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ABSTRACT. The elastic-plastic theory is discussed in this paper provided the plastic
deformations fulfil the condition that the plastic deformation may be introduced. It
is, for example, in case the given material can be deformed from any state into the
state with vanishing stress by an elastic way. The theory of the infinitesimal elastic
and elastic—plastic deformations are derived from the general theory.
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1. INTRODUCTION

At present the behaviour of geomaterials is described especially by the elastic—
plastic constitutive relations. The elastic—plastic theory for the infinitesimal defor-
mations was established in 19" century, but the theory of the finite elastic—plastic
deformations is not so far satisfactory, to the author’s knowledge. It 1s assumed in
the theory of the infinitesimal deformations that the total strain tensor is the sum
of the elastic and the plastic parts and the rate of plastic strain tensor is given by
the stress tensor. The attempt for the description of the elastic—plastic material for
the finite deformations by a such decomposition of the total strain tensor is in the
paper [Green and Naghdi 1965]. But it is not quite evident from the experimental
standpoint how to carry out this decomposition.

A completely different description of the elastic—plastic continuum is used in the
paper [Del Piero 1975]. It is not necessary to introduce the plastic deformations in
this description but in fact, any vector field in the space total strain—stress is given,
which determines the time evolution of the material element. This description of
the elastic—plastic material follows the description of the material element according
to [Noll 1972] in which the mechanical process of a compatible pair configuration—
process is considered as a constitutive relation. This theory is very remarkable from
mathematical point of view but it says practically nothing about the constitutive
relations, 1.e. about the above mentioned vector fields.

It looks like that the combination of these two theories, i.e. including the plastic
deformations into the elastic—plastic theory according to [Del Piero 1975] could
contribute for the next development of this theory at least in the case, when there
are plastic displacements to the suitably defined plastic deformations. It means
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that it is always possible to any plastic strain tensor to find the displacement in
such a way that the plastic strain tensor is related to the plastic displacement from
an initial state. If we define the elastic deformation as that of corresponding to the
displacement from the plastic state, we obtain, in fact, the usual elastic theory only
with a difference that the reference system is changed. It is a certain interstage
between the Lagrange’s and the Euler’s descriptions of the continuum.

But, in order to introduce the plastic coordinates, the equations describing the
evolution of plastic strain have to fulfil special relations.

We restrict our considerations to the geomaterials only, but this theory may be
generalized to any deformative processes where there is an external force field, which
under condition of no change of the plastic deformations causes a vanishing of the
stress in the whole body. The condition which we suppose for the time evolution of
the plastic strain tensor is only the sufficient condition for this property. Therefore,
we will speak rather about the materials which fulfil this condition at any point
and any time.

2. Basic CONCEPTS

A body B from the continuum mechanics point of view is a compact C'®-manifold
in R3. We will describe it in the coordinates! €%, o = 1, 2, 3. The motion of the
body is described in this case by functions y? in such a way that the position of the
point £% at the time ¢, i.e. 2t is given as

2 =X (E1). (2.1)
We define the deformation gradient of the motion as follews

oyt

Fi = Bea (2.2)
and the velocity and the acceleration by
Vi, t) = %1(5,0 (2.3)
and ’
Ae, 0 = 60 = Vi), (24)
respectively.

Further, the time independent mass density go(€), the vector field of the external
forces b* and the stress tensor S*® are given. The motion equation has the form

551'01

o (2.5)

o0V = gob' +

and

I'We will solely use the Cartesian coordinates in the whole paper
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The constitutive relations for the S*@ have to be added to these equations, i.e.
we have to determine a dependance of the stress tensor 5@ on the motion x*. These
equations together with the initial conditions determine the motion of the body in
the Lagrange’s coordinates.

[t is well known the form of the equations (2.5) and (2.6) in the Euler’s coordi-
nates which are connected to the reference system of the instantaneous state of the
body,i.e. in the coordinates 2. Therefore we do not cast them here.

