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ABSTRACT  
A new way of identification of minerals was suggested. The identification was based on chemometric analysis of measured IR
spectra of selected minerals. IR spectra were collected using diffuse reflectance technique. The discriminant analysis and
principal component analysis were used as chemometric methods. Five statistical models were created for separation and
identification of clay minerals. Up to 60 samples of various mineral standards (clay minerals, feldspars, carbonates, sulphates
and quartz) from different localities were selected for the creation of statistical models. The results of this study confirm that
the discriminant analysis of IR spectra of minerals could provide a powerful tool for mineral identification. Even
differentiation of muscovite from illite and identification of mixed structures of illite-smectite were achieved.   
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Very useful for processing of IR spectra are 
multivariate statistical methods. The big advantage of 
multivariate statistical methods is their capability to 
extract required spectral information from IR spectra 
and explore this spectral information for qualitative or 
quantitative applications. The most frequently used 
multivariate statistical methods (often called 
chemometric methods) are factor analysis (FA), 
principal component analysis (PCA), discriminant 
analysis (DA), principal component regression (PCR), 
multiple linear regression (MLR) and partial least-
squares regression (PLS). DA, FA and PCA are very 
useful tools for qualitative analysis. 

The discriminant analysis allows quantification 
of the probability with which an object can be 
assigned   to   an   individual   class.   DA   generates
a discriminant function as a linear combination of 
measured variables, which gives maximum 
separability for objects from different classes. The 
ratio of between-class to pooled within-class sample 
variance is commonly used as a criterion J for 
measuring the separability of different classes: 

 
T
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where a is a vector maximizing the discriminant 
criterion and B and W are the between-class and the 
within-class covariance matrixes, respectively (Jiang 
et al., 2002). 

1. INTRODUCTION 
Knowledge of mineral composition is essential

to characterize the geochemical and physico-
mechanical properties of rocks. Nature and content of
minerals (especially clay minerals) present in rocks
have a significant influence on the behaviour and
properties of rocks as well as on the whole rock
massif.  

In general, several conventional analytical
methods exist that can be used to examine the mineral 
composition of rocks: optical microscopy, electron
microscopy, X-ray diffraction (XRD), Fourier
transform infrared spectroscopy (FTIR spectroscopy),
Raman spectroscopy, thermal analysis (TG/DTA) and
bulk chemistry analysis (Kodama et a., 1989; Chipera
and Bish, 2001; Srodon, 2002; Vogt et al., 2002;
Vaculíková, 2006). Unfortunately, the exact 
identification of clay minerals by means of these
methods is rather complicated and often inaccurate.
The main analytical difficulties are related to variable
chemical composition and common structural
disorders of clay minerals. Another reason consists in
the fact that the individual clay minerals occur in the
form of mixtures (illite – montmorillonite, chlorite –
montmorillonite, etc.) with various ratios of particular 
clay minerals.  

The current FTIR spectroscopy makes it possible
to analyze individual minerals, noncrystalline
admixtures and, simultaneously, to detect the presence
of organic matter.  
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bands represent spectral information positively 
correlated through particular principal component; the 
negative ones represent spectral information 
negatively correlated through particular principal 
component. 

Both of the above-mentioned chemometric 
methods (DA and PCA) are described in a lot of 
statistical textbooks (Meloun and Militký, 2004; 
Hendl, 2006) in full details. Likewise, DA and/or 
PCA of IR spectra are used in many studies (Tesch 
and Otto, 1995; Dahlberg et al., 1997; Kher et al., 
2001; Tsuchikawa et al., 2003; Ritz, 2007).  

This paper describes a new approach to clay 
minerals and some accessories minerals identification 
based on chemometric analysis of IR spectra of clay 
minerals. All IR spectra were collected using diffuse 
reflectance technique (DRIFT). The aim of the study 
was the creation of statistical models for minerals 
identification by discriminant analysis of measured IR 
spectra.  
 

