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ABSTRACT. The free water level at vertical dams drops from the inlet to the outlet
following a curve, whose analytical expression could probably not be found yet. In the
accessible literature, this problem has been dealt with by (P.J.Polubarinova, 1952).
Even there, the practically applicable equations for computing the free water level
drop have not been quoted, expect a diagram for the determination of level height at
one point, 1.e. at the outlet from the dam. However, practically applicable equations
for the calculation of free level drop can be obtained by the use of the velocity potential
law, with the maximum error of 2%, as it results from the following study.

INTRODUCTION

The free drop (from the inlet Hg to the outlet Hy) in a vertical dam with width
S is indicated in Figs.l and 2. The lines of flow drop from the height Ys to Yj,
upper free level from the height Hs to Hy. The discharge through the dam depends
on the morphology of flow lines, i.e. on their shape and arrangement. The Fig.1
illustrates the two different internal arrangements of flow lines between points Ys
and Yy: the weakly marked lines of flow have a gradually decreasing gradient, the
last of them being almost parallel to the impermeable subsoil. Like in all natural
processes, it can be assumed even here that the shape and the internal arrangement
of flow lines will be optimum from the viewpoint of flow. Thus, such a shape of the
free level, flow lines and their arrangement should be found, which would result in
maximum discharge at the free level drop between Hs and Hy.

BASIC EQUATIONS

A certain constant water quantity flows through a flow tube, which is propor-
tional to the difference of potential between the inlet and outlet. In Fig.2, it is the
quantity 6¢), flowing from the inlet Ys to the outlet Yj, the respective potential
difference being U. As defined by the velocity potential, dU = c¢.dL. The velocity
¢ has the direction of the tangent to the line of flow, being therefore related to the
cross section f, perpendicular to the flow line. If the angle of tangent gradient is
B, the.length of the flow line element dL = dX/cosf, and the flow cross section
f = 6Y cos B. Velocity is ¢ = 6Q/ f and thus dU = (6Q/éY cos® B) dX.
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Fia.1. Morphology of flow lines

As 1/cos? =1+ tan? 4 = [1 + (dY/dX)z] then, if we denote dY/dX =Y, the
dependence between the potential drop, flow volume, and parameters of the given
flow line can be expressed by the equation

£6Q 2
U:j{) S (14 Y7y dx (1)

INITIAL APPROXIMATION OF FLOW AT A VERTICAL DAM

The first assumption of this initial approximation is, that both the free level
surface and the internal flow line are parabolas of the Dupit type, given by the
equation

H?>=H} +ByX ; Bo=(H%— H})/S. (2)
The constant By results from the boundary conditions (for X = 0, H = Hy, for
X =5, H = Hg).
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FiG.2. Scheme of the problem

The free level, illustrated in Fig.2 by the curve H, drops only to the height Hy.
The level according to Dupit parabola (curve D in Fig.2) would drop as low as to
the impervious subsoil.

The second assumption for this initial approximation is that each vertical section
is passed through by the same number of flow tubes, which have, in the given section,
the same width. For example, in Fig.1a this concerns five tubes, from which each has
the width 6Y in the section H-X. Generally, the proportionalities Yy/Hy = Y/H,
8Yy/Ho = 8Y/H hold true.

Each tube (n = 2), which issues, on the discharge side, from a point of the height
of Yy will be defined, at such conditions, by the equation

Y2 =Y+ BX (3)

where

B = By(Yy/Hy)? and dY/dX =Y' = B/2Y .

It results, from the second assumption, that §Y = éY,(Y/Y;). For the given
tube, the values of §Q), Yy are constant; the equation (1) can thus be written in
the form of

6Q S 1+ }42

U
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By integration and arrangement
147" )
YOTdX:HOR 3 R:R1+R2(YD/HQ) (5)
0

25/Hzg

TTH A Ry = (1— H{/HZ%)(Hs/Ho — 1)/(25/Hs)

L] =
is obtained.