More details about the above introduced concepts and the reasons for their
introduction may be find in any book about the rational continuum mechanics, see
e.g. [Truesdell 1984] or [Leigh 1968].

3. DEFINITION OF PLASTIC DEFORMATION

In the theory of the elastic—plastic continuum is assumed that there is an elastic
range in which the plastic deformations are unchanging. In contrast with the usual
elastic—plastic theory we will not decompose the total strain tensor into the elastic
and the plastic parts, in which the total strain tensor is defined as the square of the
displacement gradient. We rather decompose the total motion gradient F'. Thus,
we write

FLlE 2) = X PRE D), (3.1)

where P corresponds to the plastic and X to the elastic parts of the total defor-
mation. This decomposition is chosen for the reason that we obtain the equation
(3.1) as the derivative of the relation z* = ¥*(w(¢, t),t).
We suppose that the stress tensor S is a function of the variables F and P.
Thus
§ie = g (P, P). (3.2)

Further we suppose that there is the yield surface
o(F,P)=0 (3.3)

such that the rate of the plastic deformations vanishes for F and P which fulfil the
condition ¢(F, P) < 0. A change of the P can occur only if

dp OV?
o(F,P)=0 and (Vy)= 4

“TGF—OZ;—G—@—>O' (3.4)

Using the method from [Del Piero 1975] under the assumption that the processes
are the changes of the total deformations and the compatible pairs are (F', P), i.e.
the total deformations—plastic deformations, we obtain

Pi(,t) = (Vo) Mi(¢,1), (3.5)
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under the condition (3.4) and
Pi(e,0) = 0 (3.6)

for
o(F,P)<0 or (V) <0.

On the yield surface ¢(F, P) = 0, at the same time, M{ fulfils the condition

Oy
9Pt

Mi+1=0, (3.7)

what follows from the time derivation of the function ¢.
What we require it is

Pep(€,to) = P o (& to) (3.8)

for the initial plastic deformations and
Pos=PFha, (3.9)

where P(i’ﬁ denotes the derivative of the P! with respect to €. It is well known

that these conditions guarantee the existence of a function 7*(¢, t) such that

i (97ri
F = dee
We call _ .
p=7(1) (3.10)

the plastic coordinates.
In fact, we have three systems of coordinates:

(1) the coordinates &’ in the Lagrange’s reference system;
(2) the coordinates z' in the Euler’s reference system and
(3) the coordinates p* in the plastic reference system.

The transformation relations are

b = Xf(g}i) or P y’ﬁi(p}t) (3.11)
and _ ,
pr=7(1), (3.12)
where .
1{;:;\*0?{_1. (3-13)

From the equation (3.5) and (3.9) it is evident that

(Vo) M) 5= [(Ve) Mz] , (3.14)
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has to hold for any & and 3. We may understand this equation either as a restriction
to the possible rates of the total and plastic deformations for given M}, or, how we
will proceed, as a further restriction to the constitutive relations for A} if we
assume that all the deformations agreeing with the relations (3.3) an (3.7) are
possible. Some details about these equations can be found in Appendix.

It is quite natural to describe the motion of the body by means of the plastic
coordinates p*, since displacements from these coordinates are, in fact, the elastic
displacements and the proposition that the stress for fixed plastic deformations (in
elastic range) is a function of the gradient of the elastic displacements, has a good
sense. In fact, it was the starting sense of the whole construction. In the rest of
this paper we suppose that there exist such plastic coordinates and we transform
the motion equations into these coordinates.

4. MoTioN EQuATIONS IN THE PLasTiIc COORDINATES

The motion equations in the Lagrange’s coordinates are given by the rela-
tions (2.5) and (2.6) together with the fact that g is time independent. In this sec-
tion we transform these equations to the plastic coordinates given by relation (3.10).

