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ABSTRACT  
The problem of bumps occurrence in deep mines during the long wall mining appears to be one of the most serious one in the
design of engineering of mining. The bumps are caused for various reasons, but basically it is an aftermath of the accumulated
energy, which is released under some unfavorable conditions. In this paper the influence of given dislocations and their slope
in a coal seam are studied based. The numerical tool is the free hexagon method. This method belongs to a set of discrete
element methods and enables us to define and calculate stresses in a natural way along the interfacial boundaries of adjacent
particles (elements). Since the bumps are affected by a possible slip along the dislocations, dynamical response has to be
taken into account. The velocity of excavation of the mine is considered by successive change of values of Eshelby’s forces
on the face of the wall. 
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the PFC consists in the fact that a possible bond of the 
particles is realized at points of the contact boundary 
of adjacent particles, so that the calculation of stresses 
is quite inaccurate. This fault is removed in the 
present theory and the numerical approach.   

(Wei et al., 2009) published new approaches in 
geodynamics of rock linked with the bumps 
occurrence in a continuous model.  

It is well known that there are not too many 
papers on rock bursts in the literature. It is worth 
noting some other methods, which start with a 
continuous formulation, but can simulate possible 
splitting of rock parts. Among such the Manifold 
method belongs, (Ma et al., 2010).  

A slip along a dislocation can be solved in a very 
natural way using dynamical version of Uzawa’s 
algorithm, (Procházka and Sejnoha, 1995), for 
example. By virtue of separation of domains being 
defined on both sides of the dislocation even linear 
equations can characterize the behavior of the 
underground continuum. The only problem occurs on 
how to describe the behavior (possibly nonlinear) in 
the separated parts of the underground continuum. 

The mechanical properties and other data being 
necessary for correct computation have been first 
consulted with experiments published by (Haramy et 
al., 1995), and in (Procházka and Vacek, 2002) scale 

1. INTRODUCTION 
In deep mines the problem of bumps occurrence

during the long wall mining belongs to one of the
most serious one from the set of problems to be solved
in the project stage of mining engineering. It causes
disaster of such an extent that human lives are lost,
material and energy expanses are enormous and
renovation of the afflicted mine is almost impossible.
The reason for bumps occurrence consists in
accumulation of extremely great energy in the
neighborhood of the mine face and its release under
certain conditions. In former papers of the first author,
e.g. (Procházka, 2004), the triggering conditions have
been exclusively based on an assumption of
nucleation of cracks in front of the mine face (side
walls). In the above said paper the formulation and
solution was presented as stability problem and only
statical  conditions  had  to  be  fulfilled. Considering
a possible slip along the dislocation due to human
activities also the inertia terms play an important role
and have to be embodied in the formulation. In the
approximate   formulation  their  appearance  desires 
a special treatment. This approach basically follows
the well-known ideas of PFC (particle flow code),
(Cundall, 1971) and (Cundall et al., 1979). Certain
theoretical background of the PFC can be found in
(Moreau, 1994). On the other hand, a disadvantage of 
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of the opening and their time dependent (successive) 
increase characterizes the velocity of mining.  Similar 
approach is used when describing an opening of 
tunnel with lining, digging a ditch and also, which is 
the original application of the Eshelby description of 
the influence of the change of temperature in fibers in 
the theory of composites. 

The free hexagon method was successfully 
applied to coupled modeling in underground 
structures, (Procházka and Trčková, 2008), where 
only statical case was exploited.  

In this paper a special problem of the assessment 
of bumps occurrence in deep mines is discussed. It is 
dealt with a mutual interaction of predisposed 
dislocations filled by gas in coal seams. More 
precisely, the effect of slopes of the dislocations is 
studied and the approach on how to proceed if the gas 
appears in the dislocations. Based on the method of 
free hexagons viewable post-processing enables the 
consultant to decide in future steps of mining.  

First the philosophy of the case considered is 
explained and the basic idea of the method of free 
hexagons is put forward. For the description of 
behavior inside of one particle (element) boundary 
element method is used, which is briefly presented in 
the next section. Then the contact conditions 
expressed by a soft contact (using spring stiffness) 
between adjacent particles and Fischera’s conditions 
are discussed. Since the particles accelerate 
essentially, inertia forces are taken into consideration, 
too. Transformation of spring stiffness is derived in 
what follows and typical examples conclude the 
paper, showing the ability of the theory.        
 
