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ABSTRACT

The study presents a modification to conventional finite element method under plane strain conditions to address the problem
of successive excavation of linear parts of tunnels. Although the successive excavation is a three-dimensional mechanical
problem, the designers often prefer 2D analysis owing to considerably simple and transparent geometric model and fast
computations when compared to a 3D solution. The main idea behind the suggested method referred to as, 2D3D model, is to
express the influence of excavation of a single stroke of soil not only in the particular cross section but in the entire soil body
in front of and behind the examined profile. This is achieved by introducing special finite elements which have common
triangular cross-section but are of infinite length in the longitudinal direction. The longitudinal approximations of the
displacement field adopt the evolution of convergence measurements, while standard linear shape functions are kept in
the element triangular cross-section. A profile corresponding to the city road tunnel Blanka in Prague with available
convergence measurements was examined to verify the method. The results show that the method provides reasonably
accurate results when compared to the convergence confinement method without the need to subjectively determine the
lambda parameter. It also significantly reduces the computational time of a more versatile but complex 3D analysis.
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TABLE INTRODUCTION

Dense urbanization accompanied by intensive
traffic found in large cities often leads to major
changes in traffic infrastructure. In many cases the
only way to accommodate the traffic density is to
place the road under already build-up area into
a tunnel. In this regard the driven types of tunnels
have a clear advantage over the cut-and-cover types
since the driven tunnels, when designed and
constructed properly, minimize the impact on the

buildings and environment even during the
construction. Nevertheless, the design strongly
depends on a geological profile and material

properties.

Therefore, a reliable tool capable of capturing the
nonlinear behavior of soil material and also the
structure of geological profile takes an important role
in the design. Apart from simple analytical methods
the civil engineer faces a choice between two-
dimensional and three-dimensional finite element
software.

The proposed modification, further referred to as
2D3D model, is designed to compute the settlements
and stress and strain fields in the soil and internal

forces in the primary lining. Similar to the
convergence confinement method the 2D3D model is
useful to effectively analyze the linear parts of the
tunnel since it requires constant geometry along
the tunnel axis and knowledge of the shape of the
longitudinal convergence curves. The convergence
curves are the result of standard monitoring during
tunnel construction works. Convergence measurement
procedure is described in detail in (Bartak et al.,
1998).

The necessity of knowing the shape of the
convergence curves allows us to apply the method in
two situations. In the stage of primary design the
shape can be estimated based on the monitoring of
other tunnels constructed in similar geological
conditions. Furthermore, during the construction
phase the method can be used to refine the design
values or to quickly assess the possible variants
addressing a non-standard response of the structure. In
this case it will be advantageous to update the
values of convergence curves obtained by monitoring
a particular section. The model also makes it possible
to relevantly describe the response of the soil
environment to the excavation of one stroke and
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therefore becomes an efficient tool to cope with the
interaction between the tunnel itself and the upper-
structure (Ebermann at al., 2010). Owning to its
simplicity it appears to be an efficient tool to estimate
the probability of failure of both the tunnel and the
surface structure taking random properties of the soil
environment into account (Sejnoha at al., 2011),
(Spackova at al., 2010). An efficient and consistent
introduction to the theory of structural reliability can
be found in (Holicky, 2009).

Currently, the method is extended for the use in
conjunction with standard elastic plastic material
models of soils. The model was tested with linearly
elastic perfectly plastic Drucker-Prager material
model neglecting hardening (Potts and Zdravkovic,
1999). The primary lining made of air-placed concrete
(shotcrete) assumes a linear elastic behavior.

PRINCIPLES

Analyzing the successive excavation by finite
element method under plane strain conditions consist
of two computational steps. In the initial step the
geostatic stress is computed and then in the second
step, the excavated material is removed from the
model and the excavation forces are applied which
cause the tunnel profile to converge. In plane strain
formulation this approach would correspond to
excavating the whole tunnel in one stroke without
applying the primary lining. This computation often
leads to unrealistic large settlements or even to loss of
stability if plastic material models are adopted. The
other extreme case would be to install the primary
lining prior to the second computational step. This
would correspond to building first the primary lining
in the untouched soil body and then excavating the
whole tunnel tube in one stroke. This approach is
again unrealistic and overestimates the internal forces
in primary lining because it limits the ability of soils
to create a natural vault above the profile. This
disadvantage of plane strain conditions led to the
formulation of convergence confinement method
which keeps the 2D finite element geometry
and addresses some of the observed phenomena of
a successive excavation.