First, we introduce the velocity of the plastic displacement by

Uz.(f,t):%};(é,i) or ui(p,f):ffiow_l(p,t) (4.1)

and for simplicity we denote Y the inverse matrix to P and we consider it as the
function of p and ¢. Thus

Vg a(ﬂ-_l)p
Sr - _Ha—pr_(p’t)' (42)

The material derivative of any function f(p,t),i.e. f/,is

5} 0
fl(P; t) s _8;7]:_ " s 5;]; uF (4.3)

Now we define the mass density g, by

Qp(p:t) = (QDP_l) o?r—l(p] t)v (44)

where
P = det(P). (4.5)

It is easy to show that the mass density fulfils the continuity equation

, our

If we introduce the stress tensor by

Sl 1) = (P E5S"*) ea™ (0, 1), (4.7)
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the motion equations (2.5) and (2.6) have the form

) ) 05”
7:/ (2
00" = ppb' + (915 (4.8)
and
Y = RTS e J (4.9)

As we do not deal with the thermodynamics here, we do not transform the
equations for the internal energy and others thermodynamic quantities to the plas-
tic coordinates. But we should recommend to the reader also to carry out these
transformations.

In the next we use in the constitutive relations instead of the variables F' and
P the plastic variables X and Y, which we consider as functions of the plastic
coordinates p and time t. Thus we assume that

=20 (X,Y) (4.10)
and the yield surface 1s '
o(X,Y)=0. (4.11)
It is easy to show that ‘
Jp OV
Vo) = —= - 4.12

holds in the plastic coordinates. The equation (3.5) for the rate of the gradient of
the plastic displacement has the form

e = (Ve (4.13)

where

mi = M. Y(p,t) (4.14)

and finally, the condition (3.7) for M¢ is

[ . 8(79 s 8(70 .
Y.S e + X7 T—1. 4.15
| © d¥e A 8A;‘} s (4.15)

For completeness, we cast here the derivatives of the functions £ and z?, if we
consider them a functions of the plastic coordinates p and time ¢. The following
relations hold

g_i; (p,1) = Y(p, 1) (4.16)
%‘i;_ + VS =0 (4.17)
2= x (4.18)
Ozt i Xi.uk 7 (4.19)

ot
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where (4.16) is the definition of Y, (4.17) says, that €% are the Lagrange’s coor-
dinates, (4.18) is the definition of X and (4.19) transforms the velocity into the
plastic coordinates.

It is evident from the equation (4.13) that

[(Veymi] ;= [(Veymi] (4.20)

holds for any 7 and k. It i1s necessary to understand this equation as the equa-
tion (3.14) from the previous section.

5. PRINCIPLE OF MATERIAL INDIFFERENCE AND OTHERS SYMMETRIES

The principle of the material indifference [Leigh 1968] says that the constitutive
relations are invariant with respect to arbitrary uniform rigid body motion, i.e.
with respect to transformations

7 = Qi)+ (1), (5.1)
where Q(t) is orthogonal, t.e. t

QWQT() =QT Q) =1

holds.

It follows from this principle that the functions
respect to the transformation (5.1). Since we have assumed that these functions
depend only on X and Y, the equations

SHX,Y)=2FQX,Y) (5.2)
P(X,Y) =¢(QX,Y) (5.3)
mi(X,Y) =mi(QX,Y) (5.4)

hold, according to this principle. It follows from the paper [Smith 1971] that these
functions are dependent on the quantities P and the elastic strain tensor

EaaXiX: (5.5)
only.
Under these assumptions we obtain
dp 4
vV == iy 5 5.6
(Vo) = 3o (5.6)
where " ,
3 du ou”
Ers = E:‘s + Erk = Esk D (57)
Jp® ap’
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The condition (4.15) gets the form

2 0 d
(}f; a;ja +2 E”%) ml=1. (5.8)
) Op .
Under the assumption that Y,* GY“m: # 0 holds, we obtain
i Y* 830 m” N 8‘/9 E’ nli (5 9)
U = — 2o ] 5 0
k r 6yvso( s aErs rstk