It is evident, from the physical interpretation of the equation (4), that the com-
puted integral determines the value of the hydraulic resistance of the given tube,
defined as the factor of proportionality between potential difference U and the flow
8Q/éY,. By denoting the Darcy’s filtration coefficient as &, the relevant potential
difference will be U = k(Hg — Y}); the total discharge through the flow area will be

computed by means of the equation {(4):
o= [ et (©
Ry —}—Ro YE)/HQ) Hy

The total flow through the dam is given by the Dupit formula:
Q. = kHZ/28 (7)

It has been established that the flow velume depends only on the water levels at inlet
and outlet, being completely independent on the flow height Hy (Mls, 1988). The
level height at the outlet is maintained, by pumping off, at the level of impervious
subsoil, thus at zero — Fig.2. As it has been already mentioned, it i1s assumed
that the spontaneously created flow field will be optimalized as far as the flow is
concerned. The assumption of the starting approximation, i.e. the course of the free
level and the internal arrangement of the flow lines, had therefore to be checked.

COURSE OF THE FREE LEVEL

By introducing Yy = Hj into the equation {3), equation for the limiting flow line,
which forms the free level, are obtained. The scope is to find a flow line, whose
hydraulic resistance between points Hg and Hy is minimal at the given conditions.
The integral in the equation (4) resp. (5) represents the hydraulic resistance of
the flow tube; its minimum values found as an extreme of the functional, from the

condition:

14+ Y
Y

8F d [OF] . B
ay—dx{ay'}_o  F=

The flow tube, which appertains to the free level and has a minimum resistance, is
determined by the equation:

AL
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where

o V(S/2H,)? + Hs/Hy -1
S/aH,

and
C =(1-D*/4)/H,
as far as dH/dX > 0,d*H/dX? < 0 within the interval of 0 < X < S

The hydraulic resistance of this flow line, computed from the equation (5), eqﬁals

in such a case,

-dX = —-2.1n (O)

. Y CSID+a D=3

i _/5_1+Y'2 CS+D-2 D42
U

In Fig.2, the flow line with the minimum resistance is denoted by E, and does not
differ much from the level H. For the given parameters Hg = S = 10m, Hy = 3,8m,
it can be computed, from the equation (5), that R = 2,135; the flow rate at discharge
q = 6Q/6Y) results thus about 0,6% higher that the rate g9, computed for the initial
approximation. Generally, the increment Aq = ¢o(R/R,, — 1) - see Fig.1. The
calculations proved that, for the internal flow lines, the differences in flow rates /¢
are only a little higher. Therefore, also the overall flow volume @,, will be only a
little higher than @, computed for conditions of the initial flow approximation,

Qm = Q + QOHO(R/Rm - 1)

We are therefore justified to suppose that the spontaneously formed free level will
be better described by the curve F, which is admittedly very close to the assumed
course of H — see Fig.2 — but, with the same difference of Hg — H exhibits lower
hydraulic resistance and higher total flow volume @,,. This problem - to find a
flow line with minimum hydraulic resistance — is much similar to the problem of
brachistochrone, known from mechanics.

INTERNAL ARRANGEMENT OF FLOW LINES

The Fig.la illustrates two variants of the possible arrangement. The variant
n = 2 represents the so-called regular arrangement — in each section §Y; = 8Y; =

- = cons. This does not hold true for the variant n = 3, where Y} # 6Y;. In
a regular arrangement, each flow line is defined by equation (3), and the following
equation holds true for an arbitrary n:

Y2 =Y2? 4+ Bo(Yo/Ho)"X , (9)

n Y 2—-n Y,
§Y =6V, | = . = .20
%2 YO+ 2 Y

The second equation defines the dependence of the flow section on the exponent n.
The flow lines of the variant n = 3 (Fig.1la) are computed from equation (9), for
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n =3 Hs =10m, S = 5m, Hy = 6,2m. Parameters and computing results are
often quoted in dimensionless quantities

SZS/HS > hO:HO/HS 3 y():Y'()/HO ) yS:YS/YO (10)

For the total flow volume (), the relation can be obtained from equations (8), (7),
which can be arranged into the form of

Q@ _ ["n(—h§)(1/ho — yo)ys *

Q1 is the real flow volume, given by the Dupit equation (7), R being the hydraulic
resistance, which depends on the exponent n;

for n>2 is R=ys—14u(Z*—1)[arctan(ys/u) — arctan(1/u]
lys—u 1+u
ys+u 1—wu

for n<2 is R=ys—1+05u(Z>+1)In

)

where

Z:(l—h%)yé’—l/@shou) o u:w|2/n—1l ) y_g:x/l-i-(l/hg—"l)yél_g

and for n = 2, the following relation is obtained from the equation (11)

—6—32- = 2s(w arctanw — 0,5h¢ In(1 + w?))/R; (12)
1

where

i 2s
EU:\.’RQ/Rl N Rl:l—{—ho 3 R2:<1—hg)(1/ho—1)/<28)

Values of Ry, R are here the same as in the equation (5), being only expressed by
means of dimensionless number (10). In this case (n = 2), the equation (11) has
not to be integrated numerically. We can obtain, by its integration, the equation
(12), which expresses the total flow volume, computed from conditions of initial
approximation of flowing. Therefore, also the computed corrections are related to
this flow.

