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ABSTRACT  
Titanium-rich  biotite  from  granodiorite  belonging  to  redwitzite  suite  of  the  Slavkovský les Mts. alters to mixture of
low-Al titanite, Mn-enriched ilmenite, REE-fluorocarbonate (parisite) and very fine-grained mixture of chlorite and clay
minerals. Titanite consists from 1.1 to 2.3 wt. % Al2O3 and from 0.4 to 1.0 wt. % Fe2O3. Titanite shows some Al+Fe3+ excess
over F with significant amount of (Al+Fe3+)-OH titanite component (4-9 mol. %). Ilmenite contains considerable amount of
pyrophanite component (5-8 mol. %). The retrograde assemblage of titanite with considerable amount of (Al+Fe3+)-OH
titanite component and presence of ilmenite, together with chlorite, argued for low-temperature breakdown of biotite in
reducing conditions.  
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pyroxene, titanite and apatite (Troll, 1968; Siebel et 
al., 1995, 2003; Freiberger et al., 2001). Mafic 
magmatic rocks similar to redwitzites were described 
from the Bor pluton by René (2000), from western 
part of the Krušné hory/Erzgebirge granite batholith 
by Kováříková et al. (2007), and more recently also 
from the Slavkovský les Mts. by Kováříková et al. 
(2010).  

 
ANALYTICAL METHODS 

Major element analyses on two whole-rock 
samples were performed in the laboratory of Institute 
of Rock Structure and Mechanics of the AS CR, 
Prague by conventional wet chemical methods. Trace 
elements were determined by ICP MS at Activation 
Laboratories Ltd., Lancaster, Canada on a Perkin 
Elmer Sciex ELAN 6100 ICP mass spectrometer. The 
decomposition of rock samples for ICP MS analyses 
involved lithium metaborate/tetraborate fusion. 

Analyses of titanite, ilmenite, biotite, plagioclase 
and chlorite were performed using a CAMECA SX 
100 electron microprobe working in WDX mode at 
the Institute of Geological Sciences, Masaryk 
University Brno and at Mineralogical Institute, 
Leibniz University Hannover, Germany. The 
accelerating voltage and beam currents were 15 kV 
and 20 nA, respectively, with beam diameters 2 μm. 
The raw data were corrected using PAP matrix 
corrections (Pouchou and Pichoir, 1985). The 
following standards and were used: Al on sanidine, Ca 
on titanite, Cl on NaCl, Cr on chromite, F on topaz, Fe 
on andradite, K on orthoclase, Mg on olivine, Mn on 

INTRODUCTION 
Titanite and ilmenite are common accessory

minerals in igneous rocks, especially in calc-alkalic 
granites (s.l.) with I-type characteristic (e.g., Lee and
Silver, 1964; Piccoli et al., 2000; Helmy et al., 2004;
Broska et al., 2007). In hydrothermally altered
plutonic rocks secondary titanite can occur together
with ilmenite (Piccoli et al., 2000; Ciesielczuk and
Janeczek, 2004; Broska et al., 2007). 

In the present study distinct intergrowths of
titanite and ilmenite are described from a granodiorite
dyke of the Krudum granite body in the Horní
Slavkov-Krásno ore district. These titanite-ilmenite 
intergrowths originated from the breakdown of biotite
during its hydrothermal alteration. The aim of this
paper is to describe and discuss association of titanite
and ilmenite, their chemical composition and the
conditions controlling hydrothermal alteration of
granodiorite.  

