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ABSTRACT  
During the General Assembly of the European Geosciences Union in April 2008, the new Earth Gravitational Model 2008
(EGM08) was released with fully-normalized coefficients in the spherical harmonic expansion of the Earth's gravitational
potential complete to degree and order 2159. EGM08 is based on inverse modeling methods that rely on data observed both
on the Earth's surface and in space. Forward modeling equations based on Newtonian integrals can be converted into series
forms that are compatible with the spherical harmonic description of the geopotential. Namely gravitational potentials of
ocean water (fluid masses below the geoid) and topographical masses (solid masses above the geoid) can be formulated and
evaluated numerically through spherical harmonic expansions. The potential constituents as well as their radial derivatives
can be used for a step known in geodesy and geophysics as gravity field reduction or stripping. Reducing EGM08 for these
constituents can help to analyze the internal structure of the Earth (geophysics) as well as to derive the Earth's gravitational
field harmonic outside the geoid (geodesy). 
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related mainly to the attenuation of the gravitational 
field with altitude, however, their almost worldwide 
coverage results in large improvements of harmonic 
models of the gravitational field. Both the accuracy 
and resolution (maximum degree and order of the 
harmonic expansion) have been largely improved. 
Based on data from the GRACE mission, new
gravitational models can be derived up to degree 180. 
From the GOCE mission launched in 2009, further 
improvements are expected (resolution up to degree 
250). At the same time, new combined models based 
on satellite-only harmonic models and ground gravity
data have been derived. The new Earth Gravitational 
Model 2008 (EGM08) computed by the US NGA 
(Pavlis et al., 2008) contains coefficients of the 
spherical harmonic series complete up to degree and 
order 2159 that corresponds to the equiangular 
resolution of 5 arcmin. 

Although the Earth's gravitational field varies in 
time, EGM08 represents the static gravitational field 
generated by all masses of the Earth. The mass density 
distribution of the Earth is not homogeneous since the 
Earth consists of the atmosphere, hydrosphere (water 
in liquid and solid state), and various chemical 
elements forming rocks (again in liquid or solid state). 
Some of these mass constituents are known relatively 
well in terms of their 3-D mass density distribution. 
Especially, atmosphere, ocean and lake water, 

1. INTRODUCTION 
Geodesy is a branch of applied science that deals

with measuring and representing Earth's size and
shape, external gravitational field, rotation and
orientation  (including  temporal variations  of  those 
quantities   with   time).   The   gravitational   field is 
a vector field that can be described by a scalar
function of position and time called the gravitational
potential (shortly geopotential). Values of the
geopotential are generally considered to be
unobservable (geopotential differences are obtainable
through combined leveling and gravimetry), however,
various functionals of the geopotential can be
measured such as directional derivatives (gravimetry
and gradiometry), deflections of the vertical
(astronomic leveling) and sea surface heights (satellite
altimetry). From these observables, local/global
gravitational  models  are  derived  either in a form of
a digital gravitational model (discrete values of the
geopotential over some reference surface) or a set of
numerical coefficients in a harmonic expansion of the
geopotential. 

Spaceborne observables of the gravitational field
became widely available in recent years. Since the
launch of the first gravity-dedicated satellite CHAMP
in 2000, new global Earth gravitational models based
solely on spaceborne data have been derived.
Spaceborne data have some disadvantages that are 
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Y and Y* in Eq. (2) are spherical harmonics and their 
complex conjugates, respectively (Abramowitz and 
Stegun, 1972). The series in Eq. (2) is uniformly 
convergent if r ≥ ξ. 

The external geopotential can be represented by 
the convergent spherical harmonic series with 
numerical coefficients Vn,m, e.g., (Torge, 2001), 
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with mass M and mean radius R of the Earth. Values 
of the coefficients Vn,m for degree n and order m up to 
2159 (selected non-zero coefficients for degrees up to 
2190) can be found in EGM08. Then the series in Eq. 
(3) is finite and values of the gravitational potential V
with the equiangular resolution of 5 arcmin can be 
synthesized anywhere outside the sphere of radius R
(the series can also be used inside the sphere as long 
as we stay outside the gravitating masses). 