Fig.3 illustrates the relationships of Q/@Q; on the exponent n for three relative
dam widths. These relationships were obtained by numerical integration of the
equation (11), for parameters s, hg, contained in the illustration. For example, a
dam with relative width s = 0,5 will give Q e, With the exponent n = 3 (see Fig.3),
i.e. the internal arrangement of flow lines according to the variant n = 3 in Fig.
la. The total flow according to equation (12) depends also on the exponent n; it is
evident, from Fig.3, that the maximum possible value Q),,,5 is obtained, for given
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F1a.3. Diagram for the determination of flow correction

s, hg at n = 3. Considering the value of (), we can obtain, in this case, from Fig.3,
that for s = 0,5 and hy = 0,628

(Qmas/Q1 —Q/Q1)/(Q/Q1) = 0,0102.
It has been established, in the same way, for the interval 0,1 < s < 3,5, that

Omes — G 0,128 ¢~5%¢ (13)

Q

holds true. This relationship will be used for the expression of the effect of the
internal arrangement of flow lines on the flow through the dam.

COMPUTING OF THE OUTFLOW HEIGHT

The flow volume @), computed by means of the law of velocity potential loss, is
the same as the flow volume @, computed by means of the Dupit relation (7), when
the real flow field is known. It has been tried, in this study, to characterize this
fact in the best possible way. This resulted in the relation for the determination of
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relative outflow height hg, derived from the condition Q = @), thus Q/Q; = 1,
2ps(w arctanw — 0,500 In(1 + wz))/Rz — (14)

p=1+4(R/Rm — 1)ho +0,128¢7°°

‘Information described in preceding chapters has been used for the derivation of the
general correction factor p. The second member in the equation for p expresses the
correction respecting the shape of the free level, the third one the correction for
internal arrangement of flow lines, because both the level and the arrangement of
flow lines differ in reality somewhat from assumptions of our approximation.

110 1,00
1,08 | 0,96
nl
eI
1,06 0,92
p Ho
1,04 0,88
1,02 0, 84
1,00 0,80

0 1 2 S 3

F1G.4: Dependence of the correction factor p and free level gradient
H§ on relative width s

Parameters in the equation (14) have already been defined in equations (5), (8),
(10) and (12). The exists always a value hy for each relative dam width, which
fulfills the equation (14). This is relative outflow height looked for, defined as the
relation hg = Hy/Hgs — Fig.2. The Fig.4 illustrates the dependence of the correction
factor p on the relative width s. The curve e characterizes the effect of the shape
of the free level, the curve n the effect of internal arrangement of the flow lines.
In slender dams, s < 0,5, the effect of the internal arrangement of the flow lines
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prevails, in broader dams, s > 1, the effect of the free level shape. The free level
gradient at the outflow face, computed from equations (8), is H, = —D/2. Its
dependence on relative width is illustrated by the curve Hé. It is interesting to
see that even if the computation of gradient issues only from the requirement of
the optimum shape, of the free level, it fulfills also the condition, derivate from
differential equations of planar flow, that the free level gradient H(l) must always be
H, < 1 (Hélek and Svec, 1973).

The dependence of the relative outflow height k¢ on the relative width is tab-
ulated numerically in Tab.1 and graphically in Fig.5., where weak lines illustrate
the mentioned relationships also for cases,when the lower lever Hy # 0 — Fig.1b.
Similarly as the relative outflow height ho = Hy/Hg, other relative heights hoy =
Hyv/Hs, hy = Hy/Hs can here be defined.