2. MATERIALS AND METHODS 
2.1. SAMPLES OF MINERALS 

The research has been focused on the basic clay 
mineral specimens (kaolinite, montmorillonite, 
nontronite, illite, chlorite and vermiculite) including 
micas (muscovite, biotite) and the associated minerals 
(quartz, feldspar, carbonates and sulphates). The 
standards of above-mentioned minerals were selected 
according to their authenticity and a degree of purity. 
These mineral standards were obtained from the 
collection of minerals available at the Institute of 
Geonics, Nanotechnology Centre of VŠB-Technical 
University Ostrava and from Source Clays Repository 
of the Clay Minerals Society, USA. 

60 samples of mineral standards were collected 
for the preparation of statistical models. 51 samples of 
clay minerals (including micas) and 9 samples of 
associated minerals (quartz, feldspars, carbonates and 
sulphates) were used. Some of mineral standards were 
treated by jet mill; other ones were prepared by 
sedimentation  to  obtain fraction grain size less than 
5 μm. Some standards were used as unmodified 
(“raw” standards). A list of all used samples of 
mineral standards is shown in Table 1.  

 
2.2. FTIR MEASUREMENTS 

Approximately 5-10 mg of sample of mineral 
standards was ground with approx. 400 mg dried KBr. 
This mixture was used to collect IR spectra. 

The IR spectra were collected using FTIR 
spectrometer Nexus 470 (ThermoScientific, USA). 
Diffuse reflectance measurement technique (DRIFT) 
was used. This technique was selected for its fastness 
and simplicity. The measurement parameters were as 
follows: spectral region 4000-400 cm-1, spectral 
resolution 8 cm-1; 128 scans; Happ-Genzel 
apodization. 

The discriminant analysis uses results of another
chemometric method – principal component analysis
(PCA). PCA is one of the most common multivariate
methods wide-spread also in infrared spectroscopy
(e.g. Tesch and Otto, 1995; Dahlberg et al., 1997; 
Rusnak et al., 2003). IR spectrum is composed of
many points connected by the line; each point in the
IR spectrum is defined by wavenumber and intensity
(for example absorbance). In PCA, each spectrum is
represented by a point in multidimensional space, 
whereas the number of dimensions corresponds to the
number of points in the spectrum (in other words the
number of variables). Because this multispace is very
difficult to comprehend, PCA introduces a new
coordinate system as a linear combination of the old 
coordinates. Most of the variances (it means the most
of information from the IR spectrum) are concentrated
in only a few of the new coordinates – called principal
components. This can be expressed as the
decomposition of the data matrix (D) into two other 
matrixes - the score matrix (P) and the loading matrix
(T). For better understanding of the decomposition of
the data matrix we can use the following graphical
representation (Geladi and Kowalski, 1986): 
 

 
 

D matrix has the dimensions of number of samples (n) 
by intensity (at particular wavenumbers) of IR spectra
(m). The score matrix (P) has the dimensions of
number of samples (n) by principal components (a) 
and this matrix represents the location of the samples
in the new principal component space. The loading
matrix (T) has dimensions of intensity (m) by 
principal components (a); loading matrix represents
the recipes by which each of the principal components
was constructed from the old variable - intensity at
each wavenumber. The most important information is
included in the first two or three principal
components. The rest of the principal components
contain only minor characteristics of samples and
noise, so that can be ignored. The main advantage of
PCA consists in reducing the influence of noise and 
exploiting the subtle differences in the IR spectra of
samples to obtain relevant and significant spectral
information.  

In PCA of spectral data, the loading matrix is
very important. This matrix shows us which spectral
information (regions or bands) are important in the 
principal component space. The most significant way
of projection of loading matrix in spectral analysis is
so-called loading spectra. They often look like
“typical spectra” and positive and/or negative band
can be present at the loading spectra. The positive
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Table 1 List of samples. 