The examined granodiorite is part of
granodiorite-tonalite-diorite magmatic suite which is
recently considered as a part of the redwitzite suite
(Kováříková et al., 2010). Redwitzites were originally
defined in NE Bavaria at the north-western edge of the
Bohemian Massif by Willmann (1920). This local
name was given to unusual textured magmatic rocks
of largely dioritic and granodioritic composition
occurred in area of the Marktredwitz. The redwitzites
from original occurrence are fine- to medium-grained, 
generally non-porphyritic tonalites to quartz
monzodiorites. They consist amphibole, biotite,
plagioclase, minor amounts of quartz, K-feldspar, 
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grained, mixture of chlorite and clay minerals 
(kaolinite, smectite?) (Fig. 3a). The more precise 
identification of individual minerals in intersitial 
mixture of clay minerals by microprobe analyses is 
excluded. However, occurrence of newly formed 
epidote group minerals it can be eliminated. Titanite, 
together with ilmenite forms in these aggregates large 
anhedral grains in intergranular spaces (Fig. 3b) and 
or subhedral lathes in partly chloritised biotite. The 
distinctly more mobile REE fluorocarbonates 
(parisite) also fills thin irregular fissures in unaltered 
granodiorite matrix (Fig. 3d).  

spessartine, Na on albite, Nb on columbite, Si on
titanite, Ti on titanite and Zn on gahnite. Elements
were measured for 20 s at the peak and for 10 s for 
each background. 

 
INVESTIGATED ROCK MATERIAL 

Examined biotite granodiorite of the redwitzite
suite occurs as relatively small irregular magmatic
bodies and/or as sills in metamorphic rocks of the
Slavkov crystalline unit, that forms a mantle of
underlying  granites  of  the Krudum granite body
(Fig. 1). The medium-grained biotite granodiorite
formed relatively thin sills (2-20 m) have a massive
structure. Plagioclase (An27-37) (30-40 vol. %) prevails
over K-feldspar (up to 20 vol. %). Tabular plagioclase 
shows weak zoning with more sodic rim (oligoclase to
andesine) and more calcic cores (basic andesine).
Plagioclase is sometimes partly argitilised. Quartz
(18-20 vol. %) with undulatory extinction usually fills
intergranular spaces. Distinctly pleochroic biotite
occurred usually as irregular flakes contains
inclusions of accessories (apatite, zircon). Some
biotite tables are partly deformed (Fig. 2). Biotite is
often chloritised and in quite chloritised biotite was
found newly formed titanite, together with ilmenite
and rare REE-fluorocarbonate (parisite). Partly
chloritised biotite contains instratified laths of chlorite
in biotite tables, sometimes together with newly
formed titanite. Whole altered biotite, together with
argitilised plagioclase forms highly irregular
aggregates which contain euhedral to anhedral grains
of original magmatic apatite, flakes of chlorite, fine
tabular grains of parisite and intersitial, very fine-

Fig. 1 Geological sketch map of the Horní Slavkov-Krásno ore district (after Kováříková et 
al., 2010, slightly modified by author). 

Fig. 2 Microphotography of biotite granodiorite 
with irregular flakes and partly deformed 
biotite  tables.  Sample R-1359, borehole 
HU-15, Horní Slavkov-Krásno ore district. 
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Fig. 3 BSE image of titanite-ilmenite-chlorite-parisite assemblage, a - aggregates contained euhedral to
anhedral ( partly corroded?) grains of apatite (ap), fine parisite laths (prs), anhedral grains of titanite (ttn)
and intersitial mixture of very fine-grained chlorite and clay minerals (kaolinite, smectite?), b – titanite
(ttn)-ilmenite (ilm)-apatite (ap) assemblage in partly altered biotite granodiorite, c – assemblage of partly
chloritized biotite (bt) with small lath of newly formed titanite (ttn), anhedral grain of parisite (prs) and
subhedral grains of original magmatic apatite (ap), d – small vein of hydrothermally formed parisite
(prs).  

MINERAL CHEMISTRY 
The  composition  of  titanite  ranges from 89 to 

94 mol. % titanite end-member (Table 2). The Al and
Fe contents range from 0.04 to 0.09 atoms per formula 
unit (a.p.f.u.) and 0.01 to 0.03 a.p.f.u., respectively, 
together with small amount of F (0.0-0.04 a.p.f.u). 
Titanite shows some Al+Fe3+ excess over F, which 
indicates the presence coupled substitution of (Al, 
Fe3+) + (F,OH) ⇔ Ti + O (Fig. 4). Calculation of OH 
content allows the estimation of the (Al+Fe3+)-OH 
titanite component, which ranges from 4 to 9 mol. %. 
The content of (Al+Fe3+)-F component is distinctly 
lower than the amount of OH-titanite, and ranges from 
0 to 4 mol. %.  

