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ABSTRACT. A study of the space distribution of rock—mass physical parameters is a
geal of the seismic tomography. Besides well known travel time (velocity) tomography
the amplitude tormography becomes more and more popular. It provides information
about the distribution of the waves attenuation coefficient . In this paper, the
foundations of the spectral approach to the amplitude tomography are described in
the context of the mine applications.

1. INTRODUCTION

The investigations of a rock-mass state, existing stress fields and their temporal
changes are very important for a mining practice and for better understanding
of physical processes leading to seismic, induced by mining, events. The seismic
tomography prevides the spatial distribution of some physical parameters like the
P and S wave velocities, the quality factor @, etc. inside rock-mass. The obtained
images interpreted according to empirical relations between rocks parameters and
external loads, allow to estimate the stress fields 1n the rock-mass and their temporal
variations.

The seismic tomography uses seismic waves coming from artificial (active to-
mography) or natural (passive tomography) sources to “probe” the structure of the
medium. The waves propagating through the medium (see fig. 1) accumulate in-
formation about physical parameters of the passed regilon. Recorded on the surface
of the region they are inverted for this information.

The amplitude tomography makes use of the effect of the attenuation of seismic
waves due to the absorption of an energy by the medium which leads to a (additional
to the geometrical spreading) frequency dependent vanishing of the amplitudes of
seismic waves with the source-receiver distances. This measurable effect can, in
principle, be used for an estimation of the spatial distribution of the attenuation
factor @ but in practice it is not used due to a sensitivity of such a method to
a noise. Instead of that, the effect of the frequency dependence of the energy
absorption is utilized. Namely, the spectra of recorded seismic waves differ from
the emitted (source) ones due to the frequency depending nature of the attenuation
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I'1G. 1. The tomographic investigation consists in multiple “illumi-
nating” of the explored region by means of seismic waves
and recording of passed waves on its surface. The recorded
seismic traces are inverted for the spatial distribution of
studied parameters.

[Gibowicez, Kijko 1994; Aki, Richards 1987] (see fig. 2). For the linear absorbing
medium, the relation between these two spectra is given by the formula

A = aspin) - e {1 [ o2t &

where As(f,7) is a modified by a geometrical spreading spectrum of “source”, Q
is the quality factor and v is the velocity distribution. The integral is calculated
along the path R of the wave pr'opagation from the source to the receiver.

The method based on the analysis of the spectra of recorded seismograms we
shall call the spectral approach to the amplitude tomography.

The main difficulty in an application of the amplitude tomography comes from
the fact that amplitudes of the recorded waves depend on both the attenuation of
the medium and an amount of the energy effectively emitted by the source. The
spectrum of the source (term A; in equ. (1)) is usually not known and, to make
the matter worst, depends on an angle of the wave emission. So using of this
method requires some additional assumptions. In case of the active tomography



[ouy

THE PRINCIPLES OF THE AMPLITUDE TOMOGRAPHY

2
10

Displacement Spectrum
-l —t
o o

)
2]

10 Fc =30 Hz
Q=160
-8
10" |~
10-10
0 50 100 150 200 250 300

Frequency [Hz]

Fra. 2. The modeled spectrum of the recorded seismic waves for
the source described by the Brune model. The upper curve
corresponds to the perfect elastic medium (there is no
attennation) while the lower one has been obtained for
Q = 100. The modeled spectrum includes 10 % of the
Gaussian, (1/f* type) noise and the white noise with a
relative amplitude of order of 1076.

when sources are explosions, all sources are assumed to emit the same amount of
the seismic energy isotropically. On this assumption, it is possible to use imme-
diately the amplitudes of waves with a chosen frequency to obtain the image of
@ distribution. This method, is however, seldom used due to its sensitivity to a
noise in the data. The more robust approach [Evans, Zucca 1988] takes a spectrum
recorded by one of the geophon (seismometer) as a reference one and uses the ratio

