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ABSTRACT. The free water level at vertical dams drops from the inlet to the outlet 
following a curve, whose ana!ytica! expression could probably not be found yet. In the 
accessible literature, this problem has been dealt with by (P.J .Polubarinova, 1952). 
Even there, the practically applicable equations for computing the free water level 
drop have not been quoted, expect a diagram for the determination of leve! height at 
one point, i.e. at the outlet from the dam. However, practically applicable equations 
for the calculation of free leve! drop can be obtained by the use of the velocity potential 
law, with the maximum error of 2%, as it results from the following study. 

INTRODUCTION 

The free drop (from the inlet Hs to the ou tlet H D) in a vertical dam wi th wid th 

S is indicated in Figs.l and 2. The lines of flow drop from the height Ys to YD, 
upper free level from the height Hs to Ho. The discharge through the dam depends 
on the morphology of How lines, i.e. on their shape and arrangement. The Fig.l 
illustrates the two different internal arrangements of fl.ow lines between points Ys 
and Yo: the weakly marked lines of How have a gradually decreasing gradient, the 
last of them being almost parallel to the impermeable subsoil. Like in all natural 
processes, it can be assumed even here that the shape and the internal arrangement 

of How lines will be optimum from the viewpoint of How. Thus, such a shape of the 
free level, How lines and their arrangement should be found, which would result in 
maximum discharge at the free level drop between Hs and H D • 

BASIC EQUATIONS 

A certain constant water quantity Hows through a How tube, which is propor­
tional to the difference of potential between the inlet and outlet. In Fig.2, it is the 
quantity 8Q, Howing from the inlet Ys to the outlet YD, the respective potential 
difference being U. As defined by the velocity potential, dU = c.dL. The velocity 
chas the direction of the tangent to the line of fl.ow, being therefore related to the 
cross section f, perpendicular to the fl.ow line. If the angle of tangent gradient is 

(3, the. length of the How line element dL = dX / cos j3, and the How cross section 
f = 8Y cos (3. Velocity is c = 8Q / f and thus dU = (8Q / bY cos2 (3) dX. 
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FIC .1. Morphology of flow lines 

Hs 

As 1/ cosf3 = 1 + tan2 j3 = [1 + (dY/dX)2] then, if we denote dY/dX = Y', the 

dependence between the potential drop, How volume, and parameters of the given 
How line can be expressed by the equation 

u = 
rS b Q (1 + y,2) dX jo bY 

INITIAL APPROXIMATION OF FLOW AT A VERTICAL DAM 

(1) 

The first assumption of this initial approximation is, that both the free level 
surface and the internal How line are parabolas of the Dupit type, given by the 
equation 

(2) 

The constant Ba results from the boundary conditions (for X .:.... O, H = Ho, for 
X = S, H = Hs). 
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FIG.2. Scheme of the problem 
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The free level, illustrated in Fig.2 by the curve H, drops only to the height Ho. 
The level according to Dupit parabola (curve D in Fig.2) would drop as low as to 
the impervious subsoil. 

The second assumption for this initial approximation is that each vertlcal section 
is passed through by the same number offl.ow tubes, which have, in the given section, 
the same width. For example, in Fig.1a this concerns five tubes, from which each has 
the width 8Y in the section H-X. Generally, the proportionalities Yo/Ho = Y/H, 
8Yo / Ho = 8Y / H hold true. 

Each tube (n = 2), which issues, on the discharge side, from a point of the height 
of Jó will be defined, at such conditions, by the equation 

where 

y2 = Y02 + BX (3) 

B = Bo(Yo/Ho)2 and dY/dX = y' = B/2Y. 
It results, from the second assumption, that 8Y = 8Yo(Y/Yo). For the given 

tube, the values of 8Q, 8Yó are constant; the equation (1) can thus be written in 
the form of 

u = <5 Q rS Yo 1 + y,
2 

dX <5Yo Jo Y 
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By integration and arrangement 

fS 1 + y,2 

J o Yo y dX = HoR (5) 

2SjHs 
Rl = ---'---1 + HojHs R2 = (1-H5jH�)(HsjHo -1)j(2SjHs) 

is obtained . 
It is evident, from the physical interpretation of the equation (4), that the com­

puted integral determines the value of the hydraulic resistance of the given tube, 
defined as the factor of proportionality between potential difference U and the flow 
8Q j8Yo. By denoting the Darcy's filtration coefficient as ,�, the relevant potential 
di:fference will be U = k(Hs -Yo); the total discharge through the flow area will be 
computed by means of the equation (4): 

(6) 

The total How through the dam is given by the Dupit formula: 

(7) 

It has been established 'chat the How volume depends only on the water levels at inlet 
and outlet, being completely independent on the How height Ho (Mls, 1988). The 
level height at the outlet is maintained , by pumping off, at the 1eve1 of impervious 
subsoil, thus at zero - Fig.2. As it has been already mentioned, it is assumed 
that the spontaneously created How field will be optimalized as far as the How is 
concerned. The assumption of the starting approximation, i.e. the cour-se of the free 
1eve1 and the internal arrangement of the flow lines, had therefore to be checked. 