2. BASIC ASSUMPTIONS 

In order to explain the basic phenomenon of 
bumps consider the structure of a coal seam and 
surrounding rock as demonstrated in Figure 1. In the 
virgin state the stresses are uniformly distributed 
along the interface of the coal seam and the 
overburden. After the adit is excavated the 
redistribution of those stresses causes that the load of 
the side faces (walls) of the opening increases 
principally. Moreover, in many cases the coal seam is 
cracked and the cracks are filled by gas, which is pull 
out due to the increase of the pressure at the contact 
among the overburden, coal and adit; this 
circumstance raises the danger of instability. Two 
important problems are of basic interest to us:  
• the velocity of excavation (the faster the 

excavation, the greater danger of bumps 
occurrence) 

• the slope of cracks in the seam.  
 

Since there is no general intimacy about the way 
of loss of stability due to a damage behavior of both 
the rock and overburden, each option of movement 
should basically be taken into account. This is why 
discrete element methods (DEM) have been 
established. 

models were prepared for simulating bumps in
laboratory. Couple of experimental studies has been
carried out on scale models describing this
phenomenon in real mines in Bohemia. The
experiments make more viewable phenomena, such as
the overall properties, failure strength of the material,
surface cracking, and others, which can be seen from
outside of the sample tested. Using high speed video
camera other detailed information about important
properties of reason and development of the bumps
was obtained. A comparison of the calculated and
observed results from experiments is partly published
in (Procházka, 2004).  

In the method put forward in this paper the
domain describing both the rock and coal seams is
divided into hexagonal elements (particles) of an
arbitrary shape, which are mutually disjoint and non-
overlapping. The material of each hexagon behaves
linearly, i.e. linear Hooke’s law is assumed, as small
enough particles are considered. The only
nonlinearities are moved to the interfacial boundaries
between adjacent elements. The interfaces obey the
generalized Mohr-Coulomb hypotheses, (Procházka
and Sejnoha, 1995), for example, and the material is
identified by the parameters, which are well known
from soil or rock mechanics. Among those parameters
the angle of internal friction, cohesion (shear
strength), tensile strength, and others belong to the
input data for the computation. Naturally, the behavior
inside of the elements can also be regarded as
nonlinear, but if small enough elements are presumed,
this assumption is superfluous.  

Since the cracking in the rock mass is not a priori
known, the fracture mechanics problem turns to
contact problem in this paper. Moreover, the Uzawa’s
algorithm can be properly applied if not too many
cracks are anticipated. This is obviously not true in
this case and the penalty formulation is postulated in
the method of free hexagons. The mechanical
explanation of the penalty method is very easy, as the
penalties are represented by spring stiffnesses. As the
radial (tension or compression) and tangential (shear)
constrain between adjacent elements exist, both radial
and shear springs have to be reflected.  

The situation inside of each particle is described
by boundary elements, (Brebbia et al., 1984), for
example, which can involve also inertia terms. This
advantage is not utilized in the presented approach;
the formulation in particles is based on static
equilibrium. The inertia terms are, similarly to the
PFC, lumped at the centers of the particles. The
stencil for the description of the time development
starts with finite difference scheme, and is basically
identical with the PFC model, but the hierarchy of
computation of the time derivatives – D’Alembert
forces, acceleration, velocity and displacements – is 
ordered conversely.  

The time dependent excavation of the
underground opening is described by Eshelby’s
forces, (Eshelby, 1963). They are applied to the wall
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Fig. 1 Description of properties of a coal seam and
distribution of vertical stresses at different
stages. 

Under the assumption that the material properties
of both rock and coal are known, hexagon elements
are created and linear behavior in them is supposed. 
Since the elements are considered to be small enough,
isotropic and homogeneous case is taken into account,
i.e. the elements are homogeneous and isotropic with
material characterizations given by modulus of
elasticity E and Poisson’s ratio ν , for example.  

Classical problem involving generalized
Coulomb's law together with the exclusion of tensile
stress exceeding the tensile strength along the
interfaces (possible dislocations) is solved instead of
using approaches given by the fracture mechanics.
The reason of such a formulation consists in the fact
that the material properties are identified in a much
better way than in the case different from the
formulation in terms of a contact problem. 

A typical set up of adjacent elements is 
illustrated in Figure 2. In what follows the uniformly
distributed mass density inside of each element is
substituted by concentration of it at the center of
gravity of the elements. Then first the solution of
elastic  problem  in  an  element  is  formulated  and
after   this   the  element  is  put  into  neighborhood
of  adjacent  elements. The current element is put into
a neighborhood  of  the other elements, which are for
a moment frozen. The statical equilibrium in the
current element is fulfilled with the inertia forces
lumped into the center of gravity of the elements, as
well. The current element moves according some
prescribed rule through all possible locations in the
domain describing the system coal – overburden. This
is carried out at each time interval. By such an
iteration the final state is achieved and either no
significant movements are attained or too extensive
displacements occur. In the second case the bumps is
probable. This is also the case when the iterative
process diverges.  