The constitutive relations become more simple, if we assume that the material
has additional symmetries. The most important in these symmetries is the isotropy,
it means that it is possible to find the Lagrange’s coordinates in such a manner
that the properties of the materials are unchanged with respect to their orthogonal
transformations, 1.e. with respect to transformations

£ =Qpe, (5.10)
where @ 1s orthogonal. In this case

%

va 5 _ payeae _ a e
Ve = S = QY = (QY); (5.11)
holds and thus
¢(E,Y) =9(E,QY) (5.12)
Z;S(E,Y) = Z;S(E,QY) (5.13)
mi(E,Y)=mi(E,QY). (5.14)

It follows from these relations [Smith 1971] that these functions are dependent only
on E and B, where
B.. =YY" (5.15)

is the plastic strain tensor.
We obtain from the equation (4.15) that sn fulfils the condition

Je [0
i By - i F - 5.16
2 [aBst Bre OF;¢ t| m, =1 ( )

and it follows from (4.13) that the equation for the rate of the plastic strain tensor
has the form

B., = =(Vy) [Bm} + Bamj] (5.17)

Note that the strain tensors E and B satisfy the additional conditions, the
compatibility equations, which guarantee that it is possible to write them in the
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form (5.5), and (5.15). The restricting relations to #m follows from these compati-
bility equations and the equation (5.17).

Further symmetry, which can be meaningful for the elastic—plastic material, is the
symmetry respecting all unitary transformations of the Lagrange’s coordinates. In
fact, this symmetry says that the plastic deformations behave like the deformations
of a fluid and thus ¢, Z;k and m}; depend only on the elastic strain tensor E and
P = det P. In such a case the equation (4.15) is

9 i}
YE,}%’; m’ + QEﬁﬁm; =1 (5.18)

and the equation for the rate of the plastic volume deformation has the form
Y=Y Vyp)m!. (5.19)

It is evident that it is possible to obtain the additional restrictions to the con-
stitutive relations, if we assume further symmetries with respect to any group of
transformations of the plastic coordinates. But, since we do not consider these
restrictions as too interesting now we do not present them here.

6. INFINITESIMAL ELASTIC DEFORMATIONS

In this section we deal with the case of the infinitesimal elastic deformations and
all their derivatives. The plastic deformations are in this section arbitrary. This
assumption may be expressed as

' = ¢ (p,t) = p' +0f (p,1), (6.1)
where 7 <1 is a positive constant. We obtain by derivation of this equation

if

Xi =6+ N5 = 5+ nfi (6.2)
and 523 e
z* aft

As we have assumed that 7 is very small, it i1s a good approximation to restrict
ourselves to the terms with a lower order in 7).
First, for the elastic strain tensor (5.5) we obtain

I .0 S R R R

and thus .
By 2l - Moy (6.4)

where
ers = 5(f2+ 17) (6.5)
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holds up to the terms of the first order in 7.
For the stress tensor using the expansion with respect to 1 up to the first order

terms we get
oxre
5t =5 (LY) + 2057 —(L,Y Jeir

Assuming the elastic strain tensor equals to identity, the stress tensor vanishes, it
follows from the previous equation

E;S = NCrsikEik s (6.6)
where we have denoted
(92{,5
crsik(Y) =2 3E;; (I,Y).