The approximate relation (15) holds true for all curves in Fig.5:

0,96 — 0,12 |s — 0,8|
(1—"hy)
The relationship for Ay = 0 has been obtained by regression from computed values

(Tab.1), for the others, up to hy = 0,8, also by means of the analysis of hydraulic
conditions in a very slender dam, for s — 0.

hov = (1 — hy) e~ f) f(s) =s (15)

TAB.1l. Relative outflow height hg
of vertical dam with relative width s

s ho 3 ho 38 ho
0,1 0,915 1,1 0,358 2,1 0,189
0,2 | 0840 | 1,2 | 0,331 | 2,2 | 0,180
0,3 0,767 1,3 0,308 2,3 0,171
0,4 0,696 1,4 0,287 2,4 0,163
05 | 0628 | 1,5 | 0,268 | 2,56 | 0,155
0,6 0,566 1,6 0,252 2,6 0,148
0,7 | 0512 | 1,7 | 0,247 | 2.7 | 0,142
08 | 0464 | 1,8 | 0,223 | 2,8 | 0,136
0,9 0,424 | 1,9 0,211 2,9 0,131
10 | 038 | 20 | 0,199 | 3,0 | 0,125

EXAMPLE

The dam has the width S = 10 m, the higherlevel is Hs = 50 m above impervious
subsoil; the water is pumped off at the outflow, Hy = 0. Let the outflow height
and the free water surface level H in the dam be determined at the distance of
X = 2m from the outflow wall. The relative width s = 10/50 = 0,2. As result
from equations (14), (15), or from diagram in Fig.5, the values of hy = 0,84 and
thus Hy = 42m. At the distance of X = 2m from the inlet, the free level height
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Fig.5. Diagram for the determination of the outflow height

is H = 43,63 m according to equation (8), and H = 43,71 m according to equation
(2). If the lower surface level, e.g. Hy = 0m above impervious subsoil, then the
equation (15) or the diagram in Fig.5 (for hy = 20/50 = 0,4) would be used to
determine hoy = 0,45, Hoy = 22,5m. In equations (2), (8), the symbolH, has the
same significance, indicating the free water surface level above impervious subsoil;
here it 1s Hy = 20 4 22,5 = 42 5m.

It can be computed, from both equations, for kg, that the free level height at the
distance of X = 2m from the outflow wall is H = 44 1m above impervious subsoil.

CONCLUSIONS

It has been shown that the approximation of the course on a free water level in a
vertical dam by means of Dupite-type curves gives very exact results. The problem
of the free level is discussed in some detail in the work of (Polubarinova, 1952).
The theoretical solution of this problem is so complex that it can be only roughly
sketched on 10 text pages. The procedure of numerical calculations, from which the
graph for the determination of the outflow height was constructed in (Polubarinova,
1952), could therefore not yet be derived. No other than a graphical comparation
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with result of the described solution was therefore available. However, any evident
deviations could not be established. For graphs, the error of 1-2% is admitted and
therefore quoted this value at the beginning of this study.

It is therefore possible,by means of the law of velocity potential loss, to determine
not only the height, but also the course of the free level. Nevertheless, this is not
just an approximate calculations usually understood in technical practice. Results
of the here suggested computation would be entirely precise for the real shape and
arrangement of flow lines.

LIST OF THE USED SYMBOLS

Hs (m) . ... height of the steady level above impervious layer
Hy (m) . ... height of the lowered level above impervious layer
S(m)...... dam width

Q1 (ms™!) . flow rate through the dam

Hyy (m) ... difference between Hy and Hy

Hy(m) ....height of the free level at outflow

U (m?s™!) . difference of potentials at the entrance and outlet of the given flow
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VOLNA HLADINA PODZEMNI{ VODY U SVISLYCH HRAZI
Karel Jahoda

Volna hladina ve svislé hrazi klesd od vytoku po néjaké krivce, jejiz analytické FeSeni dosud
pravdépodobné nebylo nalezeno. Z dostupné literatury je tento problém podrobnéji popsan v
knize (Polubarinové, 1952). Ani zde v3ak nejsou odvozeny rovnice pro pokles volné hladiny, jen
diagram pro uréeni vyronové vysky, tj. vysky volné hladiny na vytoku z hraze. Analytickou zavis-
lost pro pokles volné hladiny je v8ak mozné ziskat pomoci zdkona o rychlostnim potencidlu, a to
s maximalni chybou 2%, jak vyplyne z vysledkli néasledujici studie. Timto zptsobem je moZné
urcovat prubéh volné hladiny i v okoli kruhovych studni, kde analytické reSeni neexistuje a sotva
kdy bude nalezeno. Znalost vySky vyronové plochy a prib&hu volné hladiny ma znaény prakticky
vyznam tehdy, kdyZ jde o studny velkych rozméru, jako jsou jdmy dulnich dél, vyuzivanych jako

netradiéni zdroje uZitkové, p¥ipadné i pitné vody.
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