Based on forward modeling the gravitational 
potential of topographical masses and ocean water 
will be derived in terms of the spherical harmonic 
series compatible with that in Eq. (3). Topographical 
masses are usually defined as solid Earth's masses 
bounded by the mean sea level (geoid) and the surface 
of the Earth. Obviously these masses are defined only 
over continents and islands. They play a very 
important role both in geodesy and geophysics. 
Ground gravity observations collected for decades can 
closely be related to gravitation of topographical 
masses since they surround ground gravity stations. 
Irregularities in their geometry and mass variations 
largely affect observed gravity data. For this reason 
gravity data are reduced for the gravitational effect of 
surrounding topographical masses (gravity reduction). 
Ground gravity data, especially those close to coasts, 
are also largely affected by sea water. In order to 
smooth more observed gravity, data should further be 
reduced for the density contrast between the mean 
mantle density and sea water density. This operation 
is usually referred to in geophysics as gravity 
stripping. 

To describe topography and ocean water 
geometrically, we define two closed smooth and 
simply connected surfaces: solid Earth's surface rt
including topography (hypsometry) and ocean bottoms 
(bathymetry), and the geoid rg representing the mean 
sea level. The surface bounding the solid Earth is 
described by a Global Topographical Model (GTM) 
that contains numerical coefficients Hn,m 
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Harmonic coefficients Hn,m of the height/depth 
function H up to degree and order 2159 were released 

glaciers, topography and upper mantle layers can be
approximated relatively well by some suitable mass
density distributions. 

In geodesy and geophysics, gravitational fields
of selected masses are modeled by using different
techniques (they are usually referred to as forward
modeling techniques). Gravitating masses are being
decomposed into simple volume elements, for which
analytical formulas of their gravitational potentials
can be derived, and the total gravitational field is
computed through the well known superpositioning
principle of potential theory. Different techniques for
simple volume elements (tesseroids, prisms) and mass
density distributions (homogeneous, linearly-varying)
have been developed in time (e.g., Mader, 1951;
Anderson, 1976). Alternatively, the external
gravitational potential can be modeled by harmonic
series expansions (e.g., Rummel et al., 1988). In this
case values of harmonic coefficients must be solved
for based on geometry and density distribution of
gravitating masses. In this contribution, this technique
is discussed and applied for selected masses with
known geometry and simple mass density distribution.
The harmonic models may be applied for various
geodetic, geodynamic and geophysical applications 
and for studying spectral properties of the Earth's
gravitational field. 
 
2. SPHERICAL HARMONIC REPRESENTATION 

OF THE GEOPOTENTIAL 
Given a geocentric spherical coordinate system

with the radius r, co-latitude 0 ≤ θ ≤ π, and longitude
0 ≤ λ< 2π, the external geopotential V (m2·s-2) can be
defined by the well known Newtonian volume integral
(MacMillan, 1958) 
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where the following abbreviated notation was used 
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G stands for the universal gravitational constant
(m3·kg-1·s-2),  ρ is the 3-D mass density function
(kg·m-3). The geocentric position of the computation
point in Eq. (1) is given by the geocentric radius r at 
the geocentric direction Ω = (θ, λ) and the parameter
Θ = < 0 , π > × < 0 , 2 π ) stands for the full solid
angle. The integration kernel L-1 is the inverse
Euclidean distance between the computation and
integration points that is expandable into a series of
spherical harmonics (Heiskanen and Moritz, 1967) 
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Another abbreviated notation was introduced as 

follows: 
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The function Ft in Eq. (9) describes the geometry 
of the topographical masses. Higher-order terms were 
neglected in the binomial series of Eq. (8). Its 
convergence is discussed in Section 6. The function Ft

can also be written as the spherical harmonic series 
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where the spherical harmonic coefficients read 
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Numerical coefficients H(2)
n,m and  H(3)

n,m are 
obtained by global spherical harmonic analysis of the 
height function H squared and cubed. Similarly, 
spherical harmonic coefficients N(2)

n,m and  N(3)
n,m are 

evaluated by synthesizing N, computing its powers 
followed by their analysis. Software tools for 
spherical harmonic analysis and synthesis up to 
degree and order 10,800 (respective equiangular 
resolution of 1 arcmin) are readily available. 

