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ABSTRACT  
This paper presents examples of application of the method of local quasigeoid modelling based on the geophysical technique
of gravity data inversion, using non-reduced surface gravity data and GNSS/levelling height anomalies. Its capacity is
demonstrated with three examples consisting in computing detailed local quasigeoid models for three areas situated in Poland.
The  test areas are different in size (3,900, 23,000, 117,000 sq. kilometres), in geographic location as well as in density of the
gravity data coverage. For each of the test regions, calculations were done in three variants, viz. without using any global
geopotential model and with application of EGM96 and EGM08 models. The obtained results indicate that the applied
method is suitable for creating high accuracy local quasigeoid models (the accuracies obtained were at the level of accuracy
of GNSS/levelling test data) 
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on solving integral equations of type (1), which is the 
Fredholm integral equation of the first kind. It must be 
emphasised that in geodesy mainly boundary integral 
equations are analysed, and a general description of 
such approach can be found in Heck (2003).  

Geodetic studies concerned with geoid or 
quasigeoid modelling and the use the inverse problem 
of gravity data in the geophysical sense can be 
classified into two groups. On the one hand, there are 
studies that focus on the application of traditional 
methods of the geoid modelling in examination of 
density distribution of the Earth's crust masses (Vajda 
and Vaníček, 1997; 1999; 2002).  

On the other hand, there are methods of local 
geoid and quasigeoid modelling where  determination 
of  density distribution of topographic or Earth's crust
masses is the key step in the modelling process. 
Among these methods, the most common are the least 
square collocation method (LSC) and the point mass 
method. The LSC method, developed by Krarup
(1969) with a Hilbert space approach and Moritz 
(1972) with a stochastic process approach, in the form 
of the least square collocation with parameters 
(Forsberg, 1984), also allows density estimation of 
topographic masses. This method may be regarded as 
a generalization of Nettleton's density profiling 
method to heterogeneous data (Forsberg, 1984). The 
point mass method may be considered as a specific 
example of a classical, geophysical inversion of 
gravity data, in which the searched point masses 
represent density distribution. Over the years, many 
variants of this method were developed. These 

1. INTRODUCTION 
The inverse problem theory is widely described

in the geophysical literature and the method of gravity
data inversion is one of the fundamental techniques of
geophysical interpretation of this data. Generally, the
inverse method can be defined as determination of
source parameters directly from gravity or magnetic
measurements (e.g. Telford et al., 1990; Blakely,
1995; Tarantola, 2005). The fundamental equation of
this method is written as follows (Blakely, 1995): 

 

( ) ( ) ( , )
V

f P S Q P Q dVψ= ∫               (1)

 
where ( )f P  is the potential field at P, ( )S Q
describes the physical parameters of the source
element at Q, ( , )P Qψ is the function that depends on
the location of the observation point P and the source 
element point Q, V is the volume of the source. 

Using equation (1) and given values of ( )f P for 
a number of points, the geometric parameters of the
source element V (nonlinear inverse problem) and
some aspects of ( )S Q  (linear inverse problem) are
determined (Blakely, 1995). For inversion of gravity
data equation (1) is Newton’s equation, V is the 
volume of mass that generates the field of gravity
disturbances ( )f P , and ( )S Q  is the function of mass
density distribution. 

Geodetic methods of geoid and quasigeoid
modelling based on gravity data inversion concentrate
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quasigeoid model "quasi95" (Łyszkowicz and 
Forsberg, 1995). Soon afterwards, by FFT method, 
another quasigeoid model ("quasi97b") was
developed, based on free-air gravity anomalies in the 
grid of 1 1̌′ ′×  and global geopotential model EGM96. 
The accuracy of this model was estimated at the level 
of ± 5 cm (Łyszkowicz, 1998). This model was the 
basis for later developed quasigeoid models:
(unpublished) "GEOIDPOL’ 2001" and (published) 
"GUGiK 2001" (Pażus et al., 2002). The accuracy of 
the latter model is estimated at the level of  m 1.8 cm
(Kryński, 2007). Both models were formed by fitting
the model “quasi97b” to the network of the measured
GNSS/leveling height anomalies. Models "geoid94" 
and "GUGiK 2001" will be used later in this paper. 
The beginning of the XXI century is a period of
intensive investigation on developing a 1 cm 
quasigeoid model for the territory of Poland. This 
work is concerned both with qualitative and 
quantitative   analysis   of   data   necessary  to  build 
a precise quasigeoid model as well as methods for its
determination. The result of this study was the 
development of several new quasigeoid models, the
newest „GDQ08” including, designed with the use of
gravity data, deflections of the vertical and global 
geopotential model EGM08. Its accuracy is evaluated
to be at the level of m 1.7 cm (Kryński and Kloch-
Główka, 2009). 

