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ABSTRACT. Seismie data obtained by means of loeal network in Kladno mine region 

are the basis for establishing the time series describing the seismie activity of rock 
bursts area. In such a way number of individua! tremors oeeurrence and their luaxi­

mum. amplitude per day was derived. These seiSlnie time series were eomplemented 
by the information of excavation acti vities , naInely as for the length of entries per 

day. The questions of extrapolation of these input series were based on the use of 

neural networks. 
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1. INTRODUCTION 

The occurrence of eal'thquakes and induced seismic phenomena can be unclel'­
stood as a stochastic time-space processes. Similarity of shallow tectonic earth­
quakes and mine tremors - physically equal as concerns a sudden release of seismic 
energy - indicates the possibility of applying very similar methods of events mon­
itoring as well as the procedures of data processing and results interpretation. In 
many cases mine tremors can be studied as the models of shallow tectonic eal'th­
quakes. The major difference, however, lies in the nature ofboth these phenomena: 
As concel'ns mine induced seismic events, besides different nature conditions, an­
thropogenic activities play the decisive role. There are several pal'ameters such as 
a primary 3-axial stress fields, namely size and geometry of excavation volume, 
rate of excavation process, mining technology applied (especiaHy the parameters óf 
blasting) , etc. AH these fadors result in the redistribution of the next local stress 
field in massif. Given combination of the stress/strain changes and a pl'imarfstress 
field may - under particular rock parameters - trigger mine tremors. 

As for the mine tremors, we have for our disposal relatively detailed infOl'mation 
on local geological and textme structure, on tedonical fielcl, on physicall'ock prop­
erties and on geometry of focus region. In numerous mines local seismic netwOl'ks 
have been installed; they allow the objective source pal'ameters to be determinecl, 
such as focus location, focus tíme, seismic energy release (and magnitude, respec­
tively) ,  seismic moment, stress drop, somce mechanism, etc. Regardless aU .�his 
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detailed knowledge, however, until now neither a reliable deterministic prognosis , 

nor a statistical extrapolation of mine tremor occurrence have been found yet. It 
follows that a question of mine tremors prediction still remains much importa,nt. 
Therefore , this contribution deals with extrapolation of mine tremor time series 
(as for origin time and events number) uti1izing a method 01 neural networks . The 
advantage of this approach, evidently, Ees in its adaptability as for the momentary 
state of extrapolated tremor series and simultaneous comparison with the past pe­
riod data. The algorithm of neural network is suitable for examining non-stationary 
processes of seismic energy release. 

2. NEURAL NETWORKS - THEORETICAL BACKGROUND 

Artificial neural networks (ANN s) or simply neural rietworks is a term used to 
describe models which simulate certain basic structures of the human bl'ain to imi­
tate some of its functions. It is important to understand what neural networks can 
do [Duch, Diercksen 1994] and when their application may lead to new results , hard 
obtaining with standard methods. NeuTal networks are algorithms capable oť solv­
ing such tasks as optimization, pattern recognition , nItering, prediction, association 
or interpolation. ANNs are composed of simple processing units (called "neurons") 
operat ing on their local data and communicating with other units. Thanks to this 
global communication the ANN has stable states consistent with the current input 
and output values. The weights of connections between the neurons are adjustable 
parameters. Their modification allows the network to realize a variety of functions. 

Neural networks have a lot oE good properties [Muller, Reinhardt 1990; l'vfasters 
1993], which are successfully used. First of aH it is possibility ofnetwork to learn, it 
means to change theil' own parameters and structure according to specinc informa­
tion to better correspond to limited requirements. It has to have certain feedba,ck, 
which controls output results and changes network parameters. In the case of su­
pervised learning a set of input and output patterns is shown to the network and 
the parameters are adjusted (this is caHed " learning" ar "adaptation" ) until the 
outputs given by the network are identical to the desired ones. In the case of unsu­
pervised lea1'11ing a set of input and output patterns is not at disposal, the network 
has to learn of its own errors and to ful:fil acceptable critel'ion. In both cases the 
network try to built its own inner model, which would simulate real system. This 
ability is next very good property using by prediction [VVeigend, Gershenfeld 1994; 
Aso et. a1. 1994]. 

The three phases in a neural network processing are: Learning , Generalization 
and Operation. Learning is the process by which the network "lea1'11s" to "recog­
nize" input patterns in the form of a training set of data. Each neural network is 
accompanied by a set of rules which define how the neural network learns. Gener­
alization is the ability of a network to give an accept able response for inputs which 
are not members of the training sets. Operation is the application of the network 
to perform the tasks for which it was designed. 