CONVERGENCE CONFINEMENT METHOD

When modeling the process of excavation under
plane strain conditions the so called excavation forces
acting at the nodes of the boundary separating the
tunnel and surrounding soil are evaluated first based
on the state of stress before excavation. Next, the
excavated elements are removed and the boundary is
loaded by excavation forces being directed inwards
the tunnel. These forces induce the tunnel
convergence, evolution of displacements throughout
the examined area, terrain settlement and likely also
the onset of plastic strains in critical regions.

In case of the New Austrian Tunneling Method
the primary lining is constructed shortly after
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Fig.1 Application of excavation forces in

convergence confinement method.

performing excavation of a particular stroke. It is clear
from excavation measurements that the soil body is
already deformed at that time and, as the tunnel
heading progresses, the deformation of the soil body-
lining system grows further. The convergence
confinement method (Panet and Guenot, 1982)
models the development of deformations in a given
cross-section by dividing the excavation forces in two
parts. The first part is applied to an unsupported
profile resulting in deformations that represent the
state before the construction of lining. The remaining
portion of excavation forces is applied to the
excavated section already reinforced by the lining as
displayed in Figure 1. The resulting deformations
represent the final state, i.e. deformations at the time
when the heading moved sufficiently far away from
the analyzed section. Reducing the excavation forces
acting on an unsupported tunnel allows this method to
account for various spatial effects such as the
supporting effect of material before heading or
a longitudinal vault developed above the profile
without lining. This part of excavation forces is
determined by the parameter A.

The advantage of the convergence confinement
method is that it builds upon a 2D geometrical model,
which is not only created much faster compared to
a 3D model but it can also be easily checked. We also
recall that the corresponding 2D finite element
analysis considerably reduces the computational time.

Thus the principal task of the user is to determine
the ratio of excavation forces being applied in the first
and second calculation steps, i.e. determining the
parameter A. Since the value of this parameter cannot
be impartially defined, engineers generally rely on
empirical relations and their estimates. For practical
application of this method the reader is referred to
(Gramblicka et al,. 2004) describing the analysis of
the Turecky vrch railway tunnel. This particular
analysis was performed using the GEO Tunnel
software product (Sejnoha, 2009).

MODEL 2D3D

An alternative approach to the convergence
confinement method is the proposed 2D3D model



MODELING SUCCESSIVE EXCAVATION WITHIN TWO DIMENSIONAL ... 71

=

Direction of excavation
Initial state

|Segment f1(z) e
i

Before segment excavation

tion

Analyzed sec

Il

f2(2) After segment excavation

e

Final state

Fig.2 Evolution of displacements caused by a single

stroke.

which uses dimensional reduction from 3D space to
2D plane. The theoretical basis is described in (Janda
et al., 2007). The model assumptions are similar to the
convergence confinement method. The model requires
a fixed geometry and material parameters along the
longitudinal axis, which makes it suitable for solving
linear quasi homogeneous sections of an underground
structure.

Convergence extensometer ~ measurements
indicate that the deformation of the selected profile is
closely related to the current location of the tunnel
face. The settlement begins to occur when the tunnel
face approaches the monitored profile and continues
to grow. The settlement increases more rapidly when
the tunnel face passes under the extesometric
borehole. As the advancing tunnel face moves further
the rate of growing settlements slows down and the
settlements finally stabilize at their final values, see
Figure 2.

In case of sufficiently long and homogeneous
tunnel section it can be observed that the convergence
curve (or longitudinal depression) does not change the
shape or size and simply moves forward along with
the excavation of each stroke. Knowing the shape of

2D element - plane strain conditions

the convergence curve we can determine how the
excavation affects settlement not only in the examined
cross-section but also in front of the tunnel face. Thus
the principle of the 2D3D model is to analyze the
projection of a single excavation step to the increment
of displacements. The values of total displacements at
any point are then obtained as the sum of the
increments of displacements caused by the excavation
of all individual strokes.