It holds under the same approximation
2y =57=T17, (6.7)
where T7? 1s the stress tensor in the Euler’s coordinates. Therefore in this case we
need not distinguish the stress tensor in the plastic and in the Euler’s coordinates.
Thus the motion equation is approximated by
ik
0%,
opt
Now we consider the yield surface as the function of g and Y ie. ¢(e,Y) = 0.
By derivation we obtain the relation
Jy 1 Op [Ou" Ju®
V) = S Sp—— + - . 6.9
(V) Jers '° 21 Oy \Op*  Op” (6-2)
We cannot properly use the limit 7 — 0 in this equation, as we have assumed
nothing about the plastic deformations, hitherto. Therefore, we cannot omit the
first term with respect to the second one in this equation.
The equation (4.13) for the rate of the plastic deformations has the same form
but we consider now m as a function £, and Y,?. Finally, the condition (4.15) 1s

<W 9 .y 1 89”) m =1, (6.10)

T Ye " Oers

vail = Qpbi + (6'8)

where we omit the terms of the higher order in 7 again.
It follows
vt —ut = nfY (6.11)
from the equation (4.19). Substituting from this equation to the motion equa-
tion (6.8), we obtain

o . P
Qp(u” — bz) +7 przll = 3_}“ (Cikrsfrs) =0
P
and, it could be seemed that we can omit the second term with respect to the first
one. But since we have assumed nothing about the plastic deformations, it is, like

in the equation (6.9), inadmissible, in general.
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7. INFINITESIMAL ELASTIC—PLASTIC DEFORMATIONS

In this section we deal with the case, which the classic elastic—plastic theory
studies, i.e. the case, when it is possible to consider both the elastic and the plastic
deformations and all their derivatives as infinitesimal. The elastic displacements
are given by the equation (6.1) again and similarly, the plastic displacements have
the form

p' =& +ng'(¢,1). (7.1)

Since we use the plastic coordinates as the independent variables p it is suitable to
write the inverse equation. Neglecting the terms of higher order in 7, we get

61' i pi = ?'}gi(p, t) - (7.2)

It follows from the equations (4.16)-(4.19), (6.1) and (7.2) (up to the first order in
7 again)

Y 2.

Yy =6 — 7751%“ = 6L — gk (7.3)
: dg*

ik =it

ut =1, (7.4)

dz’ i of i i

g :5k+??6_ﬁg‘:'5k+nfk (7.5)
. 51” agi

i_ (0 99 7.6

=%+ %) (75)

Thus it is obvious that both ¢ and v® have the order one in 7.
It follows from the continuity equation (4.6) after omitting the terms of higher
order in 7 ‘
9y
ot

and thus in this approximation g, is a function of the coordinates p only.

=0 (7.7)

The stress tensor 2;5 is now a function of ¢;; and g}, and hence the functions

¢rsik are functions only gfc. If we restrict ourselves in the motion equation (6.8) to
the terms of the lowest order in 7, we obtain

o, oz
& 5y = epb +7315%*- (7.8)

The yield surface is given by the equation ¢(e,g) = 0 and

" dp 0
- v 79
(V) e B0 (€rs + Brs) (7.9)

holds, where we introduced the infinitesimal plastic strain tensor

Ly = %(gi + g:) = Psr - (710)
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If we mtroduce the infinitesimal plastic rotation tensor as

Wey = %(g: S gﬁ) = —Wsyp (711)

and we denote _
Uir = %(mi_ + mF) (7.12)

and '
Wir = 2 (mj, — mf) (7.13)

and the dot over the letters denotes the time derivative, we obtain from the equa-
tion (4.13)

. do . .
Bir = .}—(p (Ers + Brs) Us (7.14)

and .
wik o BC&_SO (érs +,Brs VVzk (715)

Finally, the condition (4.15) has the form

T} ( 8{;: + 6&.3) Tn.,; R 6{4,:1._5 ins + Oﬁ” + (9{—:?.5 Ur'g = 1 . (716)

So far we restrict ourselves in thissection to the general equations for the elastic-
plastic deformations. Now we shortly mention the restrictions which are valid when
the material has a certain symmetry mentioned in the section 5. If we assume the
isotropy, the functions ¢, £, and m are dependent only on the tensors € and 3.
If we assume the symmetry with respect to the all unitary transformations of the
Lagrange’s coordinates, these functions depend only on the € and §; = Tr3, what
1s the infinitesimal plastic volume deformation.