In practice, each model of the gravimetric geoid 
and quasigeoid (viz. made only of gravity data) 
indicates a systematic offset and tilt in reference to 
GNSS/levelling data, caused by the long-wavelength 
errors of geoid or quasigeoid and systematic errors of 
both levelling and GNSS data (Tscherning, 2001; 
Łyszkowicz, 2000). Local or regional gravimetric 
models of geoid or quasigeoid are converted into 
GNSS/levelling geoid heights or height anomalies, 
often using advanced computation techniques (e.g. 
Fatherstone, 2000; Kryński, 2007). It becomes 
common to extend the scope of surveying data used 
for geoid and quasigeoid modelling with 
GNSS/levelling data. Moreover, the methods of geoid
or quasigeoid modelling should also consider the 
possibility of determination of models  fitted to the 
GNSS/leveling data. An approach to implementing
this postulate is presented e.g. in Osada et al. (2005),
and the results of the analysis in Kryński (2007). The
method under investigation also satisfies this demand, 
using in the calculations free-air anomalies on the 
earth’s surface or gravity disturbances and 
GNSS/levelling height anomalies. 

 
2. DESCRIPTION OF THE APPROACH 

Generally, the quasigeoid modelling problem 
using the Brun's formula may be replaced by the 
problem of disturbing potential modelling in the 
points on the Earth’s surface and in the external space. 
This paragraph contains a description of the disturbing 
potential model and the way of estimating its 
parameters which have been delineated by 
Trojanowicz (2007). 

variants differ from each other mainly in 
determination of point mass locations (e.g. Brovar,
1983; Barthelmes and Kautzleben, 1983; Barthelmes
and Dietrich, 1991; Lehmann, 1995). Comparison of
this method with the collocation method for the
Azores (Antunes et al., 2003) indicated a high
accuracy of this approach, which is comparable to the
collocation accuracy. This method was also applied to
the geoid modelling in the Perth region of Western
Australia (Claessens et al., 2001), where  usefulness
of this method for identification of areas with
meaningful discrepancies in  mass densities has been
proved. 

At this point, it should also be noted that the
methods based on the variational methods have been
intensively investigated in the last two decades. These
methods use, for representation of the disturbing
potential, functional bases generated in different ways,
e.g. reproducing kernel or elementary potential
functions. For details see Holota (1997a; 1997b; 1999;
2011). 

The crustal masses density distribution model is 
also a key step in the quasigeoid modelling process in 
the technique, applications of which are discussed in
this paper. This method was previously presented by
Trojanowicz (2007) and is based on the linear
inversion of gravity data. The outcomes of the
quasigeoid modelling with the aforementioned
method shows high accuracy and stability. This paper
contains examples of application of this technique, as
well as the results of analyses  highlighting the
benefits of this approach in the local modelling of the
quasigeoid. The test calculations are referred to the
area of Poland and compared to GNSS/levelling data
and different previously developed quasigeoid
models.  

As reported in Kryński (2007), the first geoid
model of the area of Poland was developed at the
Institute of Geodesy and Cartography in Warsaw in
1961 on the basis of Astro-Geodetic deflections of the
vertical and gravity anomalies. The accuracy of this
model is estimated at the level of about ± 60 cm 
(Krynski, 2007). This model was twice revised (1970 
and 1978) using new astronomical observations and 
more detailed gravity maps. Finally, its accuracy is
estimated at ± 30 cm (Łyszkowicz, 1993). The first
gravimetric geoid model, called "GEOID92", was
developed at SRC (Space Research Centre, Polish
Academy of Sciences) in 1992 (Łyszkowicz, 1993).
This model was developed using gravity anomalies in 
the grid of 5 5′ ′×  and the global geopotential model
OSU86 (360, 360). Its accuracy is estimated at
approximately ± 10 cm. In 1993, using the FFT
technique a new geoid model called "geoid94" was
elaborated (Łyszkowicz and Denker, 1994). In the
calculations were used the same gravity date as
previously and the global geopotential model
OSU91A (360, 360). The same global geopotential
model and set of gravity anomalies in the grid of 
1 1̌′ ′×  were used in the construction of a gravimetric
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outside the regions Ω  and κ , contain the potential 
rT . Furthermore, its role is to link the gravity and the 

GNSS/levelling data, so that it has to model the offset 
and tilt between the gravimetric quasigeoid and 
GNSS/levelling data. For further calculations it was 
assumed that both the distorting effects mentioned can 
be modeled by harmonic polynomials of a low degree. 
This defines the form of the potential rT . 