)
" Aref(f)'

to get rid of the source depending term. This approach cannot be used in the
case of the passive tomography when the emitted energy changes from case to case
and is emitted significantly non-isotropically. This is a situation encountered in
the mines environment. The most popular method used in such a situation, called
the spectral ratio decay technic [Sanders 1993], is founded on the assumption that
the high frequency part of the displacement source spectrum corrected for the
geometrical spreading behaves like

As(f)~f77  for f>fe,
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where f. is the corner frequency and the slope coefficient v ~ 2 (e.g. for Brune
model [Brune 1970] v = 2). Then for f > f. the spectrum recorded by the i**

receiver can be approximated by
In A*(f) = comst. —vIn(f) —d'f, (2)

where the coefficient d*

- ds
d'(Q; f) = e

(Q; f) O (3)
does not depend on the source parameters but only on the distribution of @ and a
wave propagation path!. The coefficients d* cccur to be the convenient, measurable
parameters that can be inverted for @ and in following they are referred to as the
measured dafa. In this approach th
on the accuracy of retrieving of d* coefficients from the data. It should be kept
in mind that the coefficients d* depend on the frequency due to the frequency
dependence of @ factor [Dgbski 1996]. This fact can be disregarded when only
rough tomography inversion is performed but has to be taken into account for
more detailed analysis.

2. TOMOGRAPHY AS THE INVERSE PROBLEM

The task of construction of the spatial distribution of @ from the measured
data is a typical inversion problem [Tarantola 1987; Debski]. The solution of this
problem requires experimental data as well as theoretical information on a solution

of, so called, forward problem, i.e. ability of a theoretical modelling of & for a given
Q distribution. The equations (2), (3) solve the forward problem. Let us notice
that the relation among d* and @ in equ. (3) is nonlinear. However, using instead

of @ its reciprocity
1

Qz,y,2 )’

we come to the linear form of the forward problem

& = j{gi (o5 sy (5)

The above linear relation can be symbolically written as

(4)

m(z,y,z) =

d = G -m,

where the linear operator G describes the integration procedure.
The most general solution of any inverse problem (so also the amplitude to-

mography problem) consists in a defining an a posterior: probability density over
the space of all possible models m. Tt can be shown [Tarantola 1987] that for the

Tn following we shall assume that the velocity distribution v is known e.g. from earlier
performed travel time temography.
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Gaussian measurement and a priort uncertainties the required probability density
reads

c(m) = g~ 5(m)

where the function S(m) is given by

5’(1}1) :(G m — dabs)TC[_)l(G " AL dobsj
- (6)
+ (Mgpr — m)TCE{l (mgp, —m)

and Cp, Cpy are the covariance operators describing data errors and uncertainties
of the choice of the a priori model mgp, respectively.

The above formula together with equ. (4) and (5) provides the theoretical so-
lution of the discussed amplitude tomography problem in the framework of the
made assumptions. However the explicit calculation of S(1a) is a very complicated
numerical task due to the size of the problem. In real situations when the obser-
vational data and parameters m¢ number in the thousands the only characteristic
of the a posteriori probability density that can be calculated is the model m™M%
for which o(m) reaches its maximum. This model, called the maximum likelihood
solution, minimizes the sum of the squares of differences between predicted (mod-
eled) and observed data. The numerical searching of m™?¥ requires discretization
of the distribution m(x) which is achieved by the division of the spaces into blocks
and assigning to each of them constant values of m?. Thus, the spatial distribution
m(x) is replaced by the vector {m?} = {m!,m? ...} and the operators G, Cp and
C s become matrices.

3. THE Steepest Descent ALGORITHM

There exist many ways of finding of the likelihood model m™¥% based on vari-

us optimization algorithms. One of the most popular approaches is the method

founded on the preconditioning steepest descent algorithm. To find the maximum
of o(m) according to this method the following steps are iterated

¢ The a priort model is taken as the initial one
my = Mgy,
e For the given model m,, the gradient of S(im) is calculated
Tn = CuGTCH' (G mp — doss) + (mp — Mgpr)

e The gradient ¥, is preconditioned by the operator being an approximation
of the operator of the second derivatives of S(m)

‘;611 = I:Io “Tn

where
H, ~ (I+CuyGTCcp'G)™
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e The model m, is updated

where u, reads

_ Ta Car $n
$TCrldn + (Gon)' Cp! (Gén)

Hn

e The iterative loop is repeated until some termination criterion is attained.