The fundamental pl'o cessing unit ofneural network is one neuron, which operates 
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according to relation [Murat , Rudman 1992; Šnorek, Jiřina 1996J 

Yi = S(t WriX" + 8i) , 
1'=1 

(1) 

where Vi is neuron output, X1' are neuron inputs, wri are weights, Sis usually non­
linear transfer function and Gi is a bias value. It receives any number (n) of inputs 
and de1ivers a single output. The neuron consists of an input function, or summa­
tion function, the result of which is feed to a transfer, or activation, function which 
in turn determines the output. This function is usually non-linear and maps the 
total input of a neuron to an output value. The basic neuron structure is shown in 
Fig.1. One of the most important features of a transfer function is stability. The 
derivative of the transfer function determines the proportion of erroT distributed 
to each connection when the weights are adjusted. On the basis of biological mo­
tivations the sigmoid shaped function (Fig . 2) is often used. rts derivative has a 
G aussian shape that helps stabilize the network. 

S - non-linear 
transfer 
function 

output 
"-

Y, 

inputs 

Fw. 1. Basic neuron 

M 

1.0 

0.8 

o .• 

0.2 

0.0 ... ·6 

FIG.2. Sigmoid transfer function S(z) used 
in our example S(z) = I/O + e-Z) 

The network architecture is the manner in which the neurons are organized and 
connected, i.e., the topology of the network. Neurons can be combined to form 
layers. Layers can be connected in any number of ways but two general types of 
connection are distinguished: partial and full. In a fully connected network the 
output from every neuron in one layer is connected to every neuron in the next 
layer. AH other networks are partially connected. The strength of a connection 
between two neurons is given by the connection weight between them. Three types 
of layers are distinguished: the input layer which accepts the input pattern to the 
network, the output layer which delivers the network output. The third type of 
layers are intermediate layers or hidden layers, which process the accepted data. 
An example is shown in Fig. 3. 

Memory of neural networks lies in the weights interconnecting neurons. The 
weights Wji are calculated during a supervised training routine in which a set of 
inputs is presented to the network together with á target output. The network 
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immt hidden Ol.ltput 

FIG. 3. The typical architecture of a multilayered feed­
forward neural network with one hidden layer 

undergoes a process of learning which is any change 6Wji in the memory. One 
of the most popular ways to train a neural network (this is the determination of . 
weights Wji) is the back-propagation algorithm (BP) [Rumelhalt et. al. 1986; 
Poulton 1992; Dowd, Sara� 1994], which is based on a type of least-squares error 
minimization by a gradient descent method. They derived an algorithm based on 
the following generalized delta rules. The neural networks, which have par ameters 
adjusted by BP algorithm are called back propagation networks. 

The goal of back-propagation algorithm is to minimize the error between the 
computed output and the desired target output for given training set. Thus we 
choose to minimize the error function, so called energetic function af neural network 

1 n 2 E = 2 � (Yr - d1·) , 
r=l 

(2) 

where 'r runs over the number of output neurons and dr is target output. First step 
of BP algorithm is weights initialization by small random number. Input train­
ing patterns are forward propagatecl through ndwork from layer to layer applying 
weights, calculate output using relatian (1). Now, the gradient of the energy func­
tion is computed and the weight changes are given according to fallowing delta rules 
[Rumelhalt et al. 1986J 

1\ l() 8E dl-1() L..::>.Wji t = -rJ 8wl .. = -rJuiYj t, 
Jt 

(3) 

where upper index I denotes the layer, which are weights cOllllected with, ó} is error 
of ith neuron in Zth layer and rJ is length oť learnillg step . . The error of output 
neurons are calculated by relation 

87 = (yf - di) yi (1 - yf) (4) 
and passed back to each hidden neuron. The upper index o marks neurons in output 
layer and yf is the output of the network. Appropriate weight changes are made at 
each layer simultaneously by relation 

wji(t + 1) = wji(t) + 6W)i(t). (5) 
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Back propagated error of hidden neurons is given by the equation 

n 8J-1 = yJ-l (1- y;-l) I: wJ1' ·8; , (6) 
1'=1 

where h denotes the hidden layer. AU training patterns (x) are passed through the 
network. Total error is computed as a summary of individual patterns errar. Then 
the procedure is repeated until the total error reaches a predetermined minimum 
v alue. 