Ilmenite from analysed biotite granodiorite 
contains MnO as the dominant admixture with lesser 
amount of Nb2O5,  MgO,  ZnO,  CaO and Al2O3

The SiO2 and MgO contents in examined
granodiorite are relatively low (57.1-57.4 wt.% SiO2, 
2.6 wt.% MgO), however TiO2 content is, in
comparison with data of Kováříková et al. (2010),
distinctly higher (1.6-1.7 wt. %), (Table 1). Potassium
content is also relatively high (3.0-3.3 wt. % K2O) and 
K2O/Na2O ratio ranges from 0.9 to 1.1, showing that
examined granodiorite belongs to high-K magmas 
(Gill, 1981). Granodiorite shows I-type signature 
(A/CNK = 1.0-1.1). Sr content, in comparison with
values for granodiorite from Bečov area (Kováříková
et al., 2009), is distinctly high (734-764 ppm). 
However, examined granodiorite shows low content
of   Cr   (21-29 ppm),  Ni  (16-19 ppm)  and  V  (41-
44 ppm). The REE pattern of granodiorite normalized
to chondrite shows the predominance of LREE over
HREE with absence of obvious Eu anomaly. 
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Table 1 Major element oxides (in wt. %) and trace
element composition (in ppm) of biotite
granodiorite from the Horní Slavkov-Krásno
ore district (borehole HU-15). 

Sample R-1359 R-1360 
SiO2 57.10 57.41 
TiO2   1.58   1.65 
Al2O3 17.16 17.11 
Fe2O3   1.88   1.73 
FeO   5.02   5.04 
MnO   0.09   0.09 
MgO   2.61   2.57 
CaO   4.13   4.59 
Na2O   3.10   3.33 
K2O   3.31   2.99 
P2O5   0.55   0.48 
H2O+   1.86   1.57 
H2O-   0.43   0.31 
Total 98.82 98.87 
   
A/CNK   1.06   1.00 
Ba 2100.00 2110.00 
Rb   144.00   134.00 
Sr   734.00   764.00 
Y     22.00     20.00 
Zr   322.00   430.00 
Nb     17.00     20.00 
Th     24.00     27.00 
Ni     19.00     16.00 
V     44.00     41.00 
Cr     21.00     29.00 
Hf       7.00     10.00 
Cs     14.00     13.00 
Ta     1.20     1.70 
Co     15.0     13.0 
U     3.10     4.40 
La   86.40   96.00 
Ce 172.00 187.00 
Pr   17.60   19.20 
Nd   71.00   78.40 
Sm   11.10   12.30 
Eu     2.40     2.70 
Gd     6.50     7.20 
Tb     0.83     0.91 
Dy     4.10     4.10 
Ho     0.67     0.59 
Er     1.80     1.60 
Tm     0.24     0.20 
Yb     1.50     1.20 
Lu     0.19     0.16 
 

(Table 3). The examined ilmenite typically has
FeTiO3 amount between 91-94 mol. % and is enriched
in the MnTiO3 (pyrophanite) component (5-8 mol. %).
The content of geikielite component (MgTiO3) is 
negligible and hematite component is missing. 

For original, unaltered biotite is characteristic 
distinctly high content of TiO2 (3.8-4.8 wt. %), partly

higher Fe/(Fe+Mg) ratio (0.57-0.59) and rather low
amount  of  F  (0.09-0.18  wt. %  F).  Biotite  could
be consequently  classified  as  Mg-siderophylite to
Fe-phlogopite (Table 4).  