Sample Mineral Locality Description 
Bio1 Biotite Ktíš, Czech Republic fraction ≤ 5 μm 
Bio2 Biotite  Ktíš, Czech Republic “raw” standard 
Bio3 Biotite Dolní Bory, Czech Republic fraction ≤ 5 μm 
Mus1 Muscovite India “raw” standard 
Mus2 Muscovite Měděnec, Czech Republic fraction ≤ 5 μm 
Mus3 Muscovite Otov, Czech Republic fraction ≤ 5 μm 
Mus4 Muscovite  Měděnec, Czech Republic “raw” standard 
Mus5 Muscovite Rožná, Czech Republic fraction ≤ 5 μm 
Mus6 Muscovite-Chlorite Měděnec, Czech Republic “raw” standard 
Ill1 Illite Hungary fraction ≤ 5 μm 
Ill2 Illite (IMt-1) Montana, USA fraction ≤ 5 μm 
Ill3 Illite Karlov, Czech Republic “raw” standard 
Ill4  Illite (IMt-2) Montana, USA “raw” standard 
Ill5 Illite (IMt-1) Montana, USA jet mill 
Ill6 Illite (IMt-2) Montana, USA “raw” standard 
Ill7 Illite-Smectite  (ISCz-1) Czechoslovakia  “raw” standard 
Ch1 Chlorite (CCa-2) California, USA fraction ≤ 5 μm 
Ch2 Chlorite Letovice, Czech Republic fraction ≤ 5 μm 
Ch3 Chlorite Orlické hory, Czech Rep. fraction ≤ 5 μm 
Ch4 Chlorite (CCa-2) California, USA “raw” standard 
Ch5 Chlorite (CCa-2) California, USA jet mill 
Kao1 Kaolinite Božíčany, Czech Republic “raw” standard 
Kao2 Kaolinite Horní Bříza, Czech Republic “raw” standard 
Kao3 Kaolinite (KGa-1b) Georgia, USA fraction ≤ 5 μm 
Kao4 Kaolinite Kadaň, Czech Republic “raw” standard 
Kao5 Kaolinite Kaznějov, Czech Republic “raw” standard 
Kao6 Kaolinite Sedlec, Czech Republic “raw” standard 
Kao7 Kaolinite Únavov, Czech Republic “raw” standard 
Kao8 Kaolinite (KGa-1b) Georgia, USA “raw” standard 
Kao9 Kaolinite (KGa-2) Georgia, USA “raw” standard 
Kao10 Kaolinite Sedlec, Czech Republic “raw” standard 
Kao11 Kaolinite Sedlec, Czech Republic fraction ≤ 5 μm 
Dic1 Dickite Krásno, Czech Republic fraction ≤ 5 μm 
Hal1 Halloysite Bílá Hora, Slovakia “raw” standard 
Mon1 Montmorillonite Ivančice, Czech Republic fraction ≤ 5 μm 
Mon2 Montmorillonite Jelšový potok, Slovakia fraction ≤ 5 μm 
Mon3 Montmorillonite (SWy-1) Wyoming, USA “raw” standard 
Mon4 Montmorillonite (SWy-1) Wyoming, USA fraction ≤ 5 μm 
Mon5 Montmorillonite (SWy-2) Wyoming, USA “raw” standard 
Mon6 Montmorillonite (SAz-2) Arizona, USA fraction ≤ 5 μm 
Mon7 Montmorillonite (SAz-2) Arizona, USA “raw” standard 
Mon8 Montmorillonite (STx-1b) Texas, USA “raw” standard 
Non1 Nontronite (Nau-1) Uley Mine, South Australia “raw” standard 
Non2 Nontronite (Nau-2) Uley Mine, South Australia “raw” standard 
Hec1 Hectorite (SHCa-1) California, USA “raw” standard 
Ver1 Vermiculite China expanded 
Ver2 Vermiculite Aldrich standard expanded 
Ver3 Vermiculite Aldrich standard expanded, jet mill 
Ver4 Vermiculite Letovice, Czech Republic not expanded 
Ver5 Vermiculite Brasil not expanded 
Ver6 Vermiculite Brasil not expanded, jet mill 
Acc1 Quartz Otov, Czech Republic “raw” standard 
Acc2 Siderite Dúbrava, Slovakia “raw” standard 
Acc3 Magnesite Nižná Slaná, Slovakia “raw” standard 
Acc4 Calcite Štramberk, Czech Republic “raw” standard 
Acc5 Gypsum Nothern Bohemia, Czech Rep. “raw” standard 
Fel1 Albite West. Bohemia, Czech Rep. “raw” standard 
Fel2 Feldspar (Na, K) West. Bohemia, Czech Rep. “raw” standard 
Fel3 Feldspar (Na, K) West. Bohemia, Czech Rep. “raw” standard 
Fel4 Feldspar (Na, Ca) West. Bohemia, Czech Rep. “raw” standard 
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Model 1 was created for the separation of clay 
minerals from accessory minerals like feldspars, 
quartz, carbonates (calcite, siderite and magnesite) 
and sulphates (gypsum).  General discrimination of 
clay minerals was performed in Model 2. The clay 
minerals were classified into particular groups of clay 
minerals in this model: biotite, muscovite-illite, 
chlorites, kaolin-serpentines, smectites and 
vermiculites. The remaining models were created for 
identification of individual members of selected clay 
mineral groups. Model 3 has allowed identification of 
minerals of the kaolin-serpentine group (kaolinite, 
dickite and halloysite), Model 4 has allowed 
identification of minerals of the smectite group (Na-
montmorillonite, Ca-montmorillonite, nontronite and 
hectorite) and Model 5 has allowed identification of 
micas (biotite, muscovite) and illite.  