COURSE OF THE FREE LEVEL 
By introducing Yo = Ho into the equation (3), equation for the limit ing How line, 

which forms the free 1eve1, are obtained. The ,scope is to n.nd a How line, whos� 
hydraulic resistance between points Hs and Ho is minimal at the given conditions. 
The integra1 in the equation (4) resp. (5) represents the hydraulic resistance of 
the flow tube; its minimum va1ues found as an extreme of the functional, from the 
condition : 

1 + y,2 
F= --­

Y 

The flow tube, which appertains to the free 1eve1 and has a minimum resistance, is 
determined by the equation: 

1 2 1 H=--(D+CX) +-
4C C 
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where 

V(S/2HO)2 + Hs/ Ho - 1 D = - �-------------------
S/4Ho 

and 

C = (1 - D2 /4)/ Ho 
as far as dH/dX > O, d2H/dX2 < O within the interval of O:::; X .:::; S. _ 

The hydraulic resistance of this flow line, computed from the equation (5), equals 
in such a case, 

Rrn = {s 1 + y,2 dX = _ 2. ln 
1 es + D - 2 . D + 2 1

_ 
es 

Jo y es + D + 2 D - 2 

In Fig.2, the flow line with the minimum resistance is denoted by E, and do es not 
differ much from the level H. For the given parameters Hs = S = 10 m, Ho = 3,8 m, 
it can be computed, from the equation (5), that R . 

2,135; the flow rate at discharge 
q = 5Q /5Yo results thus about 0,6% higher that the rate qo, computed for the initial 
approximation. Generally, the increment �q = qo (R/ Rm - 1) - see Fig.l. The 
calculations proved that, for the internal flow lines, the differences in flow rates D.q 
are only a little higher. Therefore, also the overall flow volume Qm will be only a 
1ittle higher than Q, computed for conditions of the initial flow approximation, 

Qm = Q + qoHo(R/ Rm - 1) 

We are therefore justified to suppose that the spontaneously formed free level will 
be better described by the curve E, which is admittedly very close to the assumed 
course of H - see Fig.2 - but, with the same difference of Hs - Ho exhibits lower 
hydraulic resistance and higher total fiow volume Qm. This problem - to find a 
fiow line with minimum hydraulic resistance - is much similar to the problem of 
brachistochrone, known from mechanics. 

INTERNAL ARRANGEMENT OF FLOW LINES 

The Fig.1a illustrates two variants of the possible arrangement. The variant 
n = 2 represents the so-cal1ed regular arrangement - in each section 5Yl = 5Y2 = 
. . . = cons. This do es not hold true for the variant n = 3, where 5Yl =f. 5Yi. In 
a regular arrangement, each :fl.ow line is den.ned by equation (3), and the íollowing 
equation holds true for an arbitrary n: 

[n Y 2-n Yo ] 
5Y = 5Yo 2". Yo + -2

- . Y 

(9) 

The second equation defines the dependence of the flow section on the exponent n. 
The flow lines of the variant n = 3 (Fig.la) are computed from equation (9), for 
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n = 3, Hs = 10 m, S = 5 m, Ho = 6,2 m. Parameters and computing results are 
often quoted in dimensionless quantities 

s = S/Hs ho = Ho/Hs Yo = Yo/ Ho Ys = Ys/Yo (10) 

For the total How volume Q, the relation. can be obtained from equations (6), (7), 
which can be arranged into the form of 

SL _ t n (l -h5)(1/ho - yo)y;-Z 
Q1 - Jo 2R dyo (11 ) 

Q1 is the real flow volume, given by the Dupit equation (7), R being the hydraulic 
resistance, which depends on the exponent n; 

where 

for n > 2 ls R = Ys -1 + u(Zz - 1) [arctan (ys /u) - arctan( l /u] 

Z I' YS - u 1 + u 
for n<2 lS R=ys - 1+0,5u(Z +l ) ln . -- , ys + u 1 - u 

z = (1 - h�)y��-l /(28hou) ,. u = J12/n - 11 

and for n = 2, the following relation is obtained from the equation (11) 

Q 
Ql 

=2s(w ardan w-0,5ho ln(1+wZ))/R2 

where 

R 
_ 2s 

1 - 1 + ho 
R2 = (1 - h�)(l/ho - 1)/(2s ). 