 
DISCUSSION 

The process of chloritisation of biotite and
consecutive origin of secondary titanite is common in
granitic rocks and has been studied in detail by
numerous authors (e.g., Ferry, 1979; Eggleton and
Banfield, 1985; Janeczek, 1994; Piccoli et al., 2000;
Ciesielczuk and Janeczek, 2004; Broska et al., 2007).
In examined magmatic rocks of the redwitzite suite
from the Horní Slavkov-Krásno ore district this
process affects biotite even in nearly unaltered biotite
granodiorite. 

Origin of titanite, partly associated with ilmenite
by breakdown of biotite could be described by
following reaction: 

 

Ca-plagioclase + Biotite + 4 H2O = 
= Titanite + Ilmenite + Muskovite 

 

Often is this alteration accompanied by
sericitization and argilization of plagioclase.
Following arigilitisation of plagioclase occurs also in
examined granodiorite. Association secondary titanite
with ilmenite argued for alteration in reducing
conditions, since origin of ilmenite would involve
Fe2+ as opposed to Fe3+. Model reactions which could
be induced from schematic Schreinemakers diagrams
(e.g., Harlov et al., 2006; Broska et al., 2007) show
that ilmenite formation is in these cases always
associated with hydration of the primary mineral
assemblage. 

During hydrothermal alteration originated
titanite has a wide compositional range of (Al+Fe3+) =
0.05-0.55 a.p.f.u., together with highly variable
content of F (Enami et al., 1993). Some of these

Fig. 4 (Al + Fe3+) vs. F plot indicating that the
titanite grains from altered biotite
granodiorite contain additional OH. 
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Table 2 Representative analyses of titanite (wt. %). 
 
Sample R1359-8 R1359-21 R1359-121 R1359-122 R1359-124 R1359-128 
SiO2 30.42 30.07 30.63 30.78 30.56 30.63 
TiO2 38.93 37.67 37.61 38.06 38.00 37.78 
Nb2O5   0.30   0.08   0.00   0.00   0.00   0.00 
Al2O3   1.14   1.78   2.23   1.66   1.88   2.13 
Fe2O3   0.98   0.64   0.70   0.79   0.70   0.93 
MnO   0.14   0.08   0.08   0.08   0.02   0.08 
CaO 28.86 29.18 28.96 28.69 29.05 29.30 
Na2O   0.01   0.00   0.02   0.01   0.04   0.00 
F   0.26   0.32   0.19   0.00   0.10   0.19 
O=F   0.08   0.10   0.06   0.00   0.03   0.06 
Total 100.96 99.72 100.36 100.07 100.32 100.98 
       
Si 1.000 1.000 1.000 1.000 1.000 1.000 
Ti 0.963 0.942 0.924 0.930 0.935 0.928 
Nb 0.004 0.001 0.000 0.000 0.000 0.000 
Al 0.044 0.070 0.085 0.064 0.072 0.082 
Fe3+ 0.024 0.016 0.017 0.019 0.017 0.023 
Mn 0.004 0.002 0.002 0.002 0.001 0.002 
Ca 1.016 1.040 1.013 0.999 1.018 1.025 
Na 0.001 0.000 0.001 0.001 0.003 0.000 
F 0.027 0.034 0.020 0.000 0.010 0.020 
OH 0.041 0.052 0.082 0.083 0.079 0.085 
Σ cations 3.056 3.071 3.042 3.015 3.046 3.060 
X(Ttn) 0.934 0.916 0.901 0.918 0.913 0.898 
X(Al,Fe3+-F) 0.026 0.033 0.019 0.000 0.010 0.019 
X(Al,Fe3+-OH) 0.040 0.051 0.080 0.082 0.077 0.083 
 
Formulae calculated on the basis of 1 Si; OH – Al+Fe3+-F; Ttn: titanite, Al,Fe3+-F: Al,Fe3+-F titanite;  
Al,Fe3+-OH: Al,Fe3+-OH titanite. 

