3 

Y = B + x.Iú + y.!ú + z.K6 

Z = C + x.K7 + y.!<g + z.!<g 

Ki = ki.ex 

Ki = ki.ey 

Ki = ki.ez 

(i=1, 2, 3) 

(i=4,5,6) 
(i=7,8,9) 

(lb) 

(2) 

and which become the "mediating" functions for the calculation of 12 constants of 
the transformation key according to the rules of the adjusting computation. 

This computation can only be realized, if coordinates of more than 4 control 
points marked on the steel cell structure will be known. Coordinates of these points 
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can be determined either by clirect measurements by means of mechanical engineer­
ing gauges or tools, as well as by the application Ol a generally known geodetical 
method. However, this complicates considerably the realization oí the whole de­
formation measurement. In such a case it is quite convenient, from the viewpoint 
of the required precision, when the XY Z coordinates oí control points are derivecl 
from their photogrammetric coordinates xyz, obtained during bearing oí each de­
formation phase, by the following procedure: 

Three control points are chosen on the structure of the steel cell in that way, 
that they are situated either in the plane oí the bottom or in the plane oí the upper 
waH (Fig.3, points 1,3,4). This plane becomes then the XY-plane of the spatial 
coordinate system XY Z, the beginning of this system being introduced in one of the 
chosen point (point 1) and the X -axis being diredecl towards one oí the remaining 
points (point 2). The system XY Z is defined as righthanded. Coorclinates of all 
control points are defined for each rrteasurement phase, which will give us several 
sets of these coordinates. Prom these sets, a single one is created, in which the 
resulting coordinates of control points are derived as arithmetic means. 

The orientation of the coordinate system XY Z in relation to the xyz system is 
defined by direction cosines kx, ky, k; of the normal vedor of the XY plane. Values 
of these cosines will be determined from the three linear equations mentioned below, 
which are construded from the photogrammetric coordinates x, y, z of the chosen 
three control points: 

xI.Kx + YI.Ky + Zl.Je = -1 

X2.JC + Y2.Ky + Z2.Kz = -1 
X3'Xx + Y3.Xy + Z3.!{z = -1 

and on the basis of the following relations: 

kx = Xx·P 

ky = f{y.P 

kz = f{z·P 

p =  
1 

/ f{2 + f{2 + f{2 
V x y z 

(3a) 

(3b) 

The spatial coordinates XY Z of the control points are obtained by means of 
equations (la) ,  where 

ex = ey = ez = 1 

kl = -ky.Q 

k2 = kx.Q 

k3 = O 

k4 = -kx.kz.Q 

k5 = -ky.kz.Q 
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1 k6 = -
Q 

k7 = kx 
ks = ky 
k9 = kz 

( 4) 

where x ,y ,z are photogrammetric coordinates of the control point, Xo ,Yo ,zo are 
photogrammetric coordinates of the control point, which has been chosen as initial 
point of the XY Z system. 

Determination of the above mentioned transformation key at predetermined con­
ditions, i.e. adjustment of twelve transformation constants A, B, X, Kl , ... , ]{9 
by means of mediating functions (lb), is possible in two ways. Each of these ways 
must be preceded by preliminary, although not perfectly exad adjustment of these 
constants, which will be used for determination of scale coefficients ex, ey, ez by 
following equations: 

V},r2 }'/'2 },r2 
ex = '\.1 + 1.. 2 + 1.. 3, 

ey = Kl + Kg + Kl (5) 

derived on the basis of orthogonal relations between diredion cosines kl, ... ,k9 
and considering the equations (2). -

a) Direct adjustment of constants A, B, C, Kl, . .. , K 9. Owing to the fad that 
in such a case aH 12 conditions of orthogonality, which hold true for the element s 
of the matrix 

should be incorporated into an exact adjustment, this computation leads to the 
solution of a system of 24 "normal" equations. These equations are construded 
from linear forms of correction equations, derived from the mediating function (1  b) 
for small changes of argument s of direction cosines kl, ... , k9' Owing to the 
complexity of this adjustment procedure, a simpler method, leading to the solution 
of a system of only 6 normal equations, should be preferred. 

b) Adjustment by means of Euler angles. If these angles are denoted S, T, U, 
the following relations (Nečas 1977) hold true between them and the constants 
kl, ... , kg. 
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kl = - cos S. cos U- sin S. sin U. cos T 

k2 = sin S. cos U - cos S. sin U. cos T 

k3 = - sin U. sin T 

k4 = cos S. sin U - sin S. cos U. cos T 

k5 = - sin S. sin U - cos S. cos U. cos T 

k6 = - cos U. sinT 

k7 = - sin S. sin T 

ks = - cos S. sinT 

kg = cos T 

Equations (lb) can then be formulated in the forms 

x = A + Kx(S, T, U, x, y, z).ex 
Y = B + Ky (S, T, U, x, y, z).ey 
Z = C + Kz (S, T, U, x, y, z) .ez 

(6) 

(7) 

and these further transformed into linear functions of small changes dS, dT, dU of 
the approximate values of angles S, T, U, computed from preliminarily adjusted 
constants Kl, ... , Kg on the basis of the following equations, obtained from equa­
tions ( 6) and (2) 

(8) 

For each photogrammetric point, which participates in the adjustment, the following 
correction equations can be constructed 

(9) 

in which 

�? = [x (sinS. cos U - cos S. sin U. cos T)+ 
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+ y ( cos S. sin U + sin S. sin U. cos T)].ex 
ať\, . 