Regular distribution of elements is assumed, i.e.
only one matrix relating tractions and boundary
displacements is a priori prepared. Also 2D problem is
solved as fully sufficient for describing the threat of
bumps in deep mines.  

 

 

Fig. 2 Adjacent grains set up. 

3. BOUNDARY ELEMENT SOLUTION IN ONE 
ELEMENT 
A typical element in undeformed state is 

described by the domain Ω and the boundary isΓ . As 
said before, two-dimensional case is considered as 
fully representative. The elastic distribution of 
displacements, strains and stresses is described by the 
boundary element method. The solution of elasticity 
on each hexagonal element is approximated by 
concentration of DOFs at the centers of boundary 
abscissas of the hexagonal element under 
consideration, and the distribution of both the 
boundary displacements and tractions along the edges 
of this hexagon are assumed to be uniform. Note that 
higher order approximation can be used. For example, 
if a linear distribution of both the tractions and 
displacements is supposed, the approximation seems 
to be better. This is not quite true. Obviously, the 
mechanical behavior inside of the particles is 
characterized probably better, but in the complete 
system some disturbances can occur, which are 
different from reality, as too rigid form of particles is 
not wanted. If even quadratic or cubic approximation 
is introduced, curvilinear hexagons are attained. Then 
the prescription of the interfacial condition is almost 
impossible. Here similar rule as in the linear 
approximation holds valid: The higher approximation 
can harm the numerical results and complicates the 
numerical computation very much. For small 
elements, which are required in every case, the higher 
approximation in the sense of boundary elements do 
not bring about any benefit.  

Then, generally, the integral equations formulate 
the problem on a selected particle: 
 

*

* *

( ) ( ) ( , )d -

   - ( ) ( , ) d ( ) ( , ) d

ik k i ik

i ik i ik

c u p u

u p b u
Γ

Γ Ω

=

+

∫
∫ ∫

ξ x x ξ x

x x ξ x x x ξ x
        (1)

where i and k run 1, 2, and s = 1,…,6, ijδ is the 
Kronecker delta. Fields 1 2{ , }u u=u and 1 2{ , }p p=p
denote displacements and tractions, respectively. 
Point 1 2{ , }x x=x is the integration point and 
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that no deformation of the edges of hexagons can 
appear. In the second case in the picture the elements 
can even lose convexity in the deformed state. This 
case does not make any harm on solvability and 
uniqueness of the problem. 

 

1 2{ , }ξ ξ=ξ  is the observer. The terms with asterisk
are known kernels, the fundamental solutions of the
problem of 2D elasticity, which arise from the
solution of source problem in unbounded area.   
In case the regular hexagons are used and a uniform
distribution of both displacements and tractions is
used, the situation is very easy from the standpoint of
calculation. Although point-wise contact is then
assumed the stresses are determined at a high
accuracy. Moreover, the shape of the particles is not
restricted as in the case of linear distribution of
variables along the interfacial boundaries. In case the
uniform approximation is applied, 1

2ik ikc δ=  and then 
 

*

* *

1 ( ) ( ) ( ) d -
2
      - ( ) ( ) d ( ) ( ) d

ik k i ik

i ik i ik

δ u p u

u p b u

Γ

Γ Ω

=

+

∫
∫ ∫

ξ x x,ξ x

x x,ξ x x x,ξ x
        (2)

 

The quantities with asterisks are given kernels,
which for the plain strain state can be listed as, see
(Brebbia et al., 1984), for example: 
 
 

*
2

*
2

*

1 [(3 - 4 ) log(1/ ) - ],
8 (1- )

21 d- { [(1- 2 ) ]
4 (1- ) d

                            (1- 2 )( - )},

1- [(1- 2 )(- )
4 (1- )

                       

i j
ij ij

i j
ij ij

j i
i j

ji
ij j i ij

r r
u r

G r
r rrp

r n r
r r

n n
r r

rr r
r r r r

α
α α α

ν δ
π ν

ν δ
π ν

ν

σ ν δ δ δ
π ν

=

= + +

+

= + +

3

2
                           ],i jr r r

r
α+

    (3)

 
where ν  is Poisson's number, G  is the shear
modulus, 2 2 2

1 2- ,i i ir x r r rξ= = + , and 1 2{ , }n n=n is 
the unit outward normal. 

Knowing the form of kernels and substituting the 
approximations for boundary displacements and
tractions, matrix equations are obtained: 
 

,                = + = +Au Bp b Ku p V                           (4)
 

where A , B  and K are square matrices (12 *12), u is 
the vector of displacement approximations at vertices,
p  that of tractions and b  and V are vectors of
volume weight influences. The latter are vectors
(1*12). Note that the matrix K plays a role of the 
stiffness matrix in finite elements, but here is non-
symmetric and full (not banded). The transfer from the
first relation (4) to the second is enabled by the fact
that the matrix B is regular and therefore can be
inverted. 

