ACTA MONTANA IRSM AS CR (1996)
Series A, No.10(102), 133-144

PREDICTION METHODS BASED ON MULTICHEANNEL
STATISTICAL EXTRAPOLATION AND THEIR
APPLICATION ON INDUCE® SEISMIC EVENTS

Rapim CIZ and Viapivir RUDAIJEV

Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic
V Holesovickach 41, 182 09 Prague, Czech Republic

ABSTRACT. Seismic data obtained by means of local network in Kladno mine region
are the basis for establishing the time series describing the seismic activity of rock
bursts area. In such a way number of individual tremors occurrence and their maxi-
mum amplitude per day was derived. These seismic time series were complemented
by the information of excavation activities, namely as for the length of entries per
day. The questions of extrapolation of these input series were based on the use of
neural networks.
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1. INTRODUCTION

The occurrence of earthquakes and induced seismic phenomena can be under-
stood as a stochastic time-space processes. Similarity of shallow tectonic earth-
quakes and mine tremors — physically equal as concerns a sudden release of seismic
energy — indicates the possibility of applying very similar methods of events mon-
itoring as well as the procedures of data processing and results interpretation. In
many cases mine tremors can be studied as the models of shallow tectonic earth-
quakes. The major difference, however, lies in the nature of both these phenomena:
As concerns mine induced seismic events, besides different nature conditions, an-
thropogenic activities play the decisive role. There are several parameters such as
a primary 3—axial stress fields, namely size and geometry of excavation volume,
rate of excavation process, mining technology applied (especially the parameters of
blasting), etc. All these factors result in the redistribution of the next local stress
field in massif. Given combination of the stress/strain changes and a primary stress
field may — under particular rock parameters — trigger mine tremors.

As for the mine tremors, we have for our disposal relatively detailed information
on local geological and texture structure, on tectonical field, on physical rock prop-
erties and on geometry of focus region. In numerous mines local seismic networks
have been installed; they allow the objective source parameters to be determined,
such as focus location, focus time, seismic energy release (and magnitude, respec-
tively), seismic moment, stress drop, source mechanism, etc. Regardless all this
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detailed knowledge, however, until now neither a reliable deterministic prognosis,
nor a statistical extrapolation of mine tremor occurrence have been found yet. It
follows that a question of mine tremors prediction still remains much important.
Therefore, this contribution deals with extrapolation of mine tremor time series
(as for origin time and events number) utilizing a method of neural networks. The
advantage of this approach, evidently, lies in its adaptability as for the momentary
state of extrapolated tremor series and simultaneous comparison with the past pe-
riod data. The algorithm of neural network is suitable for examining non-stationary
processes of seismic energy release.

2. NEURAL NETWORKS — THEORETICAL BACKGROUND

Artificial neural networks (ANNs) or simply neural networks is a term used to
describe models which simulate certain basic structures of the human brain to imi-
tate some of its functions. It is important to understand what neural networks can
do [Duch, Diercksen 1994] and when their application may lead to new results, hard
obtaining with standard methods. Neural networks are algorithms capable of solv-
ing such tasks as optimization, pattern recognition, filtering, prediction, association
or interpolation. ANNs are composed of simple processing units (called ”neurons”)
operating on their local data and communicating with other units. Thanks to this
global communication the ANN has stable states consistent with the current input
and output values. The weights of connections between the neurons are adjustable
parameters. Their modification allows the network to realize a variety of functions.

Neural networks have a lot of good properties [Miuller, Reinhardt 1990; Masters
1993], which are successfully used. First of all it is possibility of network to learn, it
means to change their own parameters and structure according to specific informa-
tion to better correspond to limited requirements. It has to have certain feedback,
which controls output results and changes network parameters. In the case of su-
pervised learning a set of input and output patterns is shown to the network and
the parameters are adjusted (this is called ”learning” or "adaptation”) until the
outputs given by the network are identical to the desired ones. In the case of unsu-
pervised learning a set of input and output patterns is not at disposal, the network
has to learn of its own errors and to fulfil acceptable criterion. In both cases the
network try to built its own inner model, which would simulate real system. This
ability is next very good property using by prediction [Weigend, Gershenfeld 1994;
Aso et. al. 1994].