orl = [x( cos S. sin U - sin S. sin U. cos T)-
- y(sin S. sin U + cos S. cos U. cos T) - z. cos U. sin T)]ex 

OK 
a
; = (X. sin S. sin U. sin T + y. cos S. sin U. sin T - z. sin U. cos T).ex 

OKy [ 
(

' . 
as 

= -x sm S. sm U - cos S. cos U. cos T)-
- y( cos S. sin U - sin S. cos U. cos T)].ey 

oť\,y 
8U 

= [x( cos S. cos U + sin S. sin U. cos T)-
- y(sin S. cos U - cos S. sin U. cos T) + z. cos U. sin T].ey 

ať\, . 

a
; = (x. sin S. cos U. sin T + y. cos S. cos U. sin T - z. cos U. cos T).ey 

OK a; = ( -x. cos S. sin T + y. sin S. sin T).ez 
OKz 
au 

= o 
ať\, z ( . 

s 
. ) 

oT 
= -x. sm . cos T - y. cos S. cos T - z. sm T . e z 

From the correction equations (9), the system of six "normal" equations is con­
strueted by the normal well-known procedure from the adjustant computation and 
the solution of this system yields the adjusted unknowns A, B, C, S, T, U. Owing 
to the faet, that the linear forms (9) are only an approximate expression for mediat­
ing functions (7), the values of unknowns obtained from this first iteration should be 
considered merely their approximate values and the whole computatio� should be 
repeated by second, third, or eventually further iterations. For each iteration, the 
sum of aH correetion squares (9) is determined within the range of aH participating 
n control points. The definitive adjustment of the unknowns looked for and thus 
the termination of the iteration computing corresponds to the situation, when the 
minimum of this sum is attained: 

n 
I)vx.vx + vy.vy + vz.vz) = min 
i=l 

After obtaining the adjusted angles S, T, U, the constants Kl,'" ,Kg are computed 
by using equations ( 6) and (2), which, together with the definitive unknowns A, B, 
C, represent the transformation 

key, which has been looked for. 

4. MEASUREMENT RESULTS AND THEIR PRECISION. 

The realization of the described procedure of deformation measurement brought 
fairly acceptable resu1ts concerning both the obtained precision and the global and 
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FrG.4: Graphical representation of deformation measurements 

detailed determination of deformation strain of the surface of studied rock models. 
The necessary program for automatic computer treatment of all numerical oper­
ations has been designed. The resulting fields of XY Z coordinates of all survey 
points from all realized measurements of deformation phases of the model exper­
iment have been configurated and put into the external store of the PC, so that 
a digital model of deformations between two arbitrary deformation states of these 
experiments could be created and mentioned model further processed by means of 
some author's program for graphical representation of three-dimensional point fields 
(Vencovský 1989). 

As far as the precision is concerned, the following tahle indicates both the mean 
errors mx, my, mz, in the derivation of coordinates XYZ of control points by 
the above-mentioned method, and also the mean errors mDX, mDY, mDZ of the 
determination of coordinate components of deformations, i.e. of the differences of 
coordinates of identical survey points. Mean errors mx, my, mz were obtained 

from the coordinate sets of control points, derived for 5 deformation phases. Mean 
errors mDX, mDY , mDZ were then determinatecl from the dispersion variance of 
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Xy Z coordinates of 36 survey points, assessed by 5 -times repeated above-mentioned 
deformation measurements of a certain physical model, whose surface has been 
subjected to deformation changes. 

mX = O,02mm 

my = O,02mm 

mz = O,07mm 

mDX = O,05 mm 

mDY = O,05mm 

mDZ = O,12mm 

Figures 4a,b,c illustrate the graphical form of evaluation of deformation measure­
ment between two phases of the model experiment. Figs.4a,b contain the isoline 
descriptions of the relief of the investigated physical slope model, in the phase be­
fore and after loading, the Fig.4c represents the component of model deformations, 
which lies in the diredion of centrifugal forces. 

5 .  CONCLUSION. 

The described method of deformation measurement proved completely successful 
in connection with the given survey problem, giving the expeded and accurate 
results. The method is entirely general and has been used lated, with similar success, 
also for other deformation measurements in mechanical and civil engineering. 
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MĚŘENÍ DEFORMACÍ HORNINOVÝCH MODEL Ů 
Z ATĚŽOV ANÝCH ODSTŘEDIVÝMI SIL AMI 

Miloš Vencovský 

V souvislosti s určováním deformačních změn povrchu horninových modelů zatěžovaných odstředi­
vými silami ve speciální odstředivce byla vypracována a plně automatizována nekontaktní měřická 
metoda založená na užití analyti cké stereofotogrammetrie. Metoda umožňuje určování pros­

torových posunů identických měřických bodů mezi dvěma libovolnými deformačními fázemi, které 
byly dokUlTlentovány fotogrammetrickým měřením vždy po vyjmutí horninového modelu z odstře ­
divky a po jeho umístění do polohy umožňující toto měření. K vyhodnocení provedeného měření 
není třeba definovat v okolí objektu prostorové vlícovací pole bodů, přičemž je zachována vysoká 
přesnost v určení deformačních posunů. Z těchto diskrétních údajů je možno zkonstruovat dig­
itální modely deformačních ploch a ty dále zobrazovat pomocí autorova softwaru vyvinutého v 

minulosti. Metoda má zcela obecné použití. 
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