Finally, the disturbing potential on the terrain 
surface can be written as: 
 

P rT T T TκΩ= + +                 (4)
 

Based on Eq. 4, we formulate a gravity inversion 
task as the one that requires: finding such functions of 
density distribution ρ  and δ  inside the defined 
regions Ω  and κ , and polynomials coefficients of 

rT , which satisfy the equality of the disturbing 
potential values given by equation (4) and its other 
quantities to their real values on the survey points. 

Solution of the given task with the use of linear 
inversion, following Blakely (1995), requires 
discretization of the continuous 3D functions ρ and 
δ . So, the regions Ω  and κ  are divided into finite 
volume blocks and a constant density has to be 
assigned to each of the blocks. Densities of the blocks 
now become the searched values. 

In the analyses referred to this paper we assumed 
that a zoning of the region Ω  is defined by a digital 
terrain model (DTM). Due to the fact that 
determination of the constant density for each DTM 
block involves calculation of too many unknown 
values, DTM blocks are grouped in the zones of the 
same density. So the searched, constant density kρ

Let us consider a point P situated on a terrain
surface (Fig. 1). The disturbing potential in this point
can be split into three components: 
• potential TΩ  produced by topographic masses Ω

laying above the geoid, with density distribution
function ρ . 

• potential Tκ  produced by disturbing masses κ
occurring under the geoid surface, with density
distribution function δ .  

• potential rT  which represents the remaining
influences. 
Potentials TΩ  and Tκ  produced by masses Ω

and κ  are defined by Newton’s integral and
expressed respectively: 

 

T G dV
r
ρ

Ω Ω
Ω

= ∫∫∫                 (2)

T G dV
rκ κ

κ

δ
= ∫∫∫                 (3)

 

where G is the Newton’s gravitational constant, dVΩ

and dVκ  are elements of volume, r is the distance
between the attracting masses and the attracted
point P. 

Regions Ω  and κ  cover a limited areas of
interest and for these areas the problem of inversion
will be formulated. Parameters of the gravity field
used as surveying data contain information about
density anomalies also outside these areas. This
unwanted part of the measurements should be filtered
out (Forsberg, 1984). In the solution under analysis,
the influence of the disturbing masses, which lay

 

∫∫∫
Ω

Ω
Ω

=
r

dGT  

P 

Terrain

geoid 

ρ  

Ωd  

κd

Ω  

),,( zyxWTr =

σ  

∫∫∫=
κ

κ
κ
r

dGT

 

κ
δ

level of compensation 

 Fig. 1 Disturbing potential model. 
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1i i ik

i i i

z y xmn

k i i i
k i iz y x

T P G dx dy dz
d

ρΩ
= =

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∫ ∫ ∫ Tt ρ         (5)

 

where ( ) ( ) ( )2 2 2
i i P i P i Pd x X y Y z Z= − + − + − , 

, ,P P PX Y Z  - coordinates of point P, n – number of 
DTM zones (where for each zone the constant density 

kρ  will be calculated), mk – number of rectangular 

prisms of DTM in zone k, 1 2 1 2 1 2, , , , ,i i i i i ix x y y z z  -
coordinates defining rectangular prism i of DTM, 

1[ ,..., ]nρ ρ=Tρ  is the vector of constant densities of 
topographic masses, 1[ ,..., ]nt t=Tt  comes from (5) 
and values kt  (k = 1…n) are defined as: 
 

2 2 2

1 1 1
1

1i i ik

i i i

z y xm

k i i i
i iz y x

t G dx dy dz
d=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∫ ∫ ∫               (6)

 

( )
2 2 2

1 1 1
1

1j j j

j j j

z y xs

j j j j
j jz y x

T P G dx dy dz
dκ δ

=

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

∑ ∫ ∫ ∫ Tr δ

        
(7)

 

where ( ) ( ) ( )2 2 2

j j P j P j Pd x X y Y z Z= − + − + − , s –

number of rectangular prisms of the κ  area, 
1 2 1 2 1 2, , , , ,j j j j j jx x y y z z - coordinates defining 

rectangular prism j of κ  area, T
1[ ,..., ]sδ δ=δ  is the 

vector of constant densities of the region κ , 
T

1[ ,..., ]sr r=r  comes from (7) and values  jr  (j=1…s) 
are defined as: 
 

2 2 2

1 1 1

1j j j

j j j

z y x

j j j j
jz y x

r G dx dy dz
d

= ∫ ∫ ∫               (8)