APPENDIX

We derive in the appendix some conditions which follow for the function M}
from the equation (3.14). As we see later, this function, which we consider as the
function of the variables F! and P!, satisfies except of the condition (3.7) any
differential equations.

We consider a point inside the body which 1s with i1ts neighbourhood in the

plastic range. Thus
o(F,P)=0 and (Ve) >0 (A1)

holds in this neighbourhood. Further, we have

. Op
b = MT — =
v=Toopr

-] (A.2)

and

UL = (V)M . (A.3)
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We suppose that all processes which satisfy the equations (A.1) and (A.2) are
admissible in the neighbourhood of the above mentioned point. [t means, it is
not possible to obtain any other independent relation between ¥ and P from the
equation (3.14).

For simplicity of notation we denote

i Op
=Moo (A.4)
and
. 0% .. 09 .
Zk—ﬁ”{-cpké‘}%. (AO}
We obtain 9
a_‘f =Z5vE=0 (A.6)

by the derivation the equation (A.2) with respect to {. It is evident that the
equation (A.2) is equivalent to the time derivative of the (A.l1). Deriving the

equation (A.6) with respect to {7 we obtain
ZE VE+ ZEVE = 0. (A7)

The equation (3.14) is equivalent to
Epgfco.k TVL —+" Eﬂg-rc Vk = 0 (A-S)
This equation has to hold for any admissible V¥ and V.E . But these functions satisfy
the equations (A.6) and (A.7) and therefore, they are not quite arbitrary. We use
the method of the Lagrange’s multipliers in order to consider them as independent
and thus the terms standing before them to identify with zero. It follows from the
equations (A.7) and (A.8)

(porcily . — AT ZE WVE + (eporchy — AT ZE)WE =0 (A.9)

for arbitrary functions /\ﬁf of the variables F' and P. Since VX = VE it follows
from the equation (A.9)

69576?‘;1: + fpo'p;cf;’k T A;TZS ol /\:}nzg — 0
Multiplying this equation by €,,, and summing it over § and 7 we obtain
if, = 3 [eopr O 2 + N8 2T) + 8565
Substituting this relation into the foregoing equation, we get

(A + XY ZF + (AT + AF) Z7 + (AT + A7) 2L =0
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Under the assumption that ZJ are arbitrary
ALY = 6,,07]-‘5

1s obtained and thus
clf = I3z + ko5 (e - Tizf)
holds. Substituting Z§ from the (A.5) into the (A.11), we obtain

(J”S” — T} L ) =0,

Tk ar Ak
OFF
where
; ; . 8¢
T — é‘l 6T _ FZ
SOT rvo UaPTr
and

K _ gKgo 1 ek ca
Rey = 0,0, — 50767
It follows from the equation (A.12)

. ) .
TO QT 1 1 Cp
Crksar - Fa 9141;; Tkoa
P

and substituting S°7. into this equation, we obtain
¢k =TiZE 4 Tigk,
Since we have assumed that Z; are arbitrary, we may consider
7% = ZEZE o O
In this case, it follows from the relation (A.13)

o =272t - Tizi] .

(A.10)

(A.11)

(A.12)

(A.13)

Remark. On the other hand, Z = 0 implies Z§ = 0 for any & and « and we obtain
the additional equation for F and P. As the condition (A.6) is satisfied identically

1n this case, we must proceed in other way.

In this way we annul the terms with VX in the equation (A.9). Thus, it remains
to annul the first term. Substituting of ¢!} from the equation (A.12) and Ap*”

from (A.10), we obtain the relation

€par (jnor,'rz.:{-c 4+ 6;”32,1') Vﬁk =0.