The three phases in a neural network processing are: Learning, Generalization
and Operation. Learning is the process by which the network ”learns” to ”recog-
nize” input patterns in the form of a training set of data. Each neural network is
accompanied by a set of rules which define how the neural network learns. Gener-
alization is the ability of a network to give an acceptable response for inputs which
are not members of the training sets. Operation is the application of the network
to perform the tasks for which it was designed.

The fundamental processing unit of neural network is one neuron, which operates
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according to relation [Murat, Rudman 1992; Snorek, Jifina 1996]

Yi = 5<i WriZr + @g‘) : (1)

r=1

where y; is neuron output, z, are neuron inputs, w,; are weights, .S is usually non—
linear transfer function and ©; is a bias value. It receives any number (n) of inputs
and delivers a single output. The neuron consists of an input function, or summa-
tion function, the result of which is feed to a transfer, or activation, function which
in turn determines the output. This function is usually non-linear and maps the
total input of a neuron to an output value. The basic neuron structure is shown in
Fig. 1. One of the most important features of a transfer function is stability. The
derivative of the transfer function determines the proportion of error distributed
to each connection when the weights are adjusted. On the basis of biological mo-
tivations the sigmoid shaped function (Fig.2) is often used. Its derivative has a
Gaussian shape that helps stabilize the network.
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The network architecture is the manner in which the neurons are organized and
connected, i.e., the topology of the network. Neurons can be combined to form
layers. Layers can be connected in any number of ways but two general types of
connection are distinguished: partial and full. In a fully connected network the
output from every neuron in one layer is connected to every neuron in the next
layer. All other networks are partially connected. The strength of a connection
between two neurons is given by the connection weight between them. Three types
of layers are distinguished: the input layer which accepts the input pattern to the
network, the output layer which delivers the network output. The third type of
layers are intermediate layers or hidden layers, which process the accepted data.
An example is shown in Fig.3.

Memory of neural networks lies in the weights interconnecting neurons. The
weights wj; are calculated during a supervised training routine in which a set of

inputs is presented to the network together with a target output. The network
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F1c. 3. The typical architecture of a multilayered feed-
forward neurai network with one hidden layer

undergoes a process of learning which is any change Awj; in the memory. One
of the most popular ways to train a neural network (this is the determination of .
weights w;;) is the back—propagation algorithm (BP) [Rumelhalt et. al. 1986;
Poulton 1992; Dowd, Sara¢ 1994], which is based on a type of least—squares error
minimization by a gradient descent method. They derived an algorithm based on
the following generalized delta rules. The neural networks, which have parameters
adjusted by BP algorithm are called back propagation networks.

The goal of back—propagation algorithm is to minimize the error between the
computed output and the desired target output for given training set. Thus we
choose to minimize the error function, so called energetic function of neural network

o1& 5
b:§:‘é(yr—dr) , (2)

where » runs over the number of output neurons and d,. is target output. First step
of BP algorithm is weights initialization by small random number. Input train-
ing patterns are forward propagated through network from layer to layer applying
weights, calculate output using relation (1). Now, the gradient of the energy func-
tion is computed and the weight changes are given according to following delta rules
[Rumelhalt et al. 1986]

0E
Awly(t) = —n 5 = —nbjy;" 1 (1), (3)
d 8'(1);1 J
where upper index [ denotes the layer, which are weights connected with, 6! is error
of 7th neuron in /th layer and 7 is length of learning step. The error of output
neurons are calculated by relation

6 = (vf —di)yf (L =) (4)

and passed back to each hidden neuron. The upper index o marks neurons in output
layer and y¢ is the output of the network. Appropriate weight changes are made at

each layer simultaneously by relation

wyi(t + 1) = wi;(t) + Awki(t). (5)
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Back propagated error of hidden neurons is given by the equation

n
ST =y A=) D w6t (6)

r=1

where 2 denotes the hidden layer. All training patterns (z) are passed through the
network. Total error is computed as a summary of individual patterns error. Then
the procedure is repeated until the total error reaches a predetermined minimum
value.