(12) 

Values of Rl, R2 are here the same as in the equation (5), being only expressed by 
means of dimensionless number (10). In this case (n = 2), the equation (1 1 )  has 
not to be integrated numerically. We can obtain, by its integration, the equation 
(12), which expresses the total How volume, computed from conditions of initial 
approximation of Howing. Therefore, also the computed corrections are related to 
this flow. 

Fig.3 illustrates the relationships of Q / Ql on the exponent n for three relative 
dam widths. These relationships were obtained by numerical integration of the 
equation (1 1 ), for parameters s ,  ho, contained in the illustration. For example, a 
dam with relative width s = 0,5 will give Qmax with the exponent n = 3 (see Fig.3), 
i.e. the internal arrangement of How lines according to the variant n = 3 in Fig. 
1a. The total flow according to equation (12) dep'ends also on the exponent n i  it is 
evident, from Fig.3, that the maximum possible value Qmax is obtained, for given 
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FIG . 3 . Diagram for the determination of How corredion 

s, ho at n = 3. Considering the value of Q, we can obtain, in this case, from Fig.3, 
that for s = 0,5 and ho = 0,628 

(Qmax/Ql - Q/Qd/(Q/Qd . 0,0102. 

It has been established, in the same way, for the interval 0,1 < s < 3,5, that 

Qmax - Q . O 1')8 -5s 
Q 

, � e ( 13) 

ho1ds true. This re1ationship will be used for the expression of the effect of the 
interna1 arrangement of How lines on the How through the dam. 

COMPUTING OF THE OUTFLOW HEIGHT 
The How volume Q, computed by means of the 1aw of ve10city potentia1 10ss, is 

the same as the How volume Ql, computed by means of the Dupit relation (7) , when 
the real How neld is known. It has been tried, in this study, to charaderize this 
fad in the best possib1e way. This resulted in the relation for the determination of 
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relative outflow height ho, derived from the condition Q = Ql, thus QIQl = 1, 

2ps (w arctanw - 0,5ho In(1 + w2»IRz = 1 (14) 

p = 1 + (Rl Rm - l)ho + 0,128e-5s . 

Information described in preceding chapters has been used for tne derivation of the 
general corredion fador p. The second member in the equation for p expresses the 
corredion respecting the shape of the free level, the third one the correction for 
internal arrangement of flow lines, because both the level and the arrangement of 
flow lines differ in reality somewhat from assumptions of our approximation. 

1,10 1 11,00 

1 08 , 0,96 
n, 
e, 

1,06 0,92 
p Hlo 

1,04 0,88 

1, 02 I--'}-----\:-l----+--#--+---;---f----; 0,84 

1, OOL�c����==L:==mL.......J 0,80 
O 1 2 S 3 

FIG.4: Dependence of the correction factor pand free level gradient 
Hb on relative width s 

Parameters in the equation (14) have already been den.ned in equations (5), (8), 
(10) and (12). The exists always a value ho for each relative dam width, which 
fulfills the equation (14). This is relative outflow height looked for, defined as the 
relation ho = H ol Hs - Fig.2. The Fig.4 illustrates the dependence of the corredion 

factor p on the relative width s. The curve e characterizes the effect of the shape 
of the free level, the curve n the effed of internal arrangement of the flow lines. 
In slender dams, s < 0,5, the effect of the internal arrangement of the flow 1ines 
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prevails, in broader dams, s > 1, the effect of the free level shape. The free level 
gradient at the outflow face, computed from equations (8), is H� = -D /2. Its 
dependence on relative width is illustrated by the curve H�. It is interesting to 
see that even if the computation of gradient issues only from the requirement of 
the optimum shape, of the free level, it fulfills also the condition, derivate from 
differential equations 01 planar flow, that the free level gradient H� mUSL always be 
H� < 1 (Hálek and Švec, 1973). 

The dependence of the relative outflow height ho on the- relative width is tab­
ulated numerically in Tab.1 and graphically in Fig.5., where weak lines illustrate 
the mentioned relationships also for cases,when the lower lever Hv I- ° - Fig.1b. 
Similarly as the relative outflow height ho = Ho/Hs, other relative heights hov = 
Hov / Hs, hv = Hv / Hs can here be def1ned. 