Al+Fe3+
 excess over F, which indicates the presence 

of an Al-involving substitution reaction such as (Al, 
Fe3+) + OH ⇔ Ti + O. Amount of the (Al + Fe3+)-OH 
component in low-temperature titanite usually ranges 
from 5 to 10 mol. % (Enami et al., 1993) which is in 
good concordance with amount of this component in 
titanite  from  the  Horní  Slavkov-Krásno  ore  district 
(4-9 mol. %). Occurrence of REE enriched 
fluorocarbonate (parisite) argues for presence of some 
CO2 in hydrothermal fluids, responsible for 
breakdown of original biotite and enclosed REE-
bearing accessories (apatite, zircon). Similar 
occurrence of fluorcarbonates in presence of chlorite 
from hydrothermally altered rocks was described by 
Pan et al. (1994) and Lottermoser (1995). 

 
CONCLUSION 

Titanium enriched biotite was significantly 
affected by H2O and CO2 enriched fluids. Mineral 
assemblage of hydrothermally altered biotite consists 
hydrothermal titanite and ilmenite accompanied by 
highly rare REE fluorocarbonate (parisite) and very 
fine-grained mixture of chlorite and unknown clay 
minerals (kaolinite, smectite ?). The composition of 
titanite ranges from 89 to 94 mol. % titanite end-
member. Titanite shows some Al+Fe3+ excess over F 

secondary titanites are enriched in Al (Janeczek, 1994;
Ciesielczuk and Janeczek, 2004; Broska et al., 2007).
In secondary titanite from altered granites of the
Tribeč Mts. (Slovakia) (Broska et al., 2007) reaches
XAl ratio values of 0.07-0.09, but in secondary titanite
from granites of the Strzelin granite (Poland)
(Janeczek, 1994; Ciesielczuk and Janeczek, 2004)
ranges XAl from 0.18 to 0.82. Similar Al-enriched 
secondary titanite was found by Enami et al. (1993) in
altered hornblende-biotite granite from Japan (XAl = 
0.48-0.53). However, in examined titanite from the
Horní Slavkov-Krásno ore district ranges this ratio
only from 0.04 to 0.09. Analysed titanite from the
Horní Slavkov – Krásno ore district shows also
relatively low F content, whom source was highly
probable fluorine from altered biotite. For original
magmatic biotite from examined biotite granodiorite
is characteristic high content of Ti (3.8-4.8 wt.% 
TiO2) and rather low amount of F (0.09-0.18 wt.% F). 
The distinctly low XAl ratio in examined titanite,
together with its low content of fluorine indicates that
sometimes observed dissolution of original magmatic
apatite (Fig. 3a) played rather subordinate part during
origin newly formed titanite. 

Secondary titanite originated during low-
temperature breakdown of biotite often shows a minor
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Table 3 Representative analyses of ilmenite (wt. %). 
 
Sample R1359-5 R1359-6 R1359-17 R1359-20 R1359-24 R1359-25 
SiO2   0.01   0.00   0.01   0.02   0.06   0.04 
TiO2 53.28 53.12 53.17 53.26 53.54 53.12 
Al2O3   0.00   0.00   0.01   0.00   0.02   0.01 
Cr2O3   0.00   0.00   0.00   0.00   0.00   0.00 
Fe2O3   0.00   0.00   0.00   0.00   0.00   0.00 
FeO 42.82 43.88 44.87 43.49 43.30 43.66 
MnO   3.83   3.37   2.14   3.70   3.69   3.90 
MgO   0.04   0.07   0.30   0.06   0.06   0.10 
CaO   0.05   0.07   0.04   0.06   0.06   0.03 
ZnO   0.03   0.02   0.07   0.00   0.03   0.01 
Nb2O5   0.07   0.03   0.02   0.07   0.17   0.00 
Total 100.13 100.56 100.63 100.66 100.93 100.87 
       