Multilayered networks trained by back propagation algorithm are relatively easy
to understand and implement. However, back propagation also suffers from several

number of steps. Paralysis, in which weights take on extreme values and learning
ceases, can be a severe problem unless very small step sizes are used. Small step
sizes can greatly increase training times. Back propagation network can also get
trapped in local minima on highly convoluted energetic surfaces.

Back propagation method is a steepest descent technique with a locality con-
straint. As such, it can be slow to converge when the energetic surface is fairly flat
and small adjustments are made to the connection weights. When the energetic
surface is highly convoluted, large weight changes may overstep the global mini-
mum. There is no guarantee that the direction of the negative gradient is in the
same direction as the global minimum. Therefore, the extended delta rule was used
to attempt to overcome the above mentioned limitations. The extended delta rule
is given by relation [Snorek, Jifina 1996]

Awli(t) = —nsly 71 (t) + abwl(t - 1), 7

where « is momentum. The principal improvement to extended delta rule is a
time-varying momentum term for each connection weight. The extended delta rule
also places more restrictions on the rate of decrement and increment of the step
size and momentum terms.

3. APPLICATION OF NEURAL NETWORKS METHOD

The above described method allows to process arbitrary number of input series
simultaneously. We analysed the followinig series: number of individual tremors
occurrence and their maximum amplitude per day. These data were obtained by
means of local seismic network built up in Kladno coal mine basin. This network
consists of nine seismic stations; four of them are surface stations, three other ones
are located in the excavation level (450 m under surface). The last two stations are
situated along the vertical profile in the depths 200 and 300 meters, respectively, see
[Rizek 1995]. The tremors were found to be located in the overburden sandstone
strata in the interval 20-150 meters above the coal seam, see Fig.4. Horizontal
range of the focus was limited within the radius 200 meters. The input set of data -
from the viewpoint of their space distribution — can be understood as homogeneous.
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F1G. 4. Schematic maps of localized events (January — April 1994);
Kladno-Mayrau coal region

Concerning the local magnitudes determined of maximum ground velocity am-
plitude Anax and hypocentre distance r by relation

M =log <A;;> +0.96 -log . (8)

The maximum M values did not exceed 2.5, see [Ciz, RiZek 1996). Utilizing the
local seismic data the parameters of the region of question were determined; in
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F1a. 5. Characteristic of seismicity

Fig. 5 both pattern of cumulative energy in time and magnitude—frequency distri-
bution are shown. The course of cumulative energy indicates division of whole
the time interval into several stationary parts, which are suitable for predictive
purposes. The magnitude—frequency distribution, which is often used for seismic
hazard assessment for analyzed seismic tremors, does not follow supposed exponen-
tial distribution: it can better be described by a bilogarithmic distribution. For
more details, see, e.g. [Rudajev et al. 1995; Rudajev et al. 1996].

In Fig. 6 the time series of mine tremors number and their maximum amplitude
per day are presented; this seismic sequences were complemented by the information
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Fi1G. 6. Input seismic and mining time series

on excavation activities, namely as for the extension of entries in the region under
study. This picture shows a centered series (relieved of 7-day period) in which
training and predicted intervals are involved.

Back propagation neural network with one hidden layer was applied for the
above described seismic and mining time series. The network has 15 input neurons
recapting of 5 inputs elements of each time series. The output layer contains only
one output neurcn, which predicts future number of seismic events. The best results

were ebtained with 6 hidden neurons. Owing to sigmoid function with limits 0 and
1, the input series were transformed to interval (0, 1). Training process started with
50 patterns showing on ¥ig. 5 and every one new pattern was added to the training
set. The patterns were sequentially given to the network, a momentum parameter
o was 0.7 and learning rate 5 was set to be 0.3. After about 2000 cycles the network
was adapted.

in the right part of the Fig. 7 also the diagram of predicted series in time is shown.
The quantitative evaluation prediction @) of reliability was reached by means of least
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FI1G. 7. Actual (thin line) and predicted (thick line) time series of
number of events per day

square method according to following equation

n

Z(i“i ~ &)’
Q== (9)

n
2
>3
=1

Here #; denotes predicted number of mining tremors per day, z; is the observed
number of the same quality and ) z? denotes dispersion of the observed time series.
The application of the above equation indicates that the ()—value approaches to 1.
It follows that the use of method on the input three series in question does not seen

to be suitable.