 
Note 1: Equations (5-8) present topographic 
reduction, which should include the Earth’s curvature. 
It entails designation of coordinates z, which define 
rectangular prisms of the regions Ω  and κ  for each 
of the survey points. Let us assume a local, spherical 
model of the geoid. The coordinate z, which defines 

refers to all DTM blocks situated in the k zone. The κ
region may be treated as a slab of the same thickness.
The division into blocks of constant density jδ  would
be the set consisting of one or many layers of
spherical or rectangular prisms, depending on the
adopted coordinate system. The speculations and
analyses described in the successive part of this paper
refer to the variant where it is assumed that
theκ region has one layer whose  thickness is nearly
the same as the depth of the compensation surface. In
the horizontal plane, the regions Ω  and κ  go beyond
the border of data occurrence. It should be noted that
to solve the inversion of gravity data, just one layer of
the searched densities is sufficient. This case, for the
theoretical data model, was analysed with satisfactory
results in the paper (Trojanowicz, 2002). However,
when real data sets were used for this model, its
accuracy became lower. Therefore, it was necessary to
apply more layers, and as it transpires from the
analysis, the usage of two layers provides very high
accuracy with a minimal number of unknowns. 

When the Ω  and κ  regions are defined in such
a  way  that  the  potential  (4)  may  be  described  as
a linear function of the searched parameters, which are

kρ  and jδ , and coefficients of the polynomial which
approximates the rT  potential. 

Calculations can be done using the spherical or
Cartesian coordinate system. Detailed equations for
both coordinate systems may be found in the paper
Trojanowicz (2007). The below equations are for
rectangular coordinates. These equations were applied
to calculations the results of which are presented in
the next part of this paper. 

Let us introduce the Cartesian coordinate system.
Its Z-axis is directed towards the geodetic Zenith and
the X and Y axes lay on the horizontal plane and are
directed to the North and East respectively. The origin 
of the coordinate system can be set in the middle of
the area. In this case the Ω  and κ  regions are
defined as a rectangular grid of rectangular prisms
(Fig. 2). 

With Ω  and κ  regions defined in this way, the 
potentials TΩ  and Tκ can be represented as follows: 

 

Element of 
κ  region 

separate constant 
density zone  
with DTM blocks 

 

Fig. 2 Ω  and κ  regions in the Cartesian coordinate system. 
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Pgδ . For these data the observation equations are as 
follows: 
 

T 0
P TP PT v T+ = +f dx  

    T T 0zz
P gP P

Q P

Ug v g
γΔ

⎛ ⎞
Δ + = − + + Δ⎜ ⎟⎜ ⎟

⎝ ⎠
zf f dx          (12)

T 0
P gP Pg v gδδ δ+ = − +zf dx      

 

where [ ]T
1 1 1,..., , ,..., , ,...,l n sw w t t r r⎡ ⎤= =⎣ ⎦

T T Tf w ,t ,r is 

the known vector, zf  is the z derivative of the vector 
f , , ,TP gP gPv v vδΔ  are adjustment errors, Qγ is a normal 
gravity  acceleration  on  the  telluroid  and  zzU  is 
its vertical gradient, 0 T

0PT = f x , 

0 T T
0

zz
P

Q P

Ug
γ

⎛ ⎞
Δ = − +⎜ ⎟⎜ ⎟

⎝ ⎠
zf f x , 0 T

0Pgδ = − zf x are the 

approximate observation quantities determined on the 
basis of the vector  0 0 0,T T T⎡ ⎤= ⎣ ⎦x a τ , where the vector 

0a  is the l-dimension zero vector . 
For a series of observations, the formulated

equations (12), can be written in a more convenient 
form as: 
 
= −v Adx L               (13)

 

where ,..., ,..., ,...T
TP gP gPv v vδΔ⎡ ⎤= ⎣ ⎦v  is the vector of

adjustment errors,
0 0 0,..., ,..., ,...T

P P P P P PT T g g g gδ δ⎡ ⎤= − Δ − Δ −⎣ ⎦L is a 
known observation vector and A is the design matrix 
of known coefficients. 

With the given weight matrix P (defined by the 
reciprocal of the observational errors squares), the 
system of equations (13) can be solved with the 
general condition of the least squares: 
 

minT =v Pv               (14)
 

To overcome the non-uniqueness of the gravity 
inversion, the method suggested by Li and Oldenburg
(1998) was used. It requires an additional condition to 
be put on the determined densities dτ : 
 

minT =τdτ W dτ               (15)
 

where τW is the model weighting matrix, the purpose 
of which is to strengthen or to weaken the influence of 
the designated values in various regions of the model 
domain on the data values. 