 
3.2. MODEL 1 – SEPARATION OF CLAY MINERALS 

FROM ACCESSORY MINERALS 
This model was created for the selection of clay 

minerals from accessory minerals. There were three 
classes used in Model 1 (Clay minerals, Feldspars and 
Accessory  minerals).  The  first class included all 
used samples  of  clay  minerals  (biotite,  muscovite, 
illite, chlorite, kaolinite, dickite, halloysite, 
montmorillonite, notronite, hectorite and vermiculite). 
The first class (Clay minerals) involved 51 samples as 
members of this class. The second class (Feldspars) 
had 4 members; three samples of mixed feldspars and 
one sample of albite. The third class (Accessory 
minerals) included 5 members (quartz, siderite, 
calcite, magnesite and gypsum). The Mahalanobis 
distance plot is shown in Figure 1. All minerals were 
clearly distributed into three clusters whereas the 
cluster of Feldspars is relatively close to the cluster of 
Clay minerals. The cluster of Accessory minerals is 
evidently isolated from the other two clusters. 

The principal component analysis was used as 
integral part of the discriminant analysis. Ten 
principal  components (PCs)  were calculated in 
Model 1. These ten PCs described 99.3 % of variance 
of spectral information, whereas almost 95 % of 
variance was involved in the first four PCs. Loadings 
spectrum of the first principal component (PC1) 
includes spectral bands of kaolinite only: stretching 
bands of inner-surface hydroxyl groups (3695 cm-1, 
3668 cm-1, 3652 cm-1 and 3620 cm-1), Si-O stretching 
band (1100 cm-1), in-plane Si-O stretching bands 
(1030 cm-1  and 1010 cm-1 ), deformation band of 
inner-surface hydroxyl groups (915 cm-1), Si-O 
stretching bands (795 cm-1, 755 cm-1 and 695 cm-1) 
and deformation bands Al-O-Si, Si-O-Si and Si-O, 
respectively (540 cm-1, 470 cm-1 and 430 cm-1). 
Assignment of IR spectral bands of minerals 
according to literature (Russel et al., 1994; Madejová 
and Komandel, 2001; Vaculíková and Plevová, 2005) 
was used in this paper. PC1 described 76.3 % of 
variance. The second principal component (PC2) 

Every sample was prepared and consequently
measured several times (3 – 5 times). The mean IR
spectrum of every sample was calculated for
subsequent statistical processing. 

 
2.3. DISCRIMINANT ANALYSIS 

The discriminant analysis (DA) was performed
using  TQ  Analyst software (ThermoScientific,
USA). Two spectral regions 4000-3000 cm-1 and 
1300-400 cm-1 of  each  IR  spectrum  were  used  for 
DA. A one-point baseline was used in every spectral
region. A multiplicative signal correction of
pathlength was used for calculation. The Mahalanobis
distance was used to formulate a distance between
clusters.  