Multilayered networks trained by back propagation algorithm are relatively easy 
to understand and implement. However, back propagation also suffers from several 
disadvantages. There is no guarantee that the l1etl-vork 'vvilI converge in a :finite 
number of steps. Paralysis, in which weights take on extreme values and learning 
ceases, can be a severe problem unless very small step sizes are used. Small step 
sizes can greatly increase training times. Back propagation network can also get 
trapped in IoeaI minima on highly convoIuted energetic surfaces. 

Back propagation method is a steepest descent technique with a locality con­
straint. As such , it can be slow to converge when the energetic surface is fairly fiat 
and small adjustments are made to the connection weights. When the energetic 
surface is highly convoluted, large weight changes may overstep the global mini­
Hmm. There is no guarantee that the direction of the negative gradient is in the 
same direction as the global minimum. Therefore, the extended delta rule was used 
to attempt to overcome the above mentioned limitations. The extended delta rule 
is given by relation [Šnorek, Jiřina 1996] 

(7) 
where Q' is momentum. The principal improvement to extended delta rule is a 
time-varying momentum term for each connection weight . The extended delta rule 
also places more restrictions on the rate of decrement and increment of the step 
size and momentum terms. 

3. ApPLICATION OF NEURAL NETWORKS METHOD 

The above described method allows to process arbitrary number of input series 

simultaneously. We analysed the followiIig series: number of individual tremors 
occurrence and their maximum amplitude per day . These data were obtained by 
means of Ioeal seismic network built up in Kladno coal mine basin. This network 
cOllsists of nine seismic stationsj four of them are surface stations, three other ones 
are located in the excavation level (450 m under surface). The last two stations are 
situated along the vertical profile in the depths 200 and 300 meters, respectively, see 
[Růžek 1995]. The tremors were found to be located in the overburden sandstone 
strata in the interval 20 -150 meters above the coal seam, see Fig.4. Horizontal 

l'ange of the focus was limited within the radiu s 200 meters. The input set of data -

fl'om the viewpoint of their space distribution - ean be understood as homogeneous. 
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FIG.4. Schematie maps ofloealized events (January-April1994); 
Kla.dno-Mayrau eoal region 

Coneerning the Iocal magnitudes determined of maximum ground veloeity am­
plitud e Amax and hyp ocentre distance r by relation 

(Amax) !vf = log � + 0.96 -logr_ (8) 

The maximum M values did not exceed 2.5, see [Číž, Růžek 1996]. Utilizing the 

local seismic data the parameters of the region of question were determined; in 
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Fig.5 both pattern of cumulative energy in time and magnitude-frequency distri­

bution are shown. The course of cumulative energy inclicates clivision of whole 
the time interval into several stationary parts, which are suitable for predictive 
purposes. The magnitude-fl'equency distribution, which is often used for seismic 
hazard assessment for analyzecl seismic tremol's, does not follow supposed exponen­

tial clistribution: it can better be described by a bilogarithmi c distribution. For 
m ore deta.ils, see, e.g. [Rudajev et al. 1995; Rudajev et al. 1996]. 

In Fig. 6 the time series of mine tremors number and their maximum amplitude 

per day are pl'esentecl; this seismic sequences were complemented by the information 
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FIG. 6. Input seismic and mining time series 

on excavation activities, namely as for the extension of entries in the region under 
study_ This picture shows a centered serřes (relieved of 7-day period) in which 

tl'aining and predictecl intervals are involved. 
Back pl'opagation neural network with one hidden layer wa,s a,pplied for the 

above describecl seismic and mining time seTies. The network has 15 input neurons 
recapting of 5 inputs elements of each time series. The output layer contains only 
one output neuron, which pl'edicts future numbel' of seismic events. The best results 
were obtained with 6 hiclden neurons. Owing to sigmoicl fundlon with limits O ancl 
1, the input series were transformed to interval (0,1). Training process stal'ted with 
50 patterns showing on Fig. 5 and every one new pattern was added to the training 

set. The pattel'llS were sequentially given to the network , a momentum pa.rametel' 
o: was 0.7 and learning rate 1] was set to be 0.3. After about 2000 cycles the network 
was a,dapted. 

In the right part of the Fig. 7 also the diagram of predicted series in time is shown. 

