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ABSTRACT. The seismic moment tensor inversion method was performed to deter-
mine the focal mechanism of mining tremors in the Halemba mine area. This method
described previously by [Wiejacz 1991] and [Gibowicz 1992] gives more complete im-
age of the fracture process in the tremor source than the classic fault plain solution.
545 mine tremors were analysed using the SMT software elaborated by [Wiejacz
1994]. The results are presented as the percentage shores of the particular compo-
nents, showing which type of mechanism is the most important during the fracture
process. The obtained results of the seismic moment tensor determination are pre-

sented in Figs. 2-7.

1. INTRODUCTION

The seismic moment tensor inversion method was performed to determine the
focal mechanism of mining tremors in the Halemba mine area, situated in the
western edge of Klodnica fault {Upper Silesia Coal Basin — Poland). The research
was the last stage of the former investigation performed in the Wujek and Slask
mine areas presented during the years 1994-1996 [Sagan et al. 1995; Sagan et al.
1996; Dubiel 1996].

545 mine tremors were analysed using the SMT software elaborated by [Wiejacz
1994]. The energy and depth range of the investigated tremors was quite larger
than in the previous research. The depth varied from —350m to —1150m and
the energy range was from 1-10%J (Mg = 0.71) to 1-10%J (Mg, = 2.54). The
method described previously by [Wiejacz 1991] and [Gibowicz 1992] gives more
complete image of the fracture process in the tremor source than the classic fault
plane solution. The decompeosition of the seismic moment tensor presents the focal
mechanism as a result of three fracture processes:

— volumetric changes represented by the isotropic component of the seismic
moment tensor;

— uniaxial compression (or temsion) represented by the CLVD component
(compensated linear vector dipole);

— shear failure represented by the DC component.
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The results are presented as the percentage shares of the particular components,
showing which type of mechanism is the most important during the fracture process.
The additional information can be obtained by the spatial orientation of the fault
planes from the DC component.

The Halemba mine is situated in the western edge of the Klodnica fault and
closely to the folded region of the western USCB area. The geological structure
is similar to the Wujek and Slask mine areas, because it is situated in the same
geological structure — the Main anticline. Coal seams have the weak dip to south
(5-12°). The Klodnica fault (amplitude 100-300 m) forms the southern boundary
of mine area.
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F1G 1. The horizontal distribution of the investigated tremors with
seismometer positions.
X — seismometer site
o — locations of tremor’s source
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The investigated tremors group into three regions according to the performed
mining activity in 1995. The horizontal distribution of the tremors foci is presented
in Fig. 1. These regions were situated relatively well in relation to the existing
selsmic network, much better than the tremors from the previous research. The
number of the seismometers was also larger (16 stations). The results obtained
with such a large number of the seismometers should be more reliable than in the
Wujek (12 stations) or Slask (8 stations) mine areas. The number of stations is
the maximum available number of entries, in some cases the smaller number of the
stations had to be used for the calculations.
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2. Tue OBTAINED RESULTS

The obtained results of the seismic moment tensor determination are presented
in Figs. 2-7. Figures 2, 3 and 4 shows the percentage shares of the particular compo-
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nents. The isotropic component plot (Fig 2.) shows some kind of bimodal character
with maximum shares for about —20 % and +40 —50 %. According to this plot and
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to the previous results two types of the mining tremors can be distinguished: the
first one with relatively big share of isotropic component corresponding with weak
DC component share, and the second one with dominant DC components. This
two types of events are also visible in Figs. 7, where two dotted areas can be ob-
served. The first dotted area {(on the negative range of both variables) corresponds
with dominant DC component share. The second one (on the positive range) is less
visible due to the various value of the CLVD compounent.

The unimodal distribution of the DC component share (Fig. 3) is similar to the
previous research [Dubiel 1996; Gibowicz 1996; Sagan et al. 1996]. The second
maximum suggested in the other mining areas disappears on the DC component
plot for the Halemba mine area.

The CLVD distribution plot (Fig. 4) is also unimodal with maximum between
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—10 — 20 %, which corresponds with DC maximum (60-70 %) and I component
maximum (—20--10%).

The plots of the relationships between show the high correlation between the
particular components of the seismic moment tenscr and emphasize the general
distribution of the obtained types of mechanisms. Of course such relationships
are mathematically. The results are very similar to the presented ones previously
[Gibowicz 1996], the correlation coefficients seem to be the best for DC versus I
plot and DC versus CLVD plot. The relationship between I and CLVD components
is much worse.

A big number of the investigated events and a significant depth and energy
differentiation gave the opportunity to make the plots of the relationship among
energy (magnitude), depth, and particular components of seismic moment tensor.
On the Figs. 8 and 9 the relationships between DC and depth (or energy) are
presented. For the small events (log(£) < 5) the random distribution of the DC
share 1s observed. For the stronger tremors there is no solutions with low DC share,
all events have DC share close to 60-70 % interval. According to the presented plots
the pure shear seems to be the dominant failure mechanism for the strong events.
It is consistent with the previous papers on the bimodal character of the mining
induced seismicity, e.g. [Kijko et al. 1987; Idziak et al. 1991], where the strongest
events were assumed to be weakly related to the mining activity, but closer related
to the regional stress disturbances.

The above mentioned relationships are less visible on the next plots (Figs 10
and 11), presenting the isotropic component share as a function of the depth or the
energy.The similar situation can be observed in the next two plots (Figs 12 and 13)
with CLVD component shares.
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