Before  DA,  principal component analysis
(PCA)  carried  out.  The task of PCA was reduction
of redundant spectral information and finding of
important spectral features which had a significant
influence on spectral variance. The number of
principal components  used  for  the  preparation  of 
model was 10.  

Validation of statistical models has been carried
out by means of a validation spectra set (TQ Analyst
software does not allow cross-validation for
discriminant analysis). The IR spectra of minerals
were split into two groups in each class used in DA –
calibration group of spectra and validation group of
spectra. The group of calibration spectra was used to 
create a discrimination model; the group of validation
spectra was used to verify this model. Most of the IR
spectra in each class were used as calibration spectra;
up to three IR spectra in each class were used as
validation spectra. There were no validation spectra
used in one-member classes only. The selection of
calibration and validation spectra has been performed
by TQ Analyst software. The following samples were
used for collection of validation spectra: Bio2, Mus1,
Mus4, Ill2, Ill4, Ch3, Kao2, Kao7, Kao8, Mon3,
Mon6, Non2, Ver4, Fel3 and Acc3. The models in this
study were considered correct when all validation
spectra occurred inside their class clusters. All
discrimination models mentioned in this paper fulfill
this condition.   

 

3. RESULTS AND DISCUSSION 
3.1. STRATEGY OF MODEL CREATION 

The creation of a unique statistical model for all
used samples was a primary idea of the authors.
During the process of creation of the unique model
serious problems occurred. A lot of minerals were
classified into incorrect classes because of
considerable variability of spectral bands. The
solution to this problem was a creation of partial
models; five partial models were created in this study.
These partial models have allowed separation and
subsequent identification of clay minerals in a few
steps. A brief summary of the created models is in
Table 2. 



APPLICATION OF INFRARED SPECTROSCOPY AND CHEMOMETRIC METHODS …  

 

51

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 Brief summary of statistical models. 
 
Name of model Used minerals Classes 
Model 1 All mineral samples Clay minerals 

Feldspars 
Accessory minerals 

Model 2 Clay minerals Biotite 
Muscovite-illite 
Chlorite 
Kaoline-serpentine 
Smectite 
Vermiculite 

Model 3 Minerals of kaoline-serpetine group Kaolinite 
Dickite 
Halloysite 

Model 4 Minerals of smectite group Na-Montmorillonite 
Ca-Montmorillonite 
Nontronite 
Hectorite 
Mixed illite-smectite structure 

Model 5 Micas  Biotite 
Muscovite 
Illite 
Mixed illite-smectite structure 

Fig. 1 Mahalanobis distance plot of three clusters of minerals (Model 1). 
 

the  hydroxyl  group  of  gypsum (3550 cm-1  and 
3400 cm-1). The bands of quartz and gypsum had 
normal orientation (e.g. they did not have negative 
intensities of bands). The fourth principal  component 
(PC4) described 2.8 % of variance and PC4 loadings 
spectrum included the same bands as PC 3 loadings 
spectrum but entire bands had negative intensities. 
The loadings spectra of the above-mentioned PCs are 
shown in Figure 2.  

described 9.3 % of variance and its loadings spectrum
included again the kaolinite bands only. Contrary to
the PC1, the entire spectral band in PC2 loadings
spectrum had negative intensities of bands. The third
principal component (PC3) described 5.9 % of
variance. The PC3 loadings spectrum included also
negative  bands  of  kaolinite  and  moreover a 
doublet  of  Si-O  stretching bands of quartz (800 cm-1

and 780 cm-1)  and  a doublet of stretching bands of
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Fig. 2 Loadings spectra of the first four principal components (Model 1). 

Ten principal components (PCs) were calculated 
in Model 2. These ten PCs described 99.9 % of 
variance of spectral information, whereas almost 97 % 
of variance was involved in the first four PCs. PC1 
loadings spectrum included spectral bands of kaolinite 
only as well as PC1 in Model 1. PC1 described 79.4 
% of variance. PC2 described 10.8 % of variance and 
its loadings spectrum included negative bands of 
kaolinite and “positive” broad and very weak band at 
3400 cm-1 (stretching vibration of water). PC3 
described 4.0 % of variance and its loadings spectrum 
contained negative bands of kaolinite and “positive” 
bands of stretching vibration of water (higher intensity 
than in PC2). PC4 described 2.3 % of variance and 
PC4 loadings spectrum included also negative bands 
of kaolinite and “positive” band of water, whereas the 
intensity of the last-mentioned band was higher than 
in PC3 loadings spectrum.  