Introducing the condition (15) gives a certain 
control over the inversion process. Recording this 
condition for the whole vector of the unknowns, the 
condition (15) may be written as: 
 

minT =xdx W dx               (16)
 

either top or bottom surface of the rectangular prism i
or j respectively, may be determined based on the
height H of this surface above the geoid: 
 

( )2 2
hz H R R d= − − −                                          (9)

 

where R – mean radius of the Earth, hd  – horizontal 
distance of i or j block centre from the survey point 

In the Cartesian coordinate system defined
above, the direction of the Z-axis remains constant.
The origin of the Z-axis is always under the actual
survey point, at a depth equal to the height of the
point. On account of this fact, the coordinate PZ in 
equations (5-8) is equal to the height of the surveyed
point PH  and may be replaced by this value. 

As it was mentioned before, the potential rT  can 
be  presented  in  the form of harmonic polynomials
of a low degree. In the calculations the following
polynomials were used (Brovar, 1983): 
 

1 2 3 4 5( ) P P P P PF P a a X a Y a X Y a Z= + + + + = Tw a  
   (10)

 

where 1[ ,..., ]la a=Ta  is the vector of the polynomial

coefficients ua  (u=1...l), 1[ ,..., ]lw w=Tw comes 
from the form of the chosen polynomial  

Solutions of the integrals in equations (5) and (8)
and their vertical z-derivatives can be found in many
publications (e.g. Forsberg and Tscherning, 1997;
Nagy, 1966; Nagy et al., 2001). 

Considering equations (5), (7) and (10), potential
(4) can now be written as follows: 
 

PT = + +T T Tw a t ρ r δ              (11)
 

Inversion of the gravity data is usually
accomplished by adopting a certain reference density 
model, which can be described as

0 0 0 0
0 0 0 1 1, ,..., , ,...,T T T

n sρ ρ δ δ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦τ ρ δ . The searched
values are not densities themselves but differences
between real densities and the adopted reference
model. Representing the density model as

1 1, ,..., , ,...,T T T
n sρ ρ δ δ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦τ ρ δ , the searched 

differences can be written as 0
T = −dτ τ τ , and the 

vector of the unknown values as ,T T T⎡ ⎤= ⎣ ⎦dx a dτ . 

Taking it into account and assuming that the
inversion problem can be solved using the least
squares method, the relevant observation equations 
can be formulated. The basic survey data, according to
the information in the introduction, are the  values of
the disturbing potential PT  obtained from
GNSS/levelling height anomalies, as well as the 
gravimetric data in the form of free-air anomalies on
the earth’s surface PgΔ  or gravimetric disturbances
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(4), like a lower resolution of the digital terrain model 
(DTM), division into zones of constant density which 
do not consider geological structures and borders of 
density changes, inadequate extent of the areas Ω
and κ  or inappropriate form of the potential rT , 
affects not only the estimated densities, but also the 
adjustment errors. Therefore, using a different way of
designation of the matrices xW  and P, one can 
“locate” these inaccuracies in the model parameters, 
or in the adjustment errors. Hence, a proper 
designation of both matrixes is crucial for the final 
result of modelling. 
In calculations, whose results are presented in this 
paper, to obtain matrix P the height anomaly error was 
adopted at the level of the measurement errors. To 
estimate the errors of gravity data, the initial 
modelling procedure was used, in which the weights 
of gravity data were assumed very small, in order not 
to limit the estimated parameters of the model (in the 
calculations the error of gravity data 10mGalgmδ = ±
was used). Then the standard deviation of the 
adjustment errors of gravity data was estimated. This 
value was taken as gravity data errors in the 
successive main calculations. In order to determine 
the optimal values the coefficients αΩ , κα , and β , 
separate analyzes were conducted, results of which are 
presented in the paper Trojanowicz (2012). The 
present calculations were carried out using the 
following values of the coefficients: 0.01αΩ = , 

0.1κα = , 0.0015β = . 
Note 3. Currently, geoid and quasigeoidy modelling 
are commonly implemented using the global
geopotential models. In the presented approach, the
global geopotential models were used in  the remove-
compute-restore technique. So, the disturbing 
potential is presented as a sum of the global
component GMT  (from the used global geopotential 
model) and residual potential ( )g GM gT T T TΔ Δ= +

.The calculations are carried out in three stages: 
1. The global component is removed from the 

measured data. In this way, the residual data are 
formed: g GMT T TΔ = −  for GNSS/leveling and

g GMg g gδ δ δΔ = −  for gravity disturbances. 
2. Based on the residual data, a model of residual

disturbing potential is build. From this model at
the new points the residual disturbing potential 
values are determined. 

3. Global component is restored at the new points: 
GM gT T TΔ= +  

Considering the above, densities are also decomposed
into two components GM gρ ρ ρΔ= +  and 

GM gδ δ δΔ= + . The components GMρ  and GMδ  are 
estimated based on the data GMT  and GMgδ , whereas
the components gρΔ  and gδΔ  are determined based on 

where ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

a
x

τ

W 0
W

0 W
, and aW  is the zero model 

weighting matrix assigned to the vector of polynomial 
coefficients (10). 