In Figure 3 various shapes of deformed elements
are shown. The shape is in accordance with the
uniform or linear approximation of the displacements
and tractions along the boundary elements, it means

 

 

Fig. 3 Deformed shapes of hexagons due to the 
selected approximation. 

4. STATICAL CONTACT CONDITIONS 
Let us consider hexagon i  being in possible 

contact with neighboring hexagons 1 6,...,j j , see 
Figure 4. In the next denotation we omit j  and 
identify the neighbors by indices 1,...,6 . Then in 
Figure 4 ik kiN N=  is the resultant of the traction np
acting in the normal direction to the interface between 
elements i and kj , ik kiT T= is the resultant of the 
shear traction tp  acting along the interface between 
elements i and kj . The indices of N  and T  must 
commute as the action – reaction law takes place. In 
Figure 5 denotation of soft contact modeled by springs 
in both normal and tangential directions is seen. 
Symbols nk and tk stand for spring stiffnesses in 
normal and tangential directions, respectively, acting 
along the appropriate interface.  
 

Fig. 4 Denotation and meaning of springs 
constraining three neighboring elements 
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6. DYNAMICAL RESPONSE 
If each hexagonal element is considered small 

enough, dynamical problem can be formulated 
according to Figure 4 with lumped mass density and 
dynamical forces, where for the sake of simplicity the 
influence of rotation is neglected. Suppose the 
element i is moving while the others in the 
neighborhood remain stable at some time instant. 
Then on the element i the following forces act:   

In x-direction:  
 

[ - ] [ - ]ik ik k i ik k i ik ik ik ik
x x x x xy y y x x xy yF k u u k u u k k= + = Δ + Δ , 

2
i

2

d( ) - ( )
d

i
x xF t u t

t
ρ=                                                   (9)

and in y-direction: 
 

ik ik ik ik ik
y xy x y yF k k= Δ + Δ  ,          

2
i

2

d( ) - ( )
d

i
y yF t u t

t
ρ= , 

g ( ) -yF t gρ=                                                             (10)

where ik
xF and ik

yF are the forces in springs related to 

the differences { , }ik ik
x yΔ Δ  between displacement 

vector{ , }k k
x yu u  and { , }i i

x yu u at the centers of gravity of 

elements kj  and i  by the spring stifnesses ,ik ik
x yk k , 

where the neighboring elements are denoted as before 
, 1,..., 6kj k = ;  i

xF  is the inertia force projected to x-
direction, yk  is acting in y-direction,  i

yF is the 

projection to y-direction, g
yF  is the gravitational force, 

and ρ is the mass density of the element under 
consideration. 

This simplification is possible only under 
assumption that the particles are small, i.e. their 
number is large. Using this facilitation (very similar to 
classical DEM, as is PFC), also rotations can be 
involved in the formulation. Because of the clarity of 
explanation they are omitted and only mentioned in 
the next paragraphs.   

As mentioned above the time steps are expressed 
in terms of finite differences. At each time step an 
iteration of new positions of elements is carried out, 
i.e. the system of pseudo-elliptic equations is solved 
by iteration. New time step then follows from the 
values obtained from the latter iteration.   

Consider some concrete iteration step in a fixed 
time. It is obviously necessary to distinguish between 
iteration of time (this is the primary iteration) and in 
every time iteration the iteration of position of the 
nodal points, change of material properties along the 
interfacial boundaries, assurance of the equilibrium of 
each particle imbedded in its neighborhood, etc. Then 
the numerical strategy leads to fixed elements 1 6,...,i i
in the neighborhood of element i . The neighboring 
elements then remain unmovable. The only 

5. FISCHERA’S CONDITIONS 
Fischera’s conditions have been formerly

formulated for an admissible set being a cone. This is
exactly the case of the normal strength equal to zero.
In our case the conditions in normal direction should
be rather improved as there is also the tensile strength
to be taken into account. Fischera’s conditions can be
written in this case as: 

 

( - ) - 0,n n n np p p pκ+ + ≥ [ ] 0nu ≥      
{ ( - )- }[ ] 0n n n n np κ p p p u+ + = ,                                         (5)
 

In the tangential direction the particles are also
connected by springs, which relate the shear forces
and the displacements in tangential direction to the
interfacial boundary.  