The band at 1645 cm-1 (in PC2, PC3 and PC4 
loadings spectrum) belongs to deformation vibration 
of water. This band very probably presents moisture 
of samples. The band at 1645 cm-1 has not been used 
for the creation of Model 2. 

The loadings spectra of the above-mentioned 
PCs are shown in Figure 4. 

 
 

3.3. MODEL 2 – IDENTIFICATION OF CLAY 
MINERALS GROUPS 
This model was created for classification of clay

minerals into particular groups of clay minerals.
Classification of clay minerals according to Weiss and
Kužvart (Weiss and Kužvart, 2005) was used in this
study. Model 2 involved six classes (Biotite,
Muscovite-illite, Chlorite, Kaoline-serpentine,
Smectite and Vermiculite).  In this model the first two
classes represented the micas group of clay minerals;
the other classes represented the remaining groups of
clay minerals.  The micas group had to be split into
two classes (Biotite and Muscovite-illite) by reason of
bad creation of clusters. In the Biotite class were
samples of biotite only; in the Muscovite-illite class
were samples of muscovite and illite. In the Chlorite
class were chlorite samples only. In the Kaoline-
serpentine class were samples of kaolinite, dickite and
halloysite. In the Smectite class were samples of
montmorillonite, nontronite and hectorite. In the
Vermiculite class were samples of vermiculite only.
With exception of sample Ill7 all minerals were
clearly classified into appropriate classes after
performance of discriminant analysis. The above-
mentioned sample (mixed illite-smectite structure)
was classified between the class Muscovite-illite and
class Smectite (Fig. 3).  
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Fig. 3 Mahalanobis distance plot of classes Muscovite-illite and Smectite (Model 2). 
 

Fig. 4 Loadings spectra of the first four principal components (Model 2). 
 

Halloysite). All minerals were clearly distributed into 
used classes by discriminant analysis.  

Ten principal components (PCs) were calculated 
in Model 3. These ten PCs described 99.9 % of 
variance  of  spectral information, whereas almost 
97.5 % of variance was involved in the first three PCs. 
PC1 described 82.5 % of variance, PC2 described 
11.3 % of variance and PC3 described 3.6 % of 

3.4. MODEL 3 – IDENTIFICATION OF MINERALS 
OF KAOLINE-SERPENTINE GROUP 
This model was created for identification of

individual members of the Kaoline-serpentine group
of clay minerals. Kaolinite, dickite and halloysite were
used in this study as representatives of the Kaoline-
serpentine group of clay minerals. Thus the Model 3
included three classes (Kaolinite, Dickite and
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Fig. 5 Loadings spectra of the first three principal components (Model 3). 
 

Fig. 6 Loadings spectra of the first three principal components (Model 4). 
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vibration (840 cm-1), Si-O stretching band of silica 
(800 cm-1),  coupled   out-of-plane   vibration  band 
of  Al-O  and  Si-O  (625 cm-1)  and deformation 
bands Al-O-Si,   Si-O-Si,   respectively  (525 cm-1

and  470 cm-1). PC1 described 86.0 % of variance. 
PC2 described 7.2 % of variance and its loadings 
spectrum  included  negative  bands at 3640 cm-1, 
3440 cm-1  and  1650 cm-1  and  positive  bands  at 
800 cm-1, 625 cm-1, 525 cm-1 and 470 cm-1. PC3 
described 4.3 % of variance and the loadings spectrum 
contained negative bands at 3640 cm-1, 3440 cm-1, 
1650 cm-1, 525 cm-1 and 470 cm-1.  All bands in the 
loadings spectra of PC2 and PC3 belonged to 
montmorillonite too. The band at 1650 cm-1 has not 
been used for the creation of Model 4 by reason of 
potential interference intensity of this band by 
samples moisture.  