The model weighting matrix τW , which is 
presented in general form in Li and Oldenburg (1998), 
in order to serve the solution described in this paper, 
is defined as: 
 

= +d c
τW W W               (17)

 

where matrix dW  is a diagonal matrix defined by the 
depth weighting function, whose  elements are written 
as follows: 
 

kd
ii

j

w for

w forκ κ

α

α κ

Ω Ω
⎧ Ω⎪= ⎨
⎪⎩

W             (18)

 

where αΩ , κα  are constant coefficients and kwΩ , 

jwκ  are equal to the value of the topographic 
correction for gravity, produced by zone k of constant 
density of the Ω  region or the cuboid j of region κ , 
at the point on the terrain surface, above the centre of 
the constant density zone k or cuboid j, 
matrix cW  defines spatial correlations between zones 
of constant density and is defined as: 
 

1

n t

i p s= =

= ∑∑c ipW C              (19)

 

where ipC  is a matrix defining correlation between a 
couple of zones of constant density (i, p). In the 
matrix only four elements, corresponds to correlated 
zones (i, p), are not equal to zero and are defined as: 

 
ip
ii i iC w w= ,  ip

ip i pC w w= ,   
ip
pi p iC w w= ,  ip

pp p pC w w=                           (20)
 

where 2i p
ip

x yw w
d

β Δ Δ
= − = , β  is a constant 

coefficient, xΔ , yΔ  are mean distances between 
adjacent zones of constant density in x and y direction, 

ipd  is the distance between centers of zones i and p. 
 

The least square objective function can now be 
written as: 
 

minT T+ =xv Pv dx W dx              (21)
 

Equation set (13), including condition (21) is 
solved in the following way: 
 

( ) 1T T−
= + xdx A PA W A PL             (22)

 
Note 2: Any inadequacy in the definition of known 
model parameters of the disturbing potential model 



LOCAL MODELLING OF QUASIGEOID HEIGHTS WITH THE USE OF THE GRAVITY …. 
 

 

11

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 3 Test regions. 

the equation 
0

0 i i
j

j

Hδ
h
ρ

= −  ,where 0,i iH ρ are mean 

height and reference density of the zone i of the Ω
area, situated directly above prism j of the area κ . 
For modelling of the components GMρ  and GMδ the 
values 0 0ρ = , 0 0δ =  were adopted as reference 
density model. 

The following parts of this paragraph contain 
description of the test regions and results of the 
calculations. 

 
3.1. TEST REGION P1 

The test region P1 covers the central part of 
Lower Silesia.  It is mostly a lowland and flat area. 
Only its south-western part covers the tectonic 
Sudetes foreland. Calculations were done in a local 
rectangular coordinate system whose origin is at the 
point 51 6 'ϕ = ° , 16 30 'λ = ° . The area is presented in 
Figure 4. 

For the purpose of calculations, 471 gravity 
points1, covering the area of ca. 63 62× km (1 point 
per approx. 8 square kilometres) were used (Fig. 4). 
For this area, there are not enough points with known 
GNSS/levelling height anomalies, which could be 
used as data (known) points and test points. For the 
purpose of analysis, the quasigeoid model developed 
for the area of Poland, mentioned in Introduction as 
"GUGiK 2001", was used. Height anomalies 
determined for this model will be denoted as GUGiKζ . 
From the model, the quasigeoid heights were 
determined in 9 points treated as data points and 273 
test points, which are evenly distributed over the area, 

the data gTΔ  and ggδ Δ . Different reference density
models ( 0 0,ρ δ ) can be used for both the mentioned
steps of density modelling. This gives the possibility 
to implement in calculations various procedures for 
using the reference density models as well as various
upper layers of the Earth's crust density models. 

The above notes indicate clearly that the
presented method is not yet in the closed form and
requires further studies. The guidelines of these
studies should certainly focus in the first place on the
problem of designation of the matrixes P and xW as 
well as estimation and  use of the reference density
models 0 0,ρ δ . 

 
3. TEST CALCULATIONS 

Test calculations were carried out for three test 
areas situated in Poland. These areas are presented in
Figure 3.  

For all the test regions, in calculations of the
elements of the model weighting matrix (17), a unit
density of mass was assumed.  

The reference density model was defined in the 
following way:  

For components gρΔ  and gδΔ , constant value

0 2200ρ = 3kg/m  (value close to the mean density of
topographic masses for lowland areas of Poland
(Królikowski and Polechońska, 2005)) as the
reference density model for the area Ω  was assumed. 
Reference density model for the area κ  ( 0δ ) was 
adopted as negative density, which balanced
topographical masses of the area Ω . So the density of
separate prism of the area κ  was calculated based on

1 Data referred to the International Gravity Standardization Network 1971 (IGSN71), provided by the Polish Geological
Institute. 
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Fig. 4 Test region P1. 