4. CONCLUSIONS

It was found, that seismic data complemented by fundamental excavation pa-
rameters, such as e.g. length of entries, volume and rate of exploitation, blasting
works etc., are not yet sufficient enough for reaching unambiguous mine tremors
prediction. This result reflects the fact, that mining tremors occur due to final
deformational process in a given part of rock massif. Reasonable utilizing of the
methods of prediction is conditioned by complementation input seismic series by
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the values of massif properties variable in time and space during a massif load, in
levels near to critical straights values. It should be pointed out, when studying
mining induced seismic events,that ‘Tajority of the above mentioned parameters
can be tested and measgured in the vicinity of mine tremors foci. Changes of rock

massif parameters can be determined, e.g. b} the measurement of seismic wave
velocities and absorption values of artificially generated pulses and by monitoring

the nature acoustic emission, which occurs due to increased level of rock loading.

APPENDIX: DERIVATION OF GRADIENT DELTA RULE (3)

We suppose error function after relation {2)

i ,
- EZ( o) (A1)

=1

N

and individual neurons process inputs after refation (1

=Mz = S’(i: WriTr + @i) , (A2)

\
r=1

where the total inputs z, to neurcn 7 is a linear function of the outputs z;. The
bias value ©; is equivalent to a threshold of the opposite sign. Outputs non—linear
transfer function of neuron is sigmoid function given by Fig. 2

1

{

The aim is to find a set of weights that minimizes the error function (Al).
minimize £ by gradient descent it is necessary to compute the partial derivative of
E with respect to each weight in the netwerk. The backward pass which propagates
derivative from the top layer back to the bottom one is more complicated. The
backward pass starts by computing 0% /0wy, for each of the output neurons and
this partial is written as

O0FE _ OF 0yf Oz (A4)
duwg, Oy 0z 0wy’
where the first partial derivative is derivative of error function (A1)
OF
= /'1 -0 — (1,72 ” /A5
51}20 \J’Z ) N )

The second partial derivative in expression (A4) is derivative of sigmoidal function.
This derivative can be better expressed as the function of output value y;

oy
o
9z

=3 (1—9f) . (AS6)
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The least partial derivative in (A4) is computed following

b0
02

o
owy;

: (A7)

__,h
__y]

where upper index & signs the hidden layer. Now we can compose the partial

results (A5), (A6) and (A7) we get

oF
= (v —di)y} (1-9]) v} - (A8)

=
3tuj£ 5

The simplest version of gradient descent is to change each weight by following delta
rule

Ol ,
oy, = (t) (A9)

Awfi(t) =-nVE=—7g

Computation of weight changes in hidden layer is similar to weight computation in
output layer. For each weight of hidden layer is computed 8E/8w2j by relation

5wy
N
O0E _'8E 8y 0z Oyl; 0z}

= : Al0
owy, Oy 0z) Oyl 0z} dwp, (410)

o
h
b;

From this relation it is seen that the error of hidden neurons 5;’ is computed by
multiplying error of output neuron ¢ and appropriate weight w?;. The error of
output layer is thereby transferred to the hidden layer. Therefore the output layer
involves many output neurons than the error of hidden neuron is given by the

following relation
= (1-a) D ugae. (A1)
r=1

The weight changes in hidden layer is given by the same delta rule as in output
layer

OF .
Awg;(t) = =1 = = =08y 7' (1). (A12)
kj

According to aboye described technique is error back propagated from the top layer
to the bottom layer and the weights are adjusted after relation (5). Form here is

the name back—propagation method and back—propagation neural networks.
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