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ABSTRACT  
The mathematical model of the swelling systems rheology is considered. As a basis of a model the generalization of the
consolidation theory was used on a case when the mass of a solid phase of a porous skeleton changes due to an overflow of a
fluid during processes of swelling / shrinkage under action of osmotic pressure. The problem of swelling / shrinkage of a clay
layer is put and solved. On the basis of the analysis the decision features of a model, important for the explanation of some
characteristic properties of processes in swelling systems, are investigated. It is shown, that the received decisions are in the
good consent with results of experiments.  
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2. PHYSICAL AND CHEMICAL MECHANICS OF 
CLAYS SWELLING  
We shall write down the basic equations of 

mechanics for such systems. We start with the 
equation of balance of mass. For mass of a liquid 
phase we have: 
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For mass of substance of a skeleton we have 
accordingly 
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The mass of a representative element of volume 
of the porous environment is 
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From (3) for the density of substance of a 
skeleton we have: 
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We divide the equations (1) and (2) on fρ  and 
after we fold results. Then with the account (4) we 
receive 

1. INTRODUCTION  
Swelling systems are traditionally the object of

steadfast attention and research on physical and
chemical mechanics, biomechanics and biophysics,
physics of polymers, hydrogeology and of some other
disciplines. Soils, clayey rocks, some polymers and
also some polymer systems in live organisms are
examples of swelling systems in the nature. Usually
the mechanics of such systems is constructed on the
basis of empirical rheological models, which can tell
us a little about the physical nature of swelling in such
systems. There is an imperative need of association of
only mechanical representations about processes in
swelling systems with physical and chemical
properties of such systems, which are common both
for inorganic, and for organic objects. In our opinion,
such property can be osmotic pressure in swelling the
systems, which is «driving force» of the process of
swelling. Osmotic pressure is the reason of an
overflow of a fluid in a solid matrix to an occurrence
of the additional pressures stopping finally process of
swelling. Therefore the swelling matrix can be
considered as the porous environment with a swelling
skeleton. As the model describing mechanics of such
systems, it is possible to choose well known model of
consolidation (Nikolaevskiy, 1996), however last is
necessary for generalizing on a case of a porous
skeleton of variable mass. The thermodynamics of
swelling is stated in a lot of fine works which we shall
use (Guggenheim, 1933). 

 



M. G. Khramchenkov et al. 

 

48

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )
( )

( )

1,
3

s s

e
s s fs

e e
s s

s

i
s si
ij i ij

V Vj j

s s
ij j i ij j i i i

S

s f
ij j i i i

S S

f f
i i ii

UA dV U dV
dt x x

n U dS n U dS pn U dS

n U dS p n U dS

pn U dS

δ σ σ

σ σ

τ σ

σ σ

−Σ Σ

Σ

∂ ∂
= = =∫ ∫

∂ ∂

= = + − =∫ ∫ ∫

= + − + +∫ ∫

+ − = −∫

(11)

Passing in (11) to average on representative 
volume values, we shall receive: 
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Entering definition of tensor of effective stresses
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Let's write down for (12) 
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Let's consider the last member (13): 
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Noticing, that 0 0V V ϑ= &&  , we shall receive: 
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Let's consider now a situation when actually the 
skeleton shows elastic properties. As the experiment 
shows, it is fair for small deformations, but is not 
carried out for big ones. In this case from (13) and 
(14) we have: 
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As free energy of a skeleton, generally speaking, 
is function 2( , , )s sF F J mϑ′= , then 
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From (15) and (16) follows that 
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Let's explain a view of the equation (5). It
immediately follows from definition of shrinkage

0 0/dV V dϑ= , introductions of designations

κ
ρ
ε

=
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and ( )f sm= −q V V . The equation (5) can 

be easily transformed to a view 
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It is obvious 0→∇ϑsV
r

as a value of the 
second order of trifle. Then from (6) we have 
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Let's define div /s tϑ= ∂ ∂V . Then from (7) it is 
finally received: 
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We shall pass now to the equation of balance of
forces. We shall write down it in the form of the
equation of balance: 
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which after introduction of a designation
(1 )( )s f

ij ij ijm pσ δ σ− + =  comes to the view, which is
traditional for the theory of consolidation: 
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We will address now to the equation of balance
of energy. We shall write down the first and the
second laws of thermodynamics as 

 

( ) ( )

( )

( ) ( )

, 0

e i
s

e
s

i e
s s

dU Q A

TdS Q Q Q

A dU Q dF Q

δ δ

δ δ δ

δ δ δ

⎫= + ⎪⇒⎬
′ ′= + ≥ ⎪⎭

′⇒ = − = +

                      (10)

 

According to the theorem of alive forces we shall
write down for a case of absence of action of mass
forces 
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Then from (21) we have for osmotic pressure π: 
 

( )2 2π 4 2 .
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At case when C=0 we have from (22) 
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On particles of a skeleton there are two acting 
forces - osmotic pressure in pore solution and the 
effective stresses, which prevent swelling. It is 
obvious, that the difference of these two forces 
determines the resulting force, which leads either to 
swelling or to shrinkage. Thus, it is rational to write 
down the equation of swelling as  
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t
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(24)
The equation (24) describes the dynamics of 

change of a skeleton mass due to inflow (expression) 
of water during swelling (shrinkage). The equations 
(23) and (24) close the general system of the equations 
of mechanics of swelling (shrinkage) process.  