The approximate relation (15) holds true for all curves in Fig.5: 

hov . (l-hv)e-f(s) f(5) = 5 0,96 - 0,1213 - 0,8 1 
(1 - hv) 

(15) 

The relationship for hv = ° has been obtained by regression from computed values 
(Tab.1), for the others, up to hv = 0,8, also by means of the analysis of hydraulic 
conditions in a very slender dam, for 5 ----+ O. 

s 

0,1 
0,2 
0,3 I 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
1,0 

TAB.l. Relative outflow height ho 
of vertical dam with relative width s 

ho s ho 8 

0,915 1,1 0,358 2,1 
0,840 1,2 0,331 2,2 
0,767 1,3 0,308 2,3 
0,696 I 1,4 0,287 2,4 
0,628 1,5 0,268 2,5 
0,566 1,6 0,252 2,6 
0,512 1,7 0,247 2,7 
0,464 1,8 0,223 2,8 
0,424 1,9 0,211 2,9 
0,388 2,0 0,199 3,0 

EXAMPLE 

ho 
0 ,189 
0,180 
0,171 
0,163 
0,155 
0,148 
0,142 
0,136 
0,131 
0,125 

The dam has the width S - 10 m, the higher level is Hs = 50 m above impervious 
subsoil; the water is pumpecl off at the outflow, H V = O. Let the outflow height 
and the free water surface level H in the dam be determined at the distance of 
X = 2m from the outflow wall. The relative width s = 10/50 = 0,2. As result 

from equations (14), (15), or from diagram in Fig.5, the values of ho = 0,84 and 
thus Ho = 42 m. At the distance of X = 2 m from the inlet, the free level height 
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FIG.5. Diagram for the determination of the outfiow height 

is .li = 43,63 m according to equation (8), and H = 43,71 m according to equation 
(2). If the lower surface level, e.g. Hv = O m above impervious subsoil, then the 
equation (15) or the diagram in Fig.5 (for hv = 20/50 = 0,4) would be used to 
determine hov . 

0,45, Hov . 
22,5 m. In equations (2), (8), the symbolHo has the 

same significance, indicating the free water surface level above impervious subsoil; 
here it is Ho = 20 + 22,5 = 42,5 m. 

It can be computed, from both equations, for ho) that the free level height at the 
distance of X = 2 m from the outflow wall is H . 44,1 m above impervious subsoil. 

CONCLUSIONS 

It has been shown that the approximation of the course on a free water level in a 
vertical dam by means of Dupite-type curves gives very exact results. The problem 
of the free level is discussed in some detail in the work of (Polubarinova, 1952). 
The theoretical solution of this problem is so complex that it can be on ly roughly 
sketched on 10 text pages. The procedure of numerical calculations, from which the 
graph for the determination of the outflow height was constructed in (Polubarinova, 
1952), could therefore not yet be derived. No other than a graphical comparation 
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with result ať the described solution was thereťore available. However, any evident 
deviations could not be established. For graphs, the error of 1-2% is admitted and 
therefore quoted this value at the beginning oť this study. 

It is therefore possible,by means of the law of velo city potentialloss, to determine 
not only the height, but also the cour se of the free level. N evertheless, this is not 
just an approximáte calculations usually understood in technical practice. Results 
of the here suggested computation would be entirely precise for the real shape and 
arrangement of How lines. 

LIST OF THE USED SYMBOLS 

Hs (m) .. . . height of the steady level above impervious layer 
H v (m) .... height of the lowered level above impervíous layer 
S (m) ...... dam width 
Ql (m S-I) . flow rate through the dam 
Hov (m) .. . difference between Ho and Hv 
Ho (m) .... height of the free level at outflow 
U (m2 S-I) . difference of potentials at the entrance and outlet of the given flow 
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VOLNÁ HLADINA PODZEMNÍ VODY U SVISLÝCH HRÁZÍ 

Karel J aho da 

Volná hladina ve svislé hrázi klesá od výtoku po nějaké křivce, jejíž analytické řešení dosud 

pravděpodobně nebylo nalezeno. Z dostupné literatury je tento problém podrobněji popsán v 

knize (Polubarinová, 1952). Ani zde však nejsou odvozeny rovnice pro pokles volné hladiny, jen 

diagram pro určení výronové výšky, tj. výšky volné hladiny na výtoku z hráze. Analytickou závis­

lost pro pokles volné hladiny je však možné získat pomocí zákona o rychlostním potenciálu, a to 

s maximální chybou 2%, jak vyplyne z výsledků následující studie. Tímto způsobem je možné 

určovat průběh volné hladiny i v okolí kruhových studní, kde analytické řešení neexistuje a sotva 

kdy bude nalezeno. Znalost výšky výronové plochy a průběhu volné hladiny má značný praktický 

význam tehdy, když jde o studny velkých rozměrů, jako jsou jámy důlních děl, využívaných jako 

netradiční zdroje užitkové, případně i pitné vody. 
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