The most important elements of this algorithm is calculation of the gradient ~.
It is calculated in the following steps

1. For a given model m,, the forward problem is solved and the residua between
calculated and observed data are calculated

Ad:t = Z m{'zéw - dibs
J

where

v

i A8s7 if {*h ray intersects j* block
&' —
0 in other cases

As? is a length of the ray path inside j** block and v/ is a velocity assigned
to j** block.
2. The residua are weighted

Ad, =) (e Ad,
J

3. Next they are back-projected to the model space and spread out around the
ray path

Amd, = AdL T
where
Wi =Ygt
k
4. Finally the ¢ prior: information is added

7% = Am{z + (miz - mZLpr) ’

which ends the calculation of the gradient 4.
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Muminating

I'1G. 3. Hluminations of the study object by the seismic waves (up-
per part) produce the projections (modelling data). The
back-projection procedure (lower part) takes these data
and transport along the ray path in the opposite sense
(from receivers to sources). The intersection of so trans-
ported data forms the object which is an approxnnatlon
of the real object.

Two steps of the above mentioned algorithm require some explanations. The
first one is the procedure of the back projection.

The solution of the forward problem consists in “illuminating” of the studied
object by seismic waves and recording obtained projection images. The back pro-
jection operation takes as an input the above projections (or more precisely, the
difference between observed and modelled projections) and transports them along
the wave path from receivers toward the source (see fig. 3). In this operation the
residua are inverted into disturbances of the parameters m* of blocks around the
ray path. The matrix ¥¥ describes how many blocks around the ray are disturbed.
If the covariance matrix Cjs is diagonal

cl ~ &
then only blocks through which the ray is passing give nenzero contributions to the
gradient matrix y

The second comments concerns the operation of the gradient preconditioning.

The gradient vector v points the local direction of the steepest descent. In case of
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[terative solution

Fi1a. 4. The basic elements of the preconditioned steepest descent
algorithm: modelling, calculation of residua and precondi-
tioning (upper part), back propagation (middle part) and
model updating (lower part).

linear forward problems it is the direction towards the global minimum of S(m).
The goal of the preconditioning is to modify a “length” (and a direction in case of
non-linear forward problems) of 7 in order to put its “end” to the real minimum
as close as possible. The choice of the preconditioning operator is crucial for the
algorithm convergence. In the simplest case taking H = I, a very slow convergence
and large oscillations around minimum can be expected. On the other hand the

choice i
Hy = (I+CyGTCpla)!

causes that the minimum is reached in a single iteration step.
The figure 4. shows the most important steps of the described algorithm.

4. SUMMARY

The amplitude tomography provides information about the state of the rock-
mass complementary to that supplied by the velocity tomography. Its application
requires either full control of the wave sources or additional assumption concerning
spectra of the emitted waves. Due to this the method is not as much popular as

the velocity tomography.
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Construction of the tomografic image of the attenuation factor is the inverse
problem and its most general solution relies on assigning of a given probability to
any possible distribution of the Q factor. This a posteriori probability expresses
our confidence that a given distribution is the real one. In most cases such a proba-
bility cannot be found explicit for a computational reason. Then only the likelihood
distribution is calculated by means of iterative optimization methods. Let us point
out that the iterative, gradient optimization methods suffers from the well known
drawback: the found solution can correspond to some local maximum of the a
poslerior: probability density, and not necessarily to the global one. However the
tomography problems are so large that using global optimization methods (Simu-
lating Annealing, Neural Network, Genetic Algorithms, etc.) for solving the real
problems is still not possible.

The other point is that the application of the amplitude tomography in the mine
environment requires using waves of relatively large frequencies to resoive the small
heterogeneity in the distribution of Q. Very often this condition cannot be fulfilled
for the passive tomography. In such a situation the spatial distributions of rock-
mass parameters can still be obtained but then using the more general waveform
inversion method based on the full solution of the wave equation [Tarantola 1988]
1s required.
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