 
4. RHEOLOGICAL PROPERTIES OF SWELLING 

CLAYS 
 The rheology of swelling systems will be 

examined on the example of one-dimensional problem 
of swelling/shrinkage of swelling layer under the 
action of the constant load being enclosed to a layer. 
Statement of a problem follows from the equations 
(8), (9), (17), (20), (23), (24) being added to the law of 
Darcy for a speed of a filtration and definition of 
swelling/shrinkage. 
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Thus, required functions of the system (25) -
(31) are σf, p, ϑ , m, k, q, V0, π. Constants of the 
model are Г, η, k0, A, V0

(0), ρw, ρs, e, α, R, T. 
Boundary conditions of the first type look like: 
 

 
 

 

Believing according to Ljakhovskiy et al., 1984
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The equations (17) play a role of rheological
relations. It is interesting to notice, the first equation
(17) together with (9) allow explaining the occurrence
of abnormal high pressures of a fluid in a layer with a
swelling skeleton (Duynin, 2000). 

 
3. DYNAMICS OF CLAY SWELLING  

Now the process of swelling will be examined in 
more detail. We shall come out of the concept of an
osmotic cell suggested by one of the authors in
Khramchenkov, 2004, according to which, in
equilibrium conditions, the osmotic pressure can be
found from the equality of chemical ionic potentials of
a solution inside a firm skeleton and of a solution in 
transport pores: 

 

, 1, 2i i iμ μ= =                                   (18)
 

Choosing as an example for calculation 1-1 
electrolyte and using standard representation for a
view of chemical potential, we shall receive 
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Last equation in (19) represents a condition of
Donnan's balance (Guggenheim, 1933). However, the
system of the equations (19) is not closed. For its
closing we use a condition of an electroneutrality of a
system « a firm phase of a skeleton - a solution in 
pores»: 
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In physical sense the equation (20) means that
firm particles of a skeleton carry superfluous (for the
definiteness let's consider it to be negative) electric
charge. This charge is compensated by cations of pore
solution, so there is a surplus of cations in comparison
with anions of pore solution, which brings to the
occurrence of osmotic forces. The described script
entirely concerns such swelling systems, like clays,
and also a number of others. The decision of the
equations (19) with the account (20) is  
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5. ANALYSIS OF THE RESULTS 
As experimental data of the distribution of 

pressure and shrinkage in a deformable layer, which 
should be defined in parallel rheological experiences, 
are absent, values of parameters of model got out of 
reasons of convenience of the calculations; therefore 
conclusions of the unit have a qualitative character. 
The variation of values of parameters did not change a 
view of received dependences. Calculations have 
confirmed the expectations of physical character 
showed in the model. So, in our opinion, it is 
interesting to see the structure of pressure for a case of 
using a boundary condition (32). It is visible, that the 
stationary zone appears in the central part of a layer, 
where is no current. In this zone, the stream arrives 
from the right part being removed from the left side. 
Corresponding distribution of shrinkage is resulted at 
Fig. 2. It is visible, that the zone of an entrance of the 
stream corresponds to both the zone of swelling 
(positive values) and to the zone of removal of the 
stream - the zone of shrinkage (negative) so that a 
deformation appears as non-uniform on a structure. It 
is interesting, that schedules of shrinkage for both 
problems coincide. Basically in the second case 
(condition 33), water starts to be squeezed out of a 
layer. If on the left border is the place where the water 
passes and the zone of shrinkage appears, on right 
border there is no place for water to pass, and the zone 
of swelling appears. The graphs of dependence of 
shrinkage speed being averaged by the layer from the 
enclosed load, well coincides too (Fig. 3). It is visible, 
that the character of the received curve corresponds to 

0z zp Г= = , 00 pp z ==                                         (32)
 

or the second type 
 

0
/ 0z zp z =∂ ∂ = , 00 pp z ==                                   (33)

 

Initial condition is: 
 

( ,0) 0zϑ =                                                               (34)
 