Table 1 Comparison of height anomalies determined with the analysed method and from global geopotential
models EGM96 and EGM08 with their “theoretical” values. 

 min max RMS σ unit 

0M
dζ  -1.61 01.56 ± 0.67 ± 0.65 cm 

96M
dζ  -1.36 01.00 ± 0.55 ± 0.48 cm 

08M
dζ  -1.23 01.33 ± 0.52 ± 0.48 cm 

96EGM GUGiKζ ζ−  -10.60 35.30 ± 14.00 ± 11.90       cm 

08EGM GUGiKζ ζ−  -4.00 03.10 ± 1.30 ± 1.30 cm 

 

2 Model built on the basis of the GTOPO30 model, available at the website of the Earth Resources Observation and Science
(EROS) Center. This model was used in all calculations. 

1998) and EGM08 (Pavlis et al., 2008).  Results are 
presented as differences dζ (in centimetres) between 
quasigeoid heights calculated from the model and its 
"theoretical" ( GUGiKζ ) values. Table 1 includes basic 
statistics of the differences. The following symbols 
were used for particular variants: 

0 0M M GUGiKdζ ζ ζ= − , 

96 96M M GUGiKdζ ζ ζ= − , 
08 08M M GUGiKdζ ζ ζ= − . 

To indicate high variability of the quasigeoid 
shape on the test area, and to estimate impact of the 
geopotential model quality on the calculation results, 
Table 1 presents also basic statistics of discrepancy 
between height anomalies calculated from the global 
models EGM96 ( 96EGMζ ) and EGM08 ( 08EGMζ ) and
the “GUGiK 2001” model. 

whose border is marked in Figure 4 with dashed line.
In calculations was used the digital elevation model2 

with the resolution of 1000 1000×  m, covering an
area of 88 95×  km. The region was divided into 900
zones  of  constant  density  of  topographic  masses.
A particular zone was a rectangle with the size of ca.
2.9 3.2×  km. The κ  region was defined as a set of
rectangular prisms that constitute a layer that has
constant thickness of 32 km (the approximate depth of
the compensation surface in the Lower Silesia region
(Fajklewicz, 1972)). Single cell of the κ  region
corresponded to the appropriate zone of the Ω  region
by its horizontal size and position. 

 Calculations were done in three variants, viz.
without the use of any global geopotential model and
applying global models EGM96 (Lemoine et al.,



LOCAL MODELLING OF QUASIGEOID HEIGHTS WITH THE USE OF THE GRAVITY …. 
 

 

13

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 5 Test region P2. 

Table 2 Comparison of height anomalies determined with the analysed method and from global geopotential
models EGM96 and EGM08 with GNSS/levelling data. 

 min max RMS σ  unit 

0M
dζ  -2.9 4.5 ± 2.3 ± 2.1 cm 

96M
dζ  -2.6 4.4 ± 1.7 ± 1.5 cm 

08M
dζ  -3.5 3.3 ± 1.6 ± 1.6 cm 

96EGM SLζ ζ−  -8.8 41.1 ± 20.8 ± 15.0   cm 

08EGM SLζ ζ−  -5.6 5.5 ± 2.7 ± 2.4 cm 

 

GNSS/levelling height anomalies ( SLζ ) have been 
designated with the accuracy estimated at the level of 

2 cm±  (Kryński et al., 2005). This accuracy was later
found to be too optimistic, and estimated at the level 
of 3-4 cm (Kryński, 2007). The points were separated 
into two groups. The first group consists of 14 points 
treated as data points, which are represented in the 
Figure 5 by triangles. The remaining 14 points, 
marked in Figure 5 with larger dots, constitute the 
second group, which is a test group. Distances 
between adjacent, known points are in the range of 
approx.  30-70 km,  and  the  mean distance is about 
45 km. The digital terrain model used in the 
calculations, with resolution of 1000 1000× m, covers 

3.2. TEST REGION P2 
The test region P2 covers the whole Lower

Silesia. The north-east part of this region is flat. The
south-west covers the tectonic Sudetes foreland and
the  Sudetes  mountains  with  the highest peak of
1602 m a.s.l. Calculations were done in a local
rectangular coordinate system, with origin at

50 48 'ϕ = ° , 16 30 'λ = ° . This area is presented in
Figure 5. 

As data set for calculations, 1518 gravimetric
points3 were used, covering an area of approx.