Si 0.000 0.000 0.000 0.001 0.001 0.001 
Al 0.000 0.000 0.000 0.000 0.001 0.000 
Ti 1.007 1.001 1.000 1.002 1.003 0.999 
Cr 0.000 0.000 0.000 0.000 0.000 0.000 
Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 
Fe2+ 0.899 0.920 0.939 0.910 0.902 0.999 
Mn 0.081 0.072 0.045 0.078 0.078 0.083 
Mg 0.001 0.003 0.011 0.002 0.002 0.004 
Ca 0.001 0.002 0.001 0.002 0.002 0.001 
Zn 0.001 0.000 0.001 0.000 0.001 0.000 
Nb 0.001 0.000 0.000 0.001 0.002 0.000 
∑cations 1.991 1.998 1.997 1.996 1.992 2.001 
X(Hm) 0.000 0.000 0.000 0.000 0.000 0.000 
X(Ilm) 0.916 0.925 0.944 0.920 0.920 0.913 
X(Gk) 0.002 0.003 0.011 0.002 0.002 0.004 
X(XPph) 0.082 0.072 0.045 0.078 0.078 0.083 
 
Hm – hematite, Ilm – ilmenite, Gk – geikielite, Pph – pyrophanite. Recalculations of FeOt using the method of Carmichael 
(1967). 
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with significant amount of (Al+Fe3+)-OH titanite
component (4-9 mol. %). Ilmenite contains
considerable  amount  of  pyrophanite  component (5-
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presence of ilmenite, together with chlorite, argued for
low-temperature breakdown of biotite in reducing
conditions.  
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Table 4 Representative analyses of biotite (wt. %).  
 
Sample 3 7 9 14 16 17 20 22 
SiO2 34.72 34.65 35.62 35.19 35.35 35.03 35.31 35.60 
TiO2   4.21   3.95   4.39   4.29   4.35   4.79   4.31   4.68 
Al2O3 14.15 14.29 14.25 14.10 14.04 14.15 14.24 14.08 
FeO 22.74 22.79 22.95 23.36 22.73 23.08 22.67 22.85 
MnO   0.19   0.25   0.19   0.22   0.30   0.23   0.26   0.25 
MgO   9.07   9.48   9.00   9.27   9.10   8.85   9.17   9.07 
CaO   0.01   0.02   0.05   0.01   0.00   0.00   0.00   0.00 
Na2O   0.11   0.11   0.13   0.08   0.17   0.11   0.12   0.12 
K2O   8.42   7.68   8.17   8.43   8.07   8.07   8.44   8.27 
F   0.17   0.18   0.16   0.16   0.19   0.17   0.19   0.13 
Cl   0.06   0.07   0.07   0.07   0.07   0.06   0.07   0.06 
O=F,Cl   0.09   0.09   0.08   0.08   0.10   0.09   0.10   0.07 
Total 93.76 93.38 94.90 95.10 94.27 94.45 94.68 95.04 
         
Si+4 2.748 2.743 2.775 2.750 2.773 2.748 2.762 2.770 
AlIV 1.252 1.257 1.225 1.250 1.227 1.252 1.238 1.230 
AlVI 0.068 0.077 0.083 0.049 0.072 0.056 0.075 0.061 
Ti+4 0.251 0.235 0.257 0.252 0.257 0.283 0.254 0.274 
Fe+2 1.033 0.933 1.043 1.005 1.009 0.957 1.029 0.993 
Fe+3 0.472 0.576 0.452 0.521 0.482 0.557 0.454 0.494 
Mn+2 0.013 0.017 0.013 0.015 0.020 0.015 0.017 0.016 
Mg+2 1.070 1.119 1.045 1.080 1.064 1.035 1.069 1.052 
Ca+2 0.001 0.002 0.004 0.001 0.000 0.000 0.000 0.000 
Na+1 0.017 0.017 0.020 0.012 0.026 0.017 0.018 0.018 
K+1 0.850 0.776 0.812 0.840 0.808 0.808 0.842 0.821 
OH 1.949 1.946 1.951 1.951 1.944 1.95 1.944 1.960 
F 0.043 0.045 0.039 0.040 0.047 0.042 0.047 0.032 
Cl 0.008 0.009 0.009 0.009 0.009 0.008 0.009 0.008 
Fe/(Fe+Mg) 0.584 0.574 0.589 0.586 0.584 0.594 0.581 0.586 
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