The quantitative evaluation pl'ediction Q ofrelia.bility was reached by me ans ofleast 
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FIG. 7. Actual (thin line) and predicted (thick line) time series of 
number of events per day 

square method according to following equation 

n 

i=l Q = --'--ncc----- (9) 

Here Xi denotes predicted number of mining tremors per day, xi is the observed 
number of the same quality and 2: xl denotes dispersion of the observed time series. 
The application of the above equation indicates that the Q-value approaches to 1. 
It follows that the use of method on the input three series in question does not seen 
to be suitable. 

4. CONCLUSIONS 
It was found, that seismic data complemented by fundamental excavation pa­

rameters, such as e.g. length of entries, volume and rate af exploitation, blasting 
works etc., are not yet sufficient enough for reaching unambiguous mine tremors 
prediction. This result reflects the fad, that mining tremors occur due to final 

deformational process in a given part of rock massif. Reasonable utilizing of the 
methods of prediction is conditioned by complementation input seismíc series by 
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the values of massif properties variable in time and space during a massif load, in 
levels neal' to critical straights va.lues. It  should be pointed out, when studying 
mining incluced seismic events) that majority of the above mentioned parametel's 

cal1 be tested arld 111eaSul'ed iIl the \'ici11ity of lTline trelllors foci. Changes of rock 
massif puameters can be cletermined, e.g. by the measurement of seismic wave 
velocities and a1sorption values of artiflcÍally generatecl pulses ancl by rnonitoring 
the nature acoustic emission, which occurs due to increasecl level of rock loading. 

ApPENDIX: DERIVATION OF GRADIENT DELTA RULE (3) 
vVe suppose eno1' function after l'elation (2) 

" n 

E 1 ",,", ( d'2 = '0 L.r y, - ,J 
.tJ 1'=1 

and incli vidual neurons process inputs a.ftel' l'elation (1) 
n 

Yi = S(,Zi) = S(L W,-iX, + Gi) , 
,=1 

(Al) 

(A2) 

where the total inputs x, to neuron i is a lineal' function of the outputs Zi. The 
bias value Gi is equivalent to čt threshold of the opposite sign. Outputs non-lineal' 
transfer function of neuron is sigmoid function given by Fig. 2 

I 
Yi = ----1 + e-Zi 

(A3) 

The aim ls to fincl a set of weights that minimizes the eum function (Al). To 
minimize E by gradient clescent it lS necessary to compute the partial derivative of 
E with respect to each weight in the network. The backward pass which propagates 
derivative from the top layer back to the bottom one is more complicated. The 
backward pass sta1'ts by computing oE / owji for each 01' the output neurons and 
this partial is written as 

(A4) 
where the fil'st partial derivative is derivative of error function (Al) 

(A5) 

The second partial derivative in exp1'ession (A4) is derivative of sigmoidal function. 
This derivative can be better expressecl as the function of output value Yi 

� o oy; o (1 0 ) -aO'� = Yi - Yi 
�� 

(A6) 



PREOICTION METHOOS BASED ON MULTICHANNEL STATISTICAL EXTRAPOLATION . . . 143 

The least partial derivative in (A4) is computed following 

oz? h 
� = Vj , (A7) uWj i 

where upper index h signs the hidden layer. Now we can compose the partial 
results (A5), (A6) and (A7) we get 

(A8) 

The simplest version af gr adient d escent is to change each weight by foHow ing delta 
rule 

b.WJi(t) = -'TJ\! E = -'TJ :!:a. = -'TJÓ;v;(t) . 
p 

(Ag) 

Computation of weight changes in hidden layer is similar to weight computation in 
output layer. For each weight of hidden layer is computed oE/ow�j by relation 

oE 
OW�j 

(AI0) 

From this relation it is seen that the error of hidden neurons 6; is computecl by 
multiplying error of output neuron 8? and appropriate weight wji' The errot of 
output layer is thereby transferred to the hidden layer. Therefore the output layer 
involves many output neurons than the error of hidden neuron lS given by the 
foUowing relation 

n 

6; = Y; (1- Y;) LwJr6:. (All) 
1'=1 

The weight changes in hidden layer is given by the same delta rule as in output 
layer 

h oE h h-I b.wkj(t) = -'TJ -;-;;:- = -'TJ6í Yk (t). uWkj 
(A12) 

According to above described technique is error back propagated from the top layer 
to the bottom la;;er and the weights are adjusted after relation (5), Form here is 
the name back-propagation method and back-propagation neural networks. 
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