223,000km  (1 point per approx. 15 square
kilometres) and 28 points of the POLREF network4. 
For the points of the POLREF network

3 Data referred to the International Gravity Standardization Network 1971 (IGSN71), provided by the Polish Geological
Institute. 

4 POLish REference Frame - data provided by the Head Office of Geodesy and Cartography of Poland. 
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Fig. 6 Test region P3. 

Figure 6. In the calculations,  2302 mean free air 
anomalies5 (Fig. 6) in the grid of 5' 5'×  covering the 
area of approx. 117,000 2km (the single block has the 
size of approx. 53 2km ) were used, as well as 100 
points of the POLREF network situated in this area.  

The digital terrain model used in calculations 
was of 1000 1000× m resolution  and covered the area 
of  400 400×  km.  The  region  was  divided  into 
900 zones  of  constant density of topographic masses. 
A  particular  zone  was  a  rectangle  of  ca. 
13.3 13.3× km size. Despite the fact that the depth of 
the  Moho  discontinuity  in  the area oscillates from 
42-47 km in the north-east part (Precambrian East 
European platform), about 50 km in the strip of land 
from the north-west to the south-east (Teisseyre-
Tornquist Zone), to 32-36 km in the south-west part 
(Caledonides and Variscides), the principles of 
defining the κ region remain the same as for the other 
examples.  

As previously, calculations were done in three 
variants. Results of calculations are presented using 
the same symbols as in the test area P2.  

As the first test, a series of 100 calculations were 
taken. In each calculation set, one of the POLREF 
points was taken as the unknown and the other 99 
points were treated as data points. Such approach was 
implemented to assure a minimal distance between 

the area of 201 256×  km. The region was divided into
900 zones of constant density of topographic masses.
A particular zone was a rectangle of ca. 6.7 8.5× km. 
The rule of defining the κ  region remained the same
as for the test region P1. 

As in the previous example, calculations were
done in three variants (without use of any global
geopotential model and applying the global models
EGM96 and EGM08). For each variant the differences
between quasigeoid heights from the model and the
measured GNSS/levelling height anomalies ( SLζ ) 
were calculated. The differences are marked as

0 0M M SLdζ ζ ζ= − , 
96 96M M SLdζ ζ ζ= − , 

08 08M M SLdζ ζ ζ= −

and their basic statistics are presented in Table 2. The
Table includes also basic statistics of the discrepancies
between height anomalies calculated from the used
global geopotential models and the SLζ  values.  

 
3.3. TEST REGION P3 

Test region P3 covers the central part of Poland.
The region is formed mostly of lowlands and
flatlands. Only in its southern part, there are highlands
(Kielce Highland, the Kraków-Częstochowa Jurassic 
Highland Chain). Calculations were done in a local,
rectangular coordinate system, origin of which is at
the point 52ϕ = ° , 20λ = ° . This area is presented in

5 Data in the Potsdam system referring to GRS80 ellipsoid were available at the website of the  International Gravimetric
Bureau 
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Fig. 7 The differences 
0M

dζ  , in centimetres. 

Table 3 Comparison of height anomalies determined with the analysed method and from global geopotential
models EGM96 and EGM08 with GNSS/levelling data. 

min max RMS σ  unit 

0M
dζ  -5.1 4.2 ± 1.9 ± 1.9 cm 

96M
dζ  -3.1 3.6 ± 1.3 ± 1.3 cm 

08M
dζ  -3.9 3.7 ± 1.6 ± 1.6 cm 

96EGM SLζ ζ−  -20.1 28.4 ± 10.9 ± 10.7 cm 

08EGM SLζ ζ−  -7.7 4.8 ± 3.4 ± 3.0 cm 

 

In Table 3 the basic statistics of the differences 

0M
dζ , 

96M
dζ , 

08M
dζ , calculated  on the basis of 77 

POLREF network points lying within the efficiency 
area, is presented.  

For comparison, Table 4 includes the calculated, 
based on the same 77 test points situated inside the 
efficiency area, statistics of accuracy of two geoid and 
quasigeoid models obtained by classical, established 
approaches. The first is the geoid model „geoid94”. 
Because there exists a bias and a tilt between 
GNSS/levelling  data  and  the “geoid94” model, 
Table 4 includes statistics for values which do not 
take into account a bias and a tilt ( 94geoidζ ), and after 
the local designation of the bias and the tilt, based on 
all test points ( *

94geoidζ ). Height anomalies were 
derived from the geoid model with the use of the 

unknown and known points. Distances between
known points are in the range of approx. 26-75 km, 
and a mean distance is about 52 km. The largest
differences 

0M
dζ , 

96M
dζ , 

08M
dζ  appear at points

situated close to the border of the elaboration area
(Figure 7 shows