The finite elements of the 2D3D model have
similar properties as the standard 2D triangular
elements in its cross-section. In the direction of tunnel
axis the elements are divided into three sections. The
middle section represents the material that is
excavated in one step. Neighboring semi-infinite
sections represent the material in front of and behind
this central section. A linear approximation of
transverse displacements (i.e. displacement parallel to
the x-y plane) is identical to standard three node
triangular elements (Bittnar and Sejnoha, 1996). The
longitudinal displacements are approximated by
introducing a longitudinal shape function f(z), which
characterizes the effect of excavation of a single
section. The shape of this function is draws upon
analogy with the two-parametric Winkler-Pasternak
subsoil model (Bittnar and Sejnoha, 1996). The
function f(z), see Figure3, is constant in the middle
section and exponentially decreases in the outer
sections

(z) =f,(2) = exp (oc‘ (z + g)) for z € (—oo, —g)
€]
f(z)=1forz€(—§,§), (2)
b b
@) = f,(2) = exp <_a+ € —5)>forz €G),
A3)

where parameters a* and @~ are calibrated through

2D3D element - shape function f(z)

f(2)

Fig. 3 Comparison between standard 2D and 2D3D element.
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the convergence curves. Hence the shape functions
f(z) can differ in front of and behind the tunnel face
and the corresponding parameters a are distinguished
by superscripts referring to positive and negative
directions of z-axis. Note that the analysis of a single
excavated section must be preceded by the
determination of initial stresses for the computation of
excavation forces. This stress is calculated in two
stages. In the first stage the initial geostatic stress is
computed assuming simply the plane strain
conditions. The next stage serves to estimate the stress
distribution before performing the analysis of a single
excavation step. The third then stage gives the desired
increment of displacements caused by a single
excavation step, which is decisive for the
determination of the overall settlement. Introduction
of elements modeling the soil and primary lining in
individual stages is shown in Figure 3.

Analysis of practical problems requires the
possibility of using at least basic elasto-plastic
material models. The accurate expression of the
evolution of plastic deformation outside the analyzed
plane would need to introduce several finite sections
in front of and behind the analyzed plane and proper
computation of stresses in their integration points.
This would shift the computational demands of the
model near to the classical 3D model. In the present
version of the proposed 2D3D model each of the three
sections considers one integration point to evaluate
both the stress increments and increments of plastic
strains. Note that the increments of plastic strains in
lateral sections are assumed proportional to the
increments of total strains.

FINITE ELEMENTS FORMULATION

A new type of finite element was developed to
describe the displacement, strain and stress fields not
only in the solved cross-section but also outside this
plane. The suggested formulation exploits the
principles of isoparametric elements and thus allows
for direct numerical integration. This approach
requires introduction of natural coordinate system and
the transformation relation between the natural and
global coordinates.

In a general three-dimensional space the global
and natural coordinates are stored in column vectors x
and x’, respectively.

X x'
B~}
Z !

z
The transformation from natural to global

coordinates x' — x is given by

x =2+ (0 —x)x" + (x5 — x1)y,

y=y1+ @2 —y)x' + 3 =)y’

z=17, (5)

or in matrix form as

x=Ax"+ b,
X Xy —Xq1 X3 — Xq 0 x’ X1

{y} =|y2=y1 ¥y3—y1 O {y’} + {3’1}' (6)
Z 0 0 11\ 0

where the wvalues x; and y; denote the global
coordinates of the i-th node which is fixed since the
generated mesh does not change during the analysis.
The inverse relation then reads

x' =AY (x - b). (7
The matrix A~! is provided by

%(3’3 - 1) %(xl —x3) 0
-1 _
A= %()ﬁ —¥2) %(xz —x;) Of ®)
0 0 1

J = —x) s —y1) — (x5 — x) 2 — y1)-

Note that the matrix A is the Jacobian matrix of
the x’ — x transformation while the matrix A~ is the
Jacobian matrix of the inverse transformation x — x’

ox _ % _ -1
= A o =AT Q)
The linear shape functions expressed in terms of
the natural coordinates for any point inside the
element volume are given by