The view of the equation (26) can be accounted
for an unknown rheological ratio as the assumption of
elastic character of reaction to the enclosed load being
fair only for small deformations of the environment.
We shall act as follows. We assume that transport
porosity of the environment is small, so it is possible
to count this assumption fairly in many cases (for 
example, for such natural swelling systems like clays).
As one variable in system (25) - (31) is determined,
one equation becomes superfluous. Let it be the 
equation (26). Besides it we shall notice in passing the
dependence of filtration speed on a gradient of
pressure (28) becomes simpler. Further, the problem
was solved numerically. In both problems (for
boundary conditions of the first and second sort (32) 
and (33) accordingly) the circuit used obvious
difference scheme. In the second problem (i.e. for a
boundary condition of the second sort (33) on an
entrance in a layer) the method of prorace was used
for finding a structure of pressure. Results of
calculations are shown in Fig. 1, 2, 3. 
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Fig. 1 Steady state pressure profile in layer: 
1 – first type boundary condition on right bound; 
2 – second type boundary condition on right bound 
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Fig. 2 Shrinkage profile in layer 
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Fig. 3 Average shrinkage velocity versus stress load 
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 eij - the tensor of speeds of deformations; 
F - free energy of a body with micro-fractures; 
Fs - free energy of a firm phase of a skeleton; 

s
iji - deviator 

s
ijσ ; 

 j - an exchange stream between a skeleton and transport pores; 

2J ′  - the second invariant of deviator of the tensor of
deformations; 

k - permeability of environment; 
z0 - thickness of a layer of clay; 
Ms - weight of a firm phase; 
m - free (transport) porosity; 
q  - speed of a filtration; 
q - the module of q ; 
p - pressure in a liquid phase; 
Q(e) - external heat; 
Q′  - non-compensated heat; 
R - a universal gas constant; 
T - temperature; 
t  - time; 

sS  - entropy of a firm phase; 
e
sS  - a free surface of particles of a firm phase; 

 Tij - deviator of the tensor of effective pressures; 
Us  - internal energy of a firm phase; 
Ui - components of a vector of the speed of skeleton particles
displacement; 
dV  - the element of volume; 

0V  - representative volume; 

sV  - volume of a firm phase; 

fV  - speed of a fluid in transport pores; 

sV  - speed of a firm phase; 

 xi, xj - coordinate axes; 
z -  a vertical axis. 

Greek: α - mass transfer constant; 
Γ- external load; 
εij - tensor of deformations; 

ijδ  - delta-symbol of Kronoker; 

η - viscosity of water; 
λ, μ, ν - elastic constants; 
 μi - chemical potential of an ion in a solution (the index 1 concerns

to cation, an index 2 - to anion); 
π- osmotic pressure; 
θ - shrinkage; 

θ&  - speed of shrinkage; 
ρf - density of a fluid; 
ρs  - density of a firm phase; 

f
ijσ - tensor of effective pressure; 
fσ  - a trace of the tensor of the effective pressure; 
s
ijσ  - the tensor of the true pressure of a skeleton; 

σ  -  a trace of the tensor of the true skeleton pressure 

sΣ  - a general surface of a firm phase; 

s f−Σ - a surface of contact of fluid-skeleton. 

Indexes: e - means an external part; f - a designation of an
accessory to a liquid phase; 0 - designates an initial condition; s -  a
designation of an accessory to a firm (solid) phase, or a porous
skeleton; f, s, e, 0 - have the same sense both in top and in the
bottom position; i, j - without brackets mean projections to axes of
coordinates; (i) - concerns to work of internal superficial forces;
(e) - concerns to external heat; the point above the letter designates
a partial derivative on time; the stroke means the deviator of
corresponding tensor, behind the exception of Q′ (non-compensated
heat); feature from above marks an accessory of parameters to the
pore solution, i.e. a solution in structure of a skeleton of
environment. 

the Bingham’s rheology, and it is seemed to be quite
plausible for swelling systems such as clay (Mitchell,
1993). It is interesting that the value of a maximum
load on a layer physically providing absence of
swelling of mass linearly depends on the size of
exchange capacity e and parameter α and practically
does not depend on the permeability of environment. 

 
6. CONCLUSIONS 

 The problems comprising in this or that way
rheological models of swelling environments, such as
clay or clay rocks, frequently appear in technology or
engineering geology. As usual, some of hypotheses
about the rock rheology, for example, Bingham's
rheology, are necessarily included in such models
throughout. Necessarily we had  to offer such model
of environment, which could not use a priori any
assumptions about the rheology of environment being
at the same time based on the known experimental
facts concerning the properties of environment (for
example, presence of osmotic pressure in the system,
which leads to swelling). Such model has been
developed by association of the theory of
consolidation with model of an osmotic cell. Based on
the developed model the elementary problem about
the shrinkage of swelling layer under load has been
solved proving, that the model allows correct
description of an experimentally observable rheology
of clays and clayey rocks. 
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DESIGNATIONS  

Latin: A(i) - work of internal superficial forces; 
C - concentration of solution in transport pores; 
C1 - concentration of cations in a solution; 
C2 - concentration of anions in a solution; 
dS - an element of the area on which integration is spent;  

ijG  - the tensor of external load; 

 e - exchange capacity of clay; 