Hence, in the tangential direction it holds: 
 

 (   )  tan -| | 0,  n n n tc p - p - p pκ ϕ+ ≥ | [ ] | 0tu ≥ , 
{ ( - )- tan -| |}[ ] 0n n n t tcκ p p p p uϕ+ =                             (5a) 
 

In formulas (5) and (5a) { , }n tp p=p is the vector 
of  tractions  with  components  projected  in  normal 
and tangential directions to the interface,
respectively, np+ is the tensile strength,  (.)κ means the 
Heaviside function being 1 for positive argument and
zero otherwise, [ ] ,[ ]n tu u  are jumps in the
displacements in normal and tangential directions,
respectively. As for the traction no jump is allowed, 
but action-reaction law has to be fulfilled. It is worth
noting that this is not valid in an exceptional
construction of tunnels with linings, where Eshelby’s
forces are exactly the differences between the
interfacial tractions appearing along the interface 
between the lining and surrounding rock. Material
constants are the angle of internal frictionφ and the 
cohesion (shear strength) c . 

The energy of the system can be stored as:  
 

T

1

1 ( , ) -   d -
2

N

aα
α

Γ
=

Π = ∑ ∫u u p u x  

1

- {( ) ( - )- }[ ]  d -
n

n n n n np p p p u
β

β β β β

β

κ+ +

Γ
=
∑∫ x               

1

- {  (   )  tan -| |} | [ ] | d   
n

n n n t tc p - p - p p u
β

β β β β β

β

κ φ+

Γ
=
∑ ∫ x

(6)
 

where α  runs over all hexagon elements, α = 1,…,N, 
β runs over all contact edges of possible contacts βΓ , 

1,...,nβ = , Γ is the external boundary where p is 
prescribed, and  
 

T( , ) ( )  da
α

α α
α Ω

= ∫u u σ ε x                                       (7) 
 

is the internal energy (bilinear form) inside a hexagon
αΩ , ,  α ασ ε are respectively stresses and strains in

αΩ .  
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relation holds valid as:            

T 0
0

ik ik ik ik ikik
x x xx xy xn

ik ikik ik ik ik ikik
y y xy yy yt

F k kk
F k kk

⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫Δ Δ⎡ ⎤⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ Δ Δ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭
T T      

(15) 
where 
 

2 2cos sinik ik ik
x n ik t ikk k kα α= + ;     

2 2cos sinik ik ik
y t ik n ikk k kα α= + ;                                 (16)

1 ( - )sin 2
2

ik ik ik
xy n n ikk k k α=          

It remains to express the resultants in the element 
i , which are in a vector notation denoted as T{ }i iH ,V , 
where iH  is the horizontal component and iV  the 
vertical one. It simply holds: 
 

6

1

0ik
i x

iik
k gi y

H F
FV F=

⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭

∑                                        (17) 

 

with i
gF is the gravity at the i -th element. If no 

rotations were considered, the above formulas would 
be valid without improvement and the computation 
may start. Summing the forces in x-direction we get 
from (9): 
 

2

2

2

2

d- ( )
d

d[ - ] [ - ]- ( ) 0
d

ik ik ik ik i
x x xy y x

ik k i ik k i i
x x x xy y y x

k k u t
t

k u u k u u u t
t

ρ

ρ

Δ + Δ =

= + =

              (18) 

 

and the equilibrium in y-direction follows from (10) 
as: 
 

2

2

2

2

d- ( )
d

d[ - ] [ - ]- ( )- 0
d

ik ik ik ik i
xy x y y y

ik k i ik k i i
xy x x y y y y

k k u t
t

k u u k u u u t g
t

ρ

ρ ρ

Δ + Δ =

= + =
         (19) 

The latter equations can be unified to the form: 
 

2

2

d
d

i
i i i i ix
x x xy y x

u
a u a u b

t
+ + = , 

2

2

d
d

i
y i i i i i

y y yx x y

u
a u a u b

t
+ + =                                          (20)

 

In the case of admitted rotations of disks, 
additional unknown angles describing the rotations of 
disks have to be introduced. Recall that three DOF 
(two displacements u', v' and one angle of rotation 
( 'φ ) in 2D are to be sought. 

This assertion will be précised in the next text. 
The solution of latter equation is known as: 
 

displacement at this instant is that of the element i. 

[ - ]ik ik k i ik ik
n n n n n nF k u u k= = Δ , 

[ - ]ik ik k i ik ik
t t t t t tF k u u k= = Δ                                           (11) 

                      

where ik
nF , ik

tF  are now forces caused by differences
between displacement vectors { , }k k

n tu u  and { , }i i
n tu u at 

the centers of gravity of elements ki  and i , where the
neighboring elements are denoted as before

, 1,..., 6ki k = .    
The only problem remains to solve: how to

express ,ik ik
x yk k  in terms of normal and tangential

stiffnesses. Note that the contact forces in Fig. 4 are
calculated as: 
 

g sinik
ki n y ikN F F α= + ,   

g cosik
ki t y ikT F F α= +                                               (12) 

7. SPRING STIFFNESS 
The main objective here is to formulate the

equations of equilibrium between adjacent elements of
each element i, i = 1,…, n , where n is the number of
elements. From this equilibrium it is necessary to
determine the displacements of centers of ki  and i , 
and possibly rotations iφ of each element. Recall that
the connection of the adjacent elements is created by
the springs with index i (the current disk) and k ( kj
are the adjacent elements). 