N, =1 =x"—y)f(z),
N, = x'f(z"), (10)
N3 =y'f(z'),

where f(z') is exponentially decaying longitudinal
function discussed later earlier, recall Egs. (1)-(3).
Displacements within the volume of a triangular three-
node element are then described as

u=NX"r, (11)
Uy
%1
{u}= N, O N, 0 N; 0] Uy
v 0 Nl 0 Nz 0 N3 1]2
us
U3

Derivatives of the shape functions with respect to
the natural coordinates are written as
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Next, applying the chain rule we write the derivatives with respect to the global coordinates in the form

1@ /@) A=x =T )t -x) 0

et DICOINC v I Foi-w te-x o (13)
0 f(z) y' % 0 0 1
L0 =) 10— a-x -y L
[0 w-wrey L2
R R RPN O R 1

In a general 3D case the matrix B is expressed in terms of the matrix N and the operator matrix @7 such that

= 0 0]
ox
a
0 — 0
dy
o o 2ffvy 0 0o N, O O N, O O
B=0"N= , Yl1lo N, 0 0O N, O 0 Ny O (14)
o % ko o N 0 0o N 0 0 N
a
_0_
0z ox
a 0
- = 0
dy ox

Since the model allows displacements only parallel to the triangular cross-section, we can leave out the third
column of the matrix @7 and the third row and every third column of the matrix N to arrive at

ox 0 dx 0 dx 0 dx 0
2 L an, ans

0 ay 0 ay 0 ay 0 dy

0 O 0 0 0 0 0 0

B=lo 2[5 n o N o wl=|o oo 2 o 2l (15)

0z 1 2 3 0z 0z 0z

3 Ny AN, AN

% 0 22 0 5% 0 5 0

2 2 Ny Ny oN; Ny oM Ny

LJy Ox/ L 0y ox ay dx ay dx

After expanding we obtain
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0 0 0 0 0

B = 0 (1—x’—y’)% 0 x’% 0 y’% ’ (16)
(l—x’—y’)% 0 x’% 0 y’% 0
xg/_xzf %f XIJXSf ySJylf xz]xlf yl/yzf

The element stiffness matrix then takes the form

K= ffow [ BT(x)DB(x")] dx' dy' dz', (17)
e

where standard Gaussian quadrature is employed to integrate the stiffness matrix in the transverse direction. For

a three node triangular element this results in

K = (% ZB"(1/3,1/3,2)DB(1/3]1/3,2) dz’ (18)

A possible way to compute the inner part of the integral is to split the matrix B into two parts

of
B=fB,,+-=B, (19)

where the matrix B, contains only the derivatives with respect to x and y while the matrix B, contains only the
derivatives with respect to z. Hence

Y2 — V3 0 Y3 — V1 0 V1= Y2 0

0 X3—x2 0 Xl—X3 0 xZ_xl
1 0 0 0 0 0 0
By =31 o 0 0 0 0 0o | (20)
0 0 0 0 0 0
X3 =Xz Y2—Y¥3 X1—X3z Y3—YV1 X2—X1 V12
[ 0 0 0 0 O 0]
| 0 0 0 0 0 O |
0 0 0 0 0 O
B, = 0 1—x'—y" 0 x' 0 y'f 1)
1-x" -y 0 xX 0 y 0
0 0 0O 0 0 O
Now assume that the material stiffness matrix D is partitioned as
D, D, D, 0 0 O
D, D, D, 0 0 O
D D, Dy 0O 0 O
D=1g 0o o b, 0o of (22)
0 0 0 0 Dy O
0 0 0 0 0 Dy
The above specific forms of matrices By,,, B, and D allows us to write
aF\2
B'DB = f2BT,DB,,, + (ﬁ) BIDB, . 23)

With the help of Eq. (23) the stiffness matrix (recall Eq. (18)) becomes

co | a 2 !
K= f_wz(fZB;yDBxy +(2) BZDBZ) dz, (24)
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where the matrix B, is expressed at one integration point [1/3,1/3]. Since the function f(z") and its derivative
are the only functions of z’ we write the final form of the element stiffness matrix as

(25)

o) ' oo 0 2 B
K =1B},DB,, [* f*dz' +1 BIDB, [ () dz.