The loadings spectra of the above-mentioned 
PCs are shown in Figure 6. 

 
3.6. MODEL 5 – IDENTIFICATION OF MINERALS IN 

GROUP OF MICAS  
This model was created for identification of 

individual members of micas. Biotite, muscovite and 
illite were used in this study as representatives of this 
group of clay minerals. Model 5 included four classes 
(Biotite, Muscovite, Illite and Mixed illite-smectite 
structure). All minerals were clearly distributed into 
used classes by discriminant analysis. The 
Mahalanobis distance plot of Muscovite and Illite 
classes is shown in Figure7.  

The clusters of muscovite and illite were 
relatively close to each other but they were clearly 
separated. IR spectra of muscovites and illites can be 
very similar (on account of similar chemical 
composition and structure) and common identification 

variance. All three PC loadings spectra included
negative bands of kaolinite. The particular loadings
spectra differed only in intensities of bands. Bands of
the highest intensities were in PC1 loadings spectrum.
The band at 1440 cm-1 (negative intensity in PC2 
loadings spectrum and positive intensity in ureC3
loadings spectrum) belongs to stretching vibration of
carbonates present as impurity in the sample of
dickite. This band has not been used for the creation
of Model 3. The loadings spectra of the above-
mentioned PCs are shown in Figure 5.  

 
3.5. MODEL 4 – IDENTIFICATION OF MINERALS 

OF SMECTITE GROUP 
This model was created for identification of

individual members of the smectite group of clay
minerals. Na-montmorillonite, Ca-montmorillonite,
nontronite and hectorite were used in this study as
representatives of this group of clay minerals. Model
4 included five classes: Na-montmorillonite (Mon1 -
Mon5), Ca-montmorillonite (Mon6 - Mon8), 
Nontronite, Hectorite and Mixed illite-smectite 
structure. All minerals were clearly distributed into
used classes by discriminant analysis.  

Ten principal components (PCs) were calculated
in Model 4. These ten PCs described 99.9 % of
variance  of  spectral information, whereas almost
97.5 %  of   variance  was  involved  in  the  first
three  PCs. The loadings spectrum of the first
principal  component  (PC1) included  spectral bands 
of  montmorillonite only: stretching bands of
structural hydroxyl  groups  (3640 cm-1), broad 
stretching band of water (3440 cm-1), deformation 
band of water (1650 cm-1), band of Si-O stretching 
(1040 cm-1), deformation bands  of Al-Al-OH 
vibration (915 cm-1), deformation bands of Al-Mg-OH 

Fig. 7 Mahalanobis distance plot of Muscovite and Illite classes (Model 5). 
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Fig. 8 IR spectra of muscovite (a) and illite (b). 

1440 cm-1 has not been used for the creation of Model 
5. The loadings spectra of the above-mentioned PCs 
are shown in Figure 9. 

 
4. CONCLUSION 

The discriminant analysis of IR spectra of 60 
samples of mineral standards (clay minerals, 
feldspars, carbonates, sulfides and quartz) is presented 
in this paper. Identification of individual clay minerals 
is possible using the created five statistical models. 
Model 1 served for the separation of clay minerals 
from feldspars and accessories minerals. Model 2 was 
created for the splitting of clay minerals into 
individual groups of clay minerals. Model 3, Model 4 
and Model 5 were drawn for the identification of clay 
minerals from the groups of kaoline-serpentine, 
smectite and mica minerals, respectively.  

Principal component analysis (PCA) was used to 
find useful spectral information. Very important 
spectral bands for PCA of clay minerals included 
vibration bands of hydroxyl groups and vibration 
bands of Si-O and Al-O bonds in clay minerals. 
Relatively significant were bands of kaolinite in 
Model 1, Model 2 and Model 3.  

Identification of clay minerals by discriminant 
analysis of IR spectra was very successful in this 
study. Differentiation of muscovite from illite was 
even achieved by this method. Muscovite and illite 
had too similar IR spectra and these two clay minerals 
are almost undistinguishable when common methods 
of identification by IR spectroscopy are used. The 

of both minerals by their IR spectra is practically
impossible (Vaculíková, 2006). IR spectra of both
mentioned minerals are shown in Figure 8. 

