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ABSTRACT  
Four space geodesy techniques, namely VLBI, GPS, SLR and Doris, produce Earth orientation parameters (EOP) and station
coordinates independently of each other. A method to combine them in a non-rigorous way (as described elsewhere) was 
modified by implementing Vondrak’s smoothing. It replaces a simple constraint to tie EOP at adjacent epochs by a more
general expression defining smoothness of the resulting curves. This gives the method better stability of derived EOP. 
The new method was tested on GPS, VLBI and SLR data covering a one-year interval. The results were compared with the 
results of the original method and with the IERS c04 solution. The former indicates the effect of modification while the latter
shows differences of this particular solution from the official IERS series. 
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 created from the normal equations and covariance 

matrices of the individual techniques (e.g.
Gambis et al., 2006). Efforts are made by several 
groups to develop the necessary algorithms, but: 
The first approach is extremely complicated and,
up to now, it has only been tested on a very 
limited network. The second approach is 
apparently simpler but even in this case the 
problem of applying properly all specific 
constraints to the new system remains still open. 

• It is also possible to derive an approximate 
solution by combining results of the individual 
techniques omitting covariances. We use this 
non-rigorous approach because it yields a stable 
solution, provided some simple constraints are 
applied.   

 

For deriving a function from scattered data, the 
Vondrak's smoothing (Vondrák, 1977) is widely used. 
The method is designed to find the most probable 
function values as a compromise between the least 
squares fit and the demanded function's smoothness. 

We implemented the Vondrak's smoothing to the 
non-rigorous combination as a more sophisticated 
approach to tie EOP at the adjacent epochs. The first 
comparisons with the simple linear constraints are 
presented in this paper. 

 
2. NON-RIGOROUS COMBINATION 

The basic idea of the method is to combine 
station position vectors, xC, in the celestial reference 
frame (e.g. Pešek and Kostelecký, 2006), where they

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

1. INTRODUCTION 
Orientation of the Earth's body in space is 

described by five angles, called Earth orientation 
parameters, EOP, which tie the Earth-fixed coordinate 
system ITRF to the celestial reference frame. The
EOP are  two coordinates of the intermediate pole 
with respect to the ITRF, xp, yp, a time correction 
UT1–UTC, which characterizes irregularity of the 
Earth's proper rotation and, finally, two components 
of the celestial pole offset, dX, dY, which denote the 
observed corrections to the adopted precession-
nutation model (not used in the present paper). 
International reference frame ITRF is realized by 
geocentric rectangular coordinates of reference points 
of a set of stations (observatories) equipped with one 
or more high precision observation techniques. 

The space geodesy techniques used to produce 
the EOP and station coordinates are Global Position 
System (GPS), Very Long-Baseline Interferometry 
(VLBI), Satellite Laser Ranging (SLR), and recently 
also Doris, all of them working with a high internal 
accuracy. The individual techniques, though, are 
referred to different standards and constants, and use 
different mathematical models, so their results suffer 
form mutual systematic differences and biases. 

There are basically two ways to derive one 
representative set of EOP and station coordinates from 
all the contributing techniques: 
• The rigorous approach needs either to process the 

original data at the level of observation equations 
or to solve a new system of normal equations 
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3. VONDRAK'S SMOOTHING AND ITS 
IMPLEMENTATION 
The basic idea of smoothing (Vondrák, 1969, 

1977) consists of finding a compromise between two 
contradictory requirements. The derived function 
should be as close to the observed data as possible on 
one hand (denoted here as “fidelity”) and, at the same 
time, as smooth as possible, on the other.   

The smoothness S is expressed by the integral of 
the third derivative squared of a third order Lagrange 
interpolation polynomial, which yields a formula 
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are functions of both the Earth orientation parameters 
and the station coordinates x,    

 

( ) ( ) ( ) ( )xx PPC xyt= 213 RRRPN Θ− .                      (1)
  

PN(t) is precession-nutation matrix, Θ the Earth 
rotation angle, and Ri are matrices of rotation around 
the axis i. 

Input data for the combination consists of M sets 
of Earth orientation parameters (xp, yp, UT1–UTC, dX, 
dY)m and corresponding sets of station coordinates 
(x)m, m = 1, … M, as derived by analysis centres for 
individual techniques. 

From all stations/instruments only those, which 
are collocated with other techniques, are selected to 
enter the combination. Local ties of the collocated 
instruments have to be known. 

To make the combination more stable, 
parameters of a seven-parametric transformation 
formula are derived for each technique instead of 
corrections to the station coordinates themselves. This 
allows, moreover, the transformation of coordinates of 
stations not entering the combination. 

The aim of combination is to produce a 
„representative“ set of the Earth orientation 
parameters (xp, yp, UT1–UTC, dX, dY) for some 
epochs Ti, and parameters p = p1, … p7 of the seven-
parametric transformation for each input set of station 
coordinates. 

The transformation (1) yields observation 
equations of the form 

 

v+||=U
U
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Here y denotes the observed quantities, as 
observed at N points, t, and 
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Compromise between the two requirements leads 
to generalized least squares condition by minimizing 
their combination  

 

Q = S + ε.F = min, 
  

or, equivalently 
 

Q' = w.S + F = min,                                                  
 

where w = 1/ε and ε > 0. Magnitude of ε controls 
smoothness of the result within the limits of a second 
order parabola (ε → 0) and a curve running through 
all the points (ε → ∞). 

Vondrak's approach is superior when compared 
to that used in the combinations so far because it 
utilizes up to seven consecutive points while the 
constraint (4) ties only two nearest points. Thus, it 
would make the combined EOP more comprehensive.