Note that function fmust be chosen a priori in order to yield the two integrals in Eq (25) finite. Finally, we
write the vector of element nodal forces, again with the help of Gaussian quadrature, as

R = f_o:o BT(1/3,1/3,2)a(1/3,1/3,2') dz. (26)

The integration in the longitudinal direction can be obtained in a closed form analogically to the integration
of element stiffness matrix. Each of the longitudinal sections of the element is assigned a single integration point
and weight that corresponds to the integral over its length. The overall integral is computed as the sum of
integrals over the three sections. This splitting is necessary to address the different load in the computational

stages as shown in Figure 4.

Stage 1 - Geostatic stress

Stage 2 - Excavation up to the segment

Stage 3 - Excavation of the segment

v

L

Lining

Lining

I II
A

II1 I

/ I

III I II

Direction of excavation

>

Direction of excavation

Direction of excavation

Fig. 4 Calculation stages.

ANALYZED EXAMPLE

In order to examine the behavior of the proposed
2D3D model a quasi-homogeneous sector No. 8 of the
north tube of the Blanka road tunnel with available
material data was considered. The geological profile
consists of silt-clayey slate covered by fluvial
sediments. The evolution of vertical displacements
was monitored in an extensometric borehole situated
above the tunnel. The borehole was equipped with
four anchors in depths 9m, 12 m, 15 m and 18.5 m.
The deepest anchor was therefore located one meter
above the tunnel crown. Particular arrangement of
individual anchors is displayed in Figure 5. Figure 6
then shows the resulting settlement measured at
anchor No. 4 depending on the position of a tunnel
heading.

Convergence curves were used to calibrate the
shape of longitudinal base functions in 2D3D finite
elements. Since their actual magnitudes are irrelevant,
the functions were normalized to ensure the continuity
with the middle sections. Both functions f;(z) and
f2(2) decay with a rate given by parameters a* and
a~, respectively. The higher the value of the exponent
the faster the function decreases.

>

>

Convergence curves obtained by measuring the
vertical displacements of anchors and terrain were
fitted with the exponential curves proposed in the
previous section. The values of exponents @™ and a~
were found to graphically match the data as close as
possible. The resulting approximation pertinent to
anchor No. 4 is evident in Figure 6 showing quite
accurate match with measurements. The distribution
of exponents ¢ and @~ along the vertical line above
the tunnel crown is plotted in Figure 7. Parameter
a~, which characterizes a gradual decay of the impact
of excavation in front of the heading, tends to increase
with depth from the value of 0.065 on the terrain to
the value of 0.13 one meter above the tunnel crown. In
order to assess the influence of its variation we
performed the analysis first with the constant value of
parameter a~ =0.089 obtained by averaging the
measured values. Next, a certain variation of
parameter a~ depending on depth was considered. In
particular, until the depth of 17m (i.e. approximately
one meter above the tunnel crown) the value of
a~ =0.079 was used. Below this depth the value was
assumed equal to @~ =0.13. However, this instant
change in parameter o~ would result in the
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incompatibility of displacements. If the parameter
varied continuously in the vertical direction this
incompatibility would not emerge. For simplicity and
with reference to Fig. 7 we further adopted a constant
value of a* =0.089 throughout the entire profile
obtained again by averaging all measurements. Actual
distributions of the exponent a~ employed in
computations are displayed in Figure 8.

The geological profile is composed of three layers
of fluvial sediments reaching up to the depth of 8.5 m.
The tunnel itself was excavated in silt-clayey slate
covered by these sediments. Both types of soils were
represented by elastic plastic Drucker-Prager model
with no strain hardening. The assumed material
parameters for slate correspond to  values
recommended for a given region of the tunnel path. In
particular, the value of self-weight equal to
24.5 kN/m, Poisson’s number equal to 0.33, Young’s
modulus equal to 100 MPa, cohesion equal to 25 kPa,
frictional angle equal to 28° and dilation angle equal
to 0° were considered.