Ten principal components (PCs) were calculated
in Model 5. These ten PCs described 99.9 % of
variance  of  spectral information, whereas almost
97.5 % of variance was involved in the first two PCs.
The loadings spectrum of PC1 included the following
spectral bands applied to the creation of Model 5:
stretching bands of structural hydroxyl groups (3600
cm-1), band of Si-O stretching (1010 cm-1), 
deformation bands of  Al-Al-OH vibration (935 cm-1), 
deformation  bands of  Al-O-Si in-plane vibration
(755 cm-1), Si-O deformation band (700 cm-1), 
deformation bands Al-O-Si, Si-O-Si, respectively
(535  cm-1  and  480 cm-1).  Bands  at  3600 cm-1, 
1010 cm-1, 700 cm-1 and 480 cm-1 belonged to biotite;
bands at 3600 cm-1, 1010 cm-1, 935 cm-1, 755 cm-1, 
700 cm-1, 535 cm-1 and 480 cm-1 belonged to
muscovite and illite. PC1 described 90.6 % of
variance. PC2  described  6.8 %  of  variance  and  its 
loadings  spectrum  included  negative  bands  at 
3600 cm-1, 935 cm-1, 755 cm-1, 700 cm-1, 535 cm-1 and 
480 cm-1. The band at 1440 cm-1 in both PC loadings 
spectra belonged to carbonates present as impurity in
the sample of biotite (Bio3). The presence of
carbonates in this standard of biotite was very small,
thus the intensity of 1440 cm-1 band in IR spectra was
very weak. In PC loadings spectra the intensity of this
band has risen by reason of significant influence of
this band on the variability of spectra.  The band of
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Fig. 9 Loadings spectra of the first two principal components (Model 5). 
 

Hendl, J.: 2006, A review of statistical methods of data 
processing. Portál, Praha, (in Czech). 

Jiang, J. et al.: 2002, Principal discriminant variate method 
for classification of multicollinear data – applications 
to near infrared spectra of cow blood samples. Appl. 
Spectrosc., 56 (4), 488–501. 

Kher A. et al.: 2001, Classification of document papers by 
infrared spectroscopy and multivariate statistical 
techniques. Appl. Spectrosc., 55 (9), 1192–1198. 

Kodama, H. et al.: 1989, Quantification of crystalline and 
noncrystalline material in ground kaolinite by X-ray 
powder diffraction, infrared, solid-state nuclear 
magnetic resonance, and chemical-dissolution 
analyses. Clays and Clay Minerals, 37 (4), 364–370. 

Madejová, J. and Komadel, P.: 2001, Baseline studies of the 
clay minerals source society: infrared methods. Clays 
Clay Miner., 49, 410–432.  

Meloun, M. and Militký, J.: The statistical analysis of 
experimental data. Academia, Praha, (in Czech). 

Ritz, M.: 2007, Identification of origin of coal from the 
Ostrava-Karvina mining district by infrared 
spectroscopy and discriminant analysis. Vib. 
Spectrosc., 43 (2), 319–323. 

Rusnak, D.A., Brown, L.M. and Martin, S.D.: Classification 
of vegetable oils by principal component analysis of 
IR Spectra. J. Chem. Ed., 80 (2003), 541–543. 

Russel, J. D. et al.: 1994, Infrared methods, clay 
mineralogy: Spectroscopic and chemical 
determinative methods. Chapman and Hall, London, 
1994. 

Srodon, J.: 2002, Quantitative mineralogy of sedimentary 
rocks with emphasis on clays and with applications to 
K-Ar dating. Mineralogical Magazine, 66 (5), 677–
687. 

probable   reason   for   a  successful  differentiation 
of  muscovite   from   illite  was  the  use  of  PCA  as 
a component of discriminant analysis. The principle
component analysis is able to find the very slight
differences at IR spectra of muscovite and illite
standards. Another advantage of the discriminant 
analysis as an identification tool is the ability to
identify mixed structures of clay minerals (e.g. illite-
smectite mixed structure).   
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