In the sense of (11) the physical equations
(Hooke’s law applied on the interface) for every
couple of adjacent elements are formulated as: 
 

0
0

ik ik ik
n n n
ik ik ik

t t t

F k
F k

⎧ ⎫ ⎡ ⎤ ⎧ ⎫Δ⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥ Δ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭
                                       (13)

                                       
where ,ik ik

n tF F  are the normal and tangential forces in
the springs on the interface between element i  and ki
with spring stifnesses, and - , ,ik i k

s s su u s n tΔ = = .  
Let the abscissa between elements ki  and i  under

consideration be deviated from x axis by an angle ikα . 
Then the transformation of forces to Oxy coordinate
system is written by: 

Tcos sin
sin cos

ik ik ik
ik ikx n n

ikik ik ik
ik iky t t

F F F
F F F

α α
α α

⎧ ⎫ − ⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

T      (14) 

 

where ikT is transformation matrix and superscript T
denotes transposition. 

   Recall a well known fact that ikT  is unitary, it
means that -1 T

ik ik=T T . Since the same equations hold
for displacements, the following forces-displacements
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again leads to unpleasant singular integrals, which 
cannot be “prefabricated”.  As mentioned above, our 
partial aim is to spare the computer consumption and 
the a priori prepared relations are preferred here. 
Decoding the equations (16) yields:   

6
11 12

11 1 12 2
1

11 1 12 2 1 1
6

21 22
21 1 22 2

1

21 1 22 2 2 2

( ) ( )

,

( ) ( )

         1, ,6  

s sj sj s sj sj
ij ij ij ij

j

si is si is si si

s sj sj s sj sj
ij ij ij ij

j

si is si is si si

K k u K k u

k u k u V Q

K k u K k u

k u k u V Q i

δ δ

δ δ

=

=

+ + + =

= + + +

+ + + =

= + + + = …

∑

∑
         (24) 

which is a system of 12 equations for 12 unknowns 
displacements, six in 1x -direction and six in 2x -
direction. This system is always solved in an iteration 
step, i.e. the neighboring elements are considered 
fixed and the value of displacements is taken from the 
previous step.  
 
9. EXAMPLES 

Study on a possible bumps occurrence during 
long wall mining considering prescribed dislocations 
is carried out in what follows. Before tackling the 
concrete problems, some simplifications will be 
introduced. First the volume weight forces ib can be 
neglected, as only a small part of the rock 
mechanically interacts with the coal seam. The effect 
of overburden (mostly several hundreds of meters) is 
simulated as loading along the upper part of the 
domain describing the whole system rock – coal seam. 
In this sense the forces sjV  involve only the
dynamical effects. There is no aim to delve into 
details concerning the description of the time 
development steps, which are based on the finite 
differences. The formulas for that are exactly the same 
as those used for the PFC and other distinct element 
codes. This means that the rotation of particles is 
suppressed, as this is mostly caused by irregular shape 
of the particles; cf. (Cundall, 1971), (Cundall and 
Strack, 1979), (Moreau, 1994). For completeness it is 
worth noting that if the rotation should be
contemplated in the system of equilibrium very 
similar procedure as introduced in (Procházka, 2004) 
can be used.  The D’Alembert law required and basic 
relations velocity-movement are based on the simplest 
stencil in each element s with neighbors 1,..., 6i = .  

The    domain    describing    the    problem   is 
a rectangle of 26 m x 9.5 m, the coal seam is 4.75 m 
high. The regular distribution of hexagons is 
considered,  the internal radius of each hexagon is 
0.25 m, the adit has the width 3 m. Number of 
particles is 1532. Material parameters of the rock mass 
have the following values (Carmichael, 1989; Bell, 
2000): the elastic modulus E = 50 GPa, the shear 
modulus G = 20 GPa, the angle of internal friction is 
25 degrees, the shear strength c  = 1 MPa and the 

0
0 1

sin sin( ) ,        ,      
sin sin

                 ,        1-n

t - tw t w w
h

kh
m

ωξ ωξ ξ
ω ω

ω ξ ξ

= + =

= =

  (21) 

 

where 1 0-h t t=  is the time step,

0 0 1 1 0 ( ),  ( ),   w w t w w t t= = is the initial time,  1t is the 
time in the next time step. At the middle of the time
interval, the value of displacement w and the first 
derivative by time t are to be determined. It is easy to
show that they can be expressed in such a way that
both the values and derivatives of the movements are
derived as: 
 

1 1
2 2

0 1 1 01
2

2 2

( - )d( ) ,    
2cos d 2 sin
w w w ww w w

t hω ω

ωξ +
= = = =         (22) 

 

An important bound estimate follows from
equations (21) and (22) on the time step h:  
 

2 n

mh
k

π
≤ . 