(A.14)
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Also in this equation V¥ are not independent, because the equation (A.6) holds.
Using again the trick with the Lagrange’s multipliers, we obtain

(i K K Lt 7R 0 =
€por L g2k + 5C,T,m) —ppZy =0, (A.15)

where the corresponding Lagrange’s multipliers are ,u’;).
Now, we finally specify the outline derivation with respect to £7. Carrying out
this derivations, we obtain

gt . OT% Y ort . 0T} x B
€pa (@F“Z}” + 6, JFe )F + € v (ap«zk#é_ﬁ an)P — ppZi =0.

But the functions FS and PZ. are bound by the equations which we get by deriva-
tion of the equations (A.1) and (A.2) with respect to €7, i.e.

Oy Oy
Fe P3_ =0
oFa o7 T 5pa
and 96 96
gra er T gpglar =0

Casting the Lagrange’s multiplier ,up in the form
W = WIS S+ i P,
we have

8F§ BTS -;ar IKT 893 i RT a¢ a
[ﬁf"” (af«’az’“ N ’8Ft) ~Wha ZE ~Vik g ok am] Far =0
@ a o

[fpcrr (ap 6& aTk > za‘rZL e uvr_i(p_ . CiK-T _a?_:l Pc‘:-r =0

o Pg 7 9pa Yok 5pa ~ ok gpa
where 1/“‘" and c“" are any other Lagrange’s multipliers. Since F2_ = F;, and
Pea — P“ hold, 1t follows from these equations

6F1 I 6Ta mrr mr 8(19 TRT aqﬁ
[6"” (aFa Z + 5"3}%) Zi = Vi 9Fs % gra| T

aF! K aT{ STQ Hi('{ d‘?o e aé
+ [fpm (3Fazi’~ +608—1‘;§) ZE — ik aFs ~ BFG] =0 (A.16)

and

81_‘% K aTi ‘LCYT K d‘lo K 6¢
[f_ao"r (61)'1 Zk + 50. ap}:) pa Zk ;A‘Tapa ;kr (LD“:I +
(31

@I"* % 6T‘ a-ra axa 6(}0 iko 6’¢
i lf"” (apa +§°'0Pt) W7~ Vi gpg %k gpg) =00 (A7)
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Thus, M? have to satisfy, except of the relation (A.2), the system of the partial
differential equations (A.4), (A.5), (A.14), (A.16) an (A.17) in order to the rela-
tion (3.14) holds. Or, since (A.4), (A.5) and (A.14) are, in fact, the definitions,
it is possible to substitute from these equations to the (A.16) and (A.17) and in
such a way to obtain the system of the partial differential equations for M?, which
depends on the functions T', w, w, v a ¢. But, there is a question, whether it 1s
possible to choose these functions in such a way the resulting system of the par-
tial differential equations has a solution. It should be of an interest to solve this
problem for a given function ¢ at least in any more simple cases when we suppose
any symmetry mentioned in the section 5 or for the infinitesimal elastic—plastic
deformations studied in the section 7.

CONCLUSION

We are fully aware of the fact that the theory presented in this paper has no
experimental verification. The theoretical reasons, which led me to the creation of
this theory, are:

— author’s opinion that the elastic—plastic material has the property that, if it
i1s in the equilibrium it is always possible to find any external force field to
deform this material into the state in which the stress vanishes, exclusively
by the elastic way;

— from this assumption following well-defined decomposition of the total defor-
mations to the elastic and plastic parts,

— easy definition of the elastic—plastic theory for the finite deformations and
with this connected the description of the material, in which the elastic de-
formations are infinitesimal and the plastic ones are finite, e.g. plastic flow.

The consequence of this theory is the restriction of the constitutive relations to
the rate of the plastic deformations, which are defined in the elastic—plastic theory
of the infinitesimal deformations by an associative or a non-associative law of flow.

We think that the basic problem in the theory presented here it is the study of
the system of the partial differential equations (A.16) and (A.17) for a given yield
surface (F', P) = 0.
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