Limiting the series by maximum degree nax = 
2159, the potential in Eq. (6) can be converted into 
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that can further be developed as follows: 
 

( ) ( )

( ) ( )

1
2

,
,

', ' ', ' ,
' '

 . 
1,    

2 1
 

'  '  '  

nnax
t t

o n m
n m

nax
t

n m n m n m
n m

RV r GR Y
r n

F Y Y d

ρ
+

∗

Θ

⎛ ⎞Ω = Ω ⋅⎜ ⎟ +⎝ ⎠

⋅ Ω Ω Ω

∑

∑ ∫

  

(13)
The well known orthogonality of the fully-

normalized spherical harmonic functions then yields 
the topographical potential in the form 
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In order to link the spherical harmonic 
coefficients of the topographical potential with those 
of the geopotential in EGM08, it would be desirable to 
express the topographical potential using the same 
scale factor, namely the geocentric gravitational 
constant GM. Let us assume for simplicity the same 

with EGM08. The mean sea level or the geoid can
approximately be estimated from EGM08 
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Spherical harmonic coefficients Nn,m refer to 
geometric deviations N of the geoid from the mean
sphere of radius R. The two surfaces rt and rg intersect 
each other: their intersections define coastlines that
split the Earth surface into dry land Θd: rt > rg and 
oceans Θw: rt < rg. 
 
3. SPHERICAL HARMONIC SERIES OF THE 

TOPOGRAPHICAL POTENTIAL 
The topographical masses are generally defined

as solid Earth's masses that fill up the space between
the geoid and physical surface of the Earth in the dry
land domain Θd. They are described relatively well
geometrically being bounded by the geoid and
topographical surface. Since the density distribution
of global topographical masses is unknown, the mean
value t

oρ = 2,670 kg·m-3 is usually adopted. 
The gravitational potential of the homogeneous

topographical masses is given by the volume integral
(Martinec and Vaníček, 1994) 
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Obviously, it is expected that rt ≥ rg over dry 
land Θd  and rt = rg  over sea areas Θw. Substituting 
Eq. (2) into (6) and assuming the mean topographical
mass density t

oρ , the topographical potential reads 
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The summation and integration can be
interchanged as long as the series is uniformly
convergent. Since the computation point is assumed to
be outside the gravitating masses, there is no problem
with satisfying this requirement. The radial integral in
Eq. (7) can be evaluated, cf. (Tsoulis, 2001), 
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with the following approximation 
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computed by using the formulas from the previous 
section derived for masses of constant density.  For rt
≥ (rg - 1 km) the sea water potential is given by the
integral 
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Substituting for L-1 from Eq. (2), one has to solve 
the inner radial integral 
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Using the binomial expressions expanded into 
the series truncated at the cubic term, the spherical 
harmonic coefficients of the function sF s can be 
derived by following the approach from the previous 
section, see Eqs. (9)-(11). Substituting for sf  and 
splitting the function under the integral yields  
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Limiting the series by maximum degree nax = 
2159 results in the series for the sea water potential 
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Finally, the sea water potential becomes 
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with the spherical harmonic coefficients 
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5. SELECTED FUNCTIONALS OF THE 

GRAVITATIONAL POTENTIAL 
Having defined the harmonic series expansions 

for the gravitational potentials of the topographical 
masses and ocean water and having derived their 
corresponding numerical coefficients, functionals of 
these potentials can be computed as well. In this 
contribution, we will focus on selected directional 
derivatives of the potentials, namely the first- ( rD ) 
and second-order ( 2

rD ) radial derivatives. For the 
general potential, e.g., in Eq. (3), we can define these 
functionals as follows: 

 

radius of the mean sphere R. The geocentric
gravitational constant reads for the spherical Earth
with the homogeneous mass density ρe = 5,500 kg·m-3
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The topographical potential finally takes the
form 
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with the spherical harmonic coefficients 
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4. SPHERICAL HARMONIC SERIES OF THE SEA 

WATER POTENTIAL 
Sea water is filling up the space between the

ocean bottom rt and the geoid over the domain Θw. Its 
corresponding gravitational potential can be written as
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In this case, rt = rg over dry land Θd and rt ≤ rg
over sea areas Θw. The mass density ρs of ocean water
at the sea surface is about 1.025 kg·m-3. The density
continuously increases with decreasing temperature
and increasing salinity of sea water with temperature
having a greater effect on the density of sea water than
salinity does. The deep ocean is layered with the
densest water on bottom and the lightest water on top.
Sea water tends to move horizontally along isopycnals
(surfaces of equal density). The density of ocean water
is rarely measured directly but it can be derived from
an equation called the equation of state of sea water if
salinity, temperature and pressure have been
measured. The mass density of ocean water increases
almost linearly to the depth of about 1 km where the 
density equals to 1,028 kg·m-3. For larger depths, the
mass density of ocean water does not change
significantly and can be considered as constant. 