 

The only troublesome point remains for 0nk → . 
Then linear relation follows from the governing
equation and, consequently, the velocity is constant.
This is in compliance with the D’Alembert law. The
last inequality leads us also to the fact that in the case
of large penalty nk  no differences in displacements 
can be expected due to the inertia forces.  

Using the well known approximation formula for
second derivative and the above approximate formulas
we get:  
 

2
1 1
2 22 2

d 1( ) [ ( 1) - 2 ( ) ( 0)]
d 4

w w w w
t h

ξ ξ ξ ξ= = = = + =  
  (23)

 

which is an explicit formula for calculating ( 1)w ξ = .
Using vector projection to the coordinates system,
resulting movement is received. At the moment the
center of gravity of the element is then moved
assuming the deformed body as rigid. 
 
8. ADDITIONAL DYNAMICAL FORCES INSIDE 

THE PARTICLE WITH FIXED 
NEIGHBORHOOD 
Additional dynamical forces have to be added to

the static formulation. As said above the lumped mass
is considered at the center of gravity of each element.
The situation is simplified due to this assumption and
the calculation of necessary integrals is therefore 
removed. The volume integrals can also be calculated
using a very similar process done by the Eshelby
forces. This is no simplification, but possible
approach of expressing volume integrals, which are
higher order singular. Better approximation is to 
assume a uniformly distributed inertia forces, which
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The toe of the first dislocation at the lower 
boundary of the domain is found 2.5 m from the 
tortuous wall of the mine, the second 5 m from the 
previous and the third dislocation is next 5 m from the 
previous dislocation.  

Eventually, three dislocations are assumed with 
the same declination as previous ones and the way of 
movement, stress concentration and additional cracks 
are shown in Figure 11. From the pictures it seems to 
be obvious that the influence of more than one 
dislocation is not principal in our case of distribution 
of the damage. The nearer positioned dislocations can 
affect the possible bumps occurrence. The aim of this 
paper is only to provide a numerical modeling that can 
be extended to concrete practical problems. This is 
why the examples are concentrated on the introduced 
typical problems. For completeness vectors of 
movements of particles are seen in Figure 12.  

Next a problem of one reverse slope of predicted 
dislocation full of gas is shown in Figure 13. The 
inclination of this dislocation from the horizontal 
direction is 1200. 

The following picture, Figure 14, shows the 
movements at the stage when the mine face is far from 
the observed cross section. Comparing this with 
Figure 7 it appears that the cracks are distinct and the 
bumps have a similar chance of occurrence.  

The particles are cast away from the massif but 
the side face brakes the movement and try to stabilize 
the opening. The column of the mass on the face, on 
the other hand, is not stiff enough and probably the 
coal seam burst will take place. Figure 15 shows two 
predisposed dislocations while Figure 17 depicts three 
predisposed dislocation with the inclination 1200. The 
position of the upper part of the first dislocation is 
found 2.5 m from the tortuous wall of the mine, the 
second 5 m from the previous and the third dislocation 
is next 5 m from the previous dislocation, all 
measured with respect to the interface between the 
coal seam and the overburden. Figure 16 introduces 
the movements of particles, stress concentration and 
cracks due to two dislocations and Figure 18 describes 
the same situation in the case of three dislocations.  

Figure 19 describes the vectors of movements 
for three dislocations. Figures 12 and 19 show that in 
the first case of inclination the mass remains relatively 
compact, although some cracks appear there. High 
degree of destruction is observed in the second case of 
dislocations inside of the coal seam.  

It is worth noting that the displacements are 
small although the overburden is high (1000 m). This 
is the impact of relative movements caused by 
Eshelby’s forces acting on the side face of mine. In 
the zone of the predisposed dislocations the 
movement at the critical point is almost horizontal 
while on the fringes of the domain describing the 
problem partly vertical displacements are observed.  