Implementation of Vondrak's smoothing to the 
non-rigorous combination consists of replacing 
constraints (4) by equations (5), because fidelity F
becomes an integral part of the least-squares 
minimum constraint of the whole system. The weight 
w of constraints (5) controls the smoothness.  Bigger 
weight yields a smoother solution. 

The original Vondrak’s method makes it possible 
to derive the level of smoothing as a function of ε 
analytically (Huang and Zhou, 1982). Here, the effect 
of the constraints (5) as applied to the respective EOP 
is propagated into other parts of the equation system, 
i.e. the other EOP and transformation parameters are 
also affected. Thus, it is better to estimate the weight 
empirically. 

CobsCj
j

C −
∂
∂

0d xx
x

j
∑ ,                  (2)

 

where the „observed“ vectors xC|obs are calculated 
from the respective input solution, xC|0 are functions of 
adopted a priori values of the unknowns, and U stands 
for any EOP and parameter p. 

 

To remove singularity of the system (2), a no 
net-rotation constraint, minimizing mutual shifts and 
preserving the system as a whole unchanged, has to be 
introduced, 

 

minT =pp∑ ,                                                     (3)
 

which stabilizes the station coordinates. On the other 
hand, orientation parameters are calculated for each 
individual epoch independently of the others. In 
result, errors in the input data, including station 
coordinates, are transferred to the EOP and increase 
their scatter substantially. The effect can be reduced 
by including constraints, in the form of additional 
observation equations (pseudo-observations), that tie 
values of the respective EOP, E, at adjacent epochs, 
i.e. 

( ) .dd 11 v+EE=EE iiii −− −−−                      (4)
 

By weighting, these constraints control 
smoothness of the combined orientation parameters.  
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weighting the smoothing constraints, respectively, by 
0.01 and 200. Then rms of the differences between the 
original and modified method are 0.006 mas, 
0.011 mas and 0.008 ms, for xp, yp, and UT1–UTC, 
respectively.  They are treated as the effect of 
implementing the Vondrak’s formula, because both 
the data and the algorithms, except the smoothing 
constraints, were kept unchanged in both cases. 

Also comparison with the IERS c04 series, with 
differences not exceeding 0.3 mas and 0.2 ms for pole 
coordinates and time correction, respectively, can be 
considered as a good agreement, taking into account 
different data and processing used. 

As it is easier to stabilize this method than the 
rigorous methods, it could be used for checking the 
rigorous combination methods at least at the initial 
stages of their testing. 
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Note that the two constraints differ not only in 
the form, but also in units they represent. While the 
unit of weight w of constraint (5) is basically a 
reciprocal of the third derivative squared of the 
searched function, the weights of (4) are simply 
reciprocals of the unit of the respective EOP, to make 
the constraints dimensionless. Consequently, the 
weights would differ numerically to produce the same 
result. 

 
4. DATA AND NUMERICAL SOLUTION 

The method was tested on the following data: 
GPS and VLBI data was taken from the IERS 
Combination Pilot Project database (see Data-I). For 
SLR, the constrained 'ilrsb' solution was used, as 
published by ILRS analysis centre (Data-II). Both 
GPS and SLR are weekly Sinex solutions, from which 
the EOP and station coordinates were extracted. VLBI 
data consists of per seance singular normal equation 
matrices. They were regularized by constraining the 
station coordinates to the VTRF 2005 frame 
(Nothnagel, 2005) with the a priori precision of 5 mm. 
As none of the techniques currently provides the 
database with the celestial pole offset, only the xp, yp, 
and UT1–UTC were solved for.  

To obtain effect of introduction of the new 
smoothing, the optimum weight was derived for both 
combination modes from fit to the IERS c04 series 
(Data-III), which was used as an independent 
reference. The best fits were achieved with the 
weights 200 for the constraints (5) of Vondrak’s 
smoothing and 0.01 for the constraints (4).  Then the 
two results are very close to each other. As the same 
data and processing was used, but the smoothing 
constraints, the mutual differences can be treated as 
the effect of implementation of the Vondrak’s 
smoothing. Rms of the differences is 0.006 mas, 
0.011 mas and 0.008 ms, for xp, yp, and UT1–UTC, 
respectively.  

In both cases, differences from the IERS c04 
series do not exceed 0.3 mas, 0.3 mas and 0.2 ms, 
with the rms 0.112 mas, 0.098 mas and 0.055 ms, for 
xp, yp, and UT1–UTC, respectively, in the case of yp

after removing the bias of –0.224 mas. This can be 
considered as a good agreement, taking into account 
the different data and processing used. Also the bias in 
yp is due most likely to  different data used, because a 
similar bias appears in the input data (Fig. 1). 

 
5. CONCLUSIONS 

A method for the non-rigorous combination of 
results of different space geodesy techniques to obtain 
representative sets of the Earth orientation parameters 
and station coordinates was modified by 
implementing the Vondrak's smoothing. This is a 
more complex approach to smoothing the data than a 
simple formula (4) used so far. The original and 
modified methods were compared with the IERS c04 
series with the result, that the best fit is achieved with 
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Fig. 1 Differences of original combination using the linear smoothing constraint (4) from the present solution 
(thick lines) show the effect of implementation of the Vondrak’s smoothing (5) on the polar motion 
components xp (above), yp (middle), and the time correction UT1–UTC (below).  Bigger differences and 
bias –0.224 mas in yp of the IERS c04 series (thin lines) are due mainly to different data and processing 
used.  

 
 

 
 
 
 
 
 
 
 
 
 

  