As for primary lining a linear elastic model was
adopted. Parameters corresponding to concrete B25
with Young’s modulus equal to 30 GPa and shear
modulus equal to 12.5 GPa were used. The lining
thickness equal to 150mm was introduced to support
the upper (vault) region while the bottom region
assumed no reinforcement. To represent the stiffening
of lining at its base (elephant feet) preventing sinking
of the two end points into the soil, we introduced two
additional short beam elements perpendicular to the
lining mid axis being directed into the soil body.

RESULTS

Since the convergence confinement method and
the model of dimensional reduction 2D3D analyses a
typical cross-section by different approach, only the
total predicted settlements can be compared. Table 1
shows the final vertical displacements of the crown,
invert and terrain. The presented values are computed
adopting the 2D3D model with constant exponents &~
and at and with exponent a~ depending on depth.
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Table 1 Comparison of settlement obtained with 2D3D model and convergence confinement method

Model Model 2D3D, constant alfa- Model 2D3D, variable alfa- Convergence confinement
Measured point Crown Terain  Invert | Crown  Terain Invert | Crown Terain Invert
Increment of settlement [mm] -5.80 -2.09 9.36 -5.26 -2.34 6.52 -- -- --
Total settlement [mm] -70.70  -2546 113.84| -67.71 -29.78 82.97| -62.62 -38.44  69.46
Further, the results computed using the convergence = CONCLUSIONS

confinement method with coefficient 4 =0.4 are
presented. This means that 40 % of excavation forces
were applied to the unreinforced profile while the
remaining 60 % were applied to the profile equipped
with primary lining being the same as in the 2D3D
model. Note that the parameter 4 was chosen in order
to match the measurements as close as possible. It is
therefore an optimal choice. Figure 9 illustrates the
distribution of increment of vertical settlement due to
the excavation of one meter long stroke.

The suggested 2D3D model, developed on the
principles of dimensional reduction, was examined in
this paper through the example of application of the
New Austrian Tunneling Method. Although the model
takes into account the soil behavior in front of the
tunnel heading and behind it, its finite mesh remains
still two dimensional. The resulting vertical
displacement of the tunnel crown given by the 2D3D
model is 70.7 mm for the constant ~ and 67.7 mm
when the value of @~ changes with depth. The value
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of vertical displacement equal to 62.6 mm in the
crown provided by the convergence confinement
method is closer to the measured value of 61.2 mm.
Note, however, that the value of the final settlement
predicted by the convergence confinement method
highly depends on the value of parameter A which was
assumed optimal in this study. On the contrary, the
shapes of convergence curves, which serve to
calibrate the longitudinal base functions of the 2D3D
model, are defined uniquely based solely on field
monitoring.

Similarity of the results of both variants of the
2D3D model — constant and variable exponent a~ —
suggests that the computation is not very sensitive to
detailed changes of longitudinal base functions above
the tunnel. However, the distribution of the exponents
a~ and at bellow the tunnel may show more
significant influence on the predicted displacement
field. But this cannot be checked as the convergence
curves are not constructed for this region. Inability to
calibrate the element longitudinal base functions
bellow the tunnel bottom might be one particular
source for the explanation of more severe deviation of
the displacement at the tunnel bottom predicted by the
two methods.

The use of the 2D3D model may seem
problematic from the practical point of view because
its calibration requires convergence data that are not
available when designing the structure. Nevertheless,
this is not a major problem since the shape functions
need only the knowledge of the shape of convergence
curves for their calibration while the actual size is
irrelevant. In the initial design, it is therefore possible
to exploit convergence data known for other
underground structures constructed in a similar
geology. These predictions can be subsequently
improved by implementing actual convergence data.
Such a predictor-corrector  approach  would
accommodate the two main advantages of the model:
direct link to field monitoring and fast and transparent
2D computational model.
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