In conclusions, the second case of inclination of 
the dislocations is much dangerous for the bumps 
occurrence.  

tensile strength np+ =  100 kPa. The coal seam is
characterized by E = 5 GPa, G = 2 GPa, the angle of 
internal friction and the shear strength vary. The load
due to the volume weight γ  = 25 kN/m 3  is given by
the overburden. Depth of the mine is considered as
1000 m. In Figure 5 the set up of hexagonal elements
is seen, the shaded part describes the coal seam and
the upper part the overburden, which is divided into
two parts: the upper part of the overburden simulates
the depth of the mine and is characterized by
additional loading along the upper boundary of Ω . 
The lower part of the overburden is described by
elastic particles with cohesive boundaries. The
boundary conditions of the entire domain are
simulated by rollers along the outer boundary, the
boundary of the adit has free support, but Eshelby’s
forces selected according to the current position of the
mine face (say, mining shield). They are time
dependent and decrease from the extreme values
calculated from the virgin state (no opening is created)
to the zero value at the time of far enough face from
the observed location considered in our examples. The
zones of cracked coal seam are simulated by
eigenstrains applied inside of the elements, which
characterize the inclination of the damage zones. In
Figure 6 one predicted dislocation full of gas is shown
with its location. The deviation of this dislocation
from the horizontal direction is 600. The toe of the
dislocation is 2.5 m from the face of the adit. The
shaded particles denote the interface between the coal
seam and the overburden. Since the hereditary laws
are not considered here, shorter time between the
virgin state and the critical state, when the mine face
is at a far distance from the observed location, is taken
into account. In the following pictures each particular
hexagonal element is drawn in the undeformed shape,
although they undertake a local deformation 
(described by movement of the centers of gravity of
deformed elements and the deformation of the
originally hexagonal shape). The reason is that the
accumulation and fictitious overlapping of particles
underlines a concentration of stresses. In reality, no
overlapping is attained, as the penalty does not allow
it.  

In Figure 7 the deformation of the coal seam is
depicted, belonging to the case of mine face at a far
distance from the observed location. A closer view of
the picture leads us to the conclusion that the
movement of the particles is not only in front of the
dislocation but also the particles below the dislocation
are disconnected and move slightly. The concentration
of elements characterizes stresses along the
dislocation in the orientation of the adit.  

Figure 8 shows two predisposed dislocations
while Figure 10 depicts three predisposed dislocation
which are considered in our examples. The
movements belonging to the two dislocations are
displayed in Figure 9. 
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Note that the above described approach can be
applied to very many cases of predisposed dislocation,
even different from 60 or 120 degrees. Then the shape
of the elements has to be improved and the regular
distribution of the particles is disturbed. 

 
10. CONCLUSIONS 

In this paper an application of the free hexagon
method, belonging to the discrete elements, to
selected problems is presented. Mainly assessment of
bumps occurrence in deep mines is studied. Basic
relations are formulated showing relatively simple
algorithm for preparing computer code, involving
natural way of computation of the system of pseudo-
linear equations. The time steps are described with an
explicit formula, which can be easily used for the
problem described by a special loading characterized
by the Eshelby forces.  

For explication of the theory the influence of
inclination of predisposed dislocations in coal seams
is presented. Two typical cases are discussed, where
the second, the dislocations in which are inclined from
horizontal by 1200, are much more dangerous than the
case of 600 inclinations. One can esteem that the
vertical direction of the dislocations will behave
similarly as the first case. 

The angles of slopes are obviously selected
because of the shape of regular distributed hexagons.
As said above the shape of the hexagon in
undeformed state can change according to a current
geometry of the problem. On the other hand, the 
vertical dislocations are probably the most
complicated geometry, as no chain of hexagons can
describe a vertical band with the same width. Then the
influence is attaint by limit of slightly deviated from
vertical line cases. Moreover, the influence of dense
dislocations should be studied for certain concrete
practical example.  
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Fig. 6 Location of one predisposed dislocation. Fig. 5 Set up of the particles. 

Fig. 8 Location of two predisposed dislocations. Fig. 7 Movements of the particles, concentration of
stresses and additional dislocations, one
dislocation. 

Fig. 10 Location of two predisposed dislocations.  
 

Fig. 9 Way of movements of the particles,
concentration of stresses and additional
dislocations, two dislocations. 

Fig. 12 Vectors of movements of the centers of gravity 
for three dislocations. 

Fig. 11 Way of movements of the particles,
concentration of stresses and additional
dislocations, three dislocations.
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Fig. 14 Movements of the particles, concentration of 
stresses and additional dislocations, one 
dislocation. 

Fig. 13 Location of two predisposed dislocations.  

Fig. 16 Movements of the particles, concentration of 
stresses and additional dislocations, two 
dislocations.

Fig. 15 Location of two predisposed dislocations. 

Fig. 18 Way of movements of the particles, 
concentration of stresses and additional 
dislocations, three dislocations. 

Fig. 17 Location of three predisposed dislocations.  
 
 

Fig. 19 Vectors of movements of the centers of
gravity for three dislocations. 
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