The following simple model for the sea water
density can be adopted for depths up to 1 km 
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with s
oρ = 1.025 kg m-3. The value of the parameter α

(m-1) computed as an average linear gradient of the
sea water density within the 1 km depth is -2.9268 ×
10-6 m-1. The constant density model of 1,028 kg·m-3

can be then used for depths larger than 1 km. 
In the following the sea water potential for the

upper 1 km layer of sea water is only considered. The
remaining part (sea water below 1 km) can be
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The series in Eq. (28) applies to the gravitational 
potentials in Eqs. (16) and (24), the other two series in 
Eqs. (29) and (30) refer then to their first- and second-
order radial derivatives, respectively. In the series, 
some approximations were applied, namely the 
spherical  approximation  of  the  geoid  was  used
and  sea  water  density was approximated by its 
global mean value. Two different geocentric radii of 
the  computation  level  were  used, namely r = R and 
r = R + 250 km. 

In Figures 1-3, the power spectra (signal degree 
variances) for terms in the series replacing the 
binomial expressions in the topographical potential up 
to  the  5th  order (i.e., k = 1-5)  and  its first- and 
second-order  radial  derivatives  for  r = R  are 
shown.  Figures 4-6 depict the very same quantities 
for  r = R + 250 km.   These  figures  demonstrate the 
behavior of the series expansions based on the 
binomial expressions. Obviously they have problems 
with convergency when a computation point is located 
at the sphere of radius R. In this case the numerical 
study indicates that the truncated series can be used 
for n ≈ 2000 (i.e., for angular resolutions up to the 
level of approximately 5 arcmin) without any 
problem. The problem vanishes with an increasing 
distance from the geocenter: for typical low orbiting 
satellites (such as ESA's GOCE) the series replacing 
the binomial expression can safely be truncated. 
Moreover, the power of all terms decreases very fast 
and for degrees of the spherical harmonic expansion 
relevant for spaceborne data, the spherical harmonic 
series can also safely be truncated. 

Numerical results related to Sections 4 and 5 are 
discussed in this paragraph. We start with the 
topographical potential derived in Section 4. Its 
discrete  numerical  values  synthesized  at the global 
5 arcmin equiangular coordinate grid are shown in 
Figure 7 using the Cartesian linear projection (Wessel 
and Smith, 1991). Numerical values of its first- and 
second-order radial derivatives evaluated at the same 
coordinate grid can be found in Figures 8 and 9, 
respectively. Figure 10 then represents synthesized 
numerical values of the sea water potential given 
again at the global 5 arcmin equiangular coordinate 
grid. Its first- and second-order radial derivatives can 
be found in Figures 11 and 12, respectively. Values of 
the potential and its first-order radial derivative refer 
to the Earth's surface approximated by the geocentric 
sphere of radius R. Values of the second-order 
derivative refer to the radius R + 250 km. The 
difference in their resolution caused by altitude-
dependent attenuation is clearly visible. 
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Comparing the series for the potential with those
for its radial derivatives, it is obvious that the
magnitude of their degree variances is largely affected
by the eigenvalue (n + 1)/R for the first-order radial 
derivative and (n + 1) (n + 2)/R2 for the second-order 
radial derivative. The convergence of the series thus
depends on the distance of the computation point from
the geocenter (radius r), degree n as well as the power
of the attenuation factor R/r, respectively. This issue is
further discussed in Section 6. 

Values of the first-order radial derivatives can be
used for reduction of gravity observations. In fact, the
radial derivative is only an approximation of the
topographical correction since observed gravity does
not represent the radial derivative of the geopotential.
Values of the second-order radial derivatives could
then be applied for reduction of spaceborne
gradiometric data measured by GOCE. 
 
6. COMPUTATIONAL ASPECTS AND RESULTS 

In Sections 3 and 4 the harmonic series
representations of the gravitational potentials were
formulated. Moreover, the first- and second-order 
radial derivatives of these harmonic expansions were
defined  in   Section  5  as  representative  functionals 
of   the   gravitational   potentials   applied   routinely
in  geodesy  and   geophysics.  In  the  following
these series are investigated with respect to their
numerical applicability, namely in terms of
convergence/divergence  with  the increasing degree
of the harmonic expansion n and increasing geocentric 
radius r. 

Already in some early investigations, the
binomial in Eq. (8) was analyzed by, e.g., (Rummel at
al., 1988; Vaníček et al., 1995). For low-degree 
spherical series (such as n=180 in case of Rummel et
al., 1988), no problems were reported in this regard. 
However, this situation has changed rather
dramatically in recent years since recent global
topographical models allow for derivation of
corresponding harmonic models up to degree and
order of approximately 10,000 (respective angular
resolution at the level of 1 arcmin). In this article, the
2 arcmin global relief model of the Earth's surface
ETOPO2 is considered. The series to be investigated
can be summarized as follows: 
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approximations that lead to some limitations of this 
method. 
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Both gravitational potentials nicely correspond
to the respective mass distributions, i.e., major
mountain ranges as well as deep oceanic trenches and
other features can nicely be traced in the plotted
functions. Numerical values of the first-order radial
derivatives reflect changes of the potential functions
in the radial direction (gravitation in the radial 
direction). Both radial derivatives are more complex
than their respective potentials, still correlations with
height and depth can clearly be recognized. For the
topographical masses the loss of a detail in Figure 8
over areas covered by ice sheets (Greenland,
Antarctica) is caused by the elevation model used for
derivation of the potential coefficients (ETOPO2).
Numerical values of the second-order radial
derivatives of the gravitational potentials are
compatible with some previous studies such as (Wild 
and Heck, 2008). 

 
7. CONCLUSIONS 

The gravitational potentials of solid topography
and sea water were formulated in terms of spherical 
harmonic expansions. Their corresponding spherical
harmonic coefficients up to degree and order 5400
were derived by the spherical harmonic analysis of the
global relief model ETOPO2. Based on these
formulations their first- and second-order radial
derivatives can easily be derived and computed as
well. The spherical harmonic series rely on the
truncated expansion of binomial expressions that must
be investigated for convergency. Numerical studies
revealed that the series diverged when the values were
evaluated at the surface of the sphere of radius R. For 
the radial derivatives the problem can already be
encountered for lower degrees. For typical elevation
of low orbiting satellites the harmonic series can
safely be truncated (bellow degree 1000), i.e., there is
no problem regarding diverging series. 

The two gravitational potentials and their first-
and second-order radial derivatives were evaluated
numerically deploying spherical harmonic coefficients
up to degree and order 2159 (5 arcmin angular
resolution). Numerical values of all functions
computed at the global 5 arcmin equiangular
coordinate grid (9,331,200 values) illustrate quite
nicely the spatial behavior of the functions. The
method and computed values demonstrate the
capability of the harmonic series in forward modeling
of gravitational fields based on geometric and mass
density description of gravitating masses. The
methodology is fully compatible with the global
gravitational models given by a set of spherical
harmonic coefficients of the geopotential (such as the
latest EGM08). The spherical harmonic models of the
topographical and sea water gravitational fields
represent constituents of such global models that can
be used for their reduction or stripping. Other mass
constituents (ice mass, lake water, ocean sediments,
upper layers of the mantle etc.) can be modeled as
well. However, one has to be careful about different
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Fig. 2 First-order radial derivative – series power 
spectrum for H = 0 km. 

Fig. 1 Potential  –  series    power   spectrum   for 
H = 0 km. 

Fig. 4 Potential  – series   power   spectrum   for 
H = 250 km. 

Fig. 3 Second-order radial derivative – series power 
spectrum for  H = 0 km. 

Fig. 6 Second-order radial derivative – series power 
spectrum for  H = 250 km. 

Fig. 5 First-order radial derivative – series power 
spectrum for  H = 250 km. 
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Fig. 7 Topographical potential at  H = 0 km (GPU = m2 ·s-2 ). 

Fig. 8 First-order radial derivative of the topographical potential at  H = 0 km (mGal = 10-5 m·s-2) 
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Fig. 9 Second-order radial derivative of the topographical potential at  H = 250 km (E = 10-9 s-2). 

Fig. 10 Sea water potential at  H = 0 km (GPU = m2 ·s-2 ). 
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Fig. 11 First-order radial derivative of the sea water potential at  H = 0 km (mGal=10-5 m·s-2 ). 

Fig. 12 Second-order radial derivative of the sea water potential at  H = 250 km (E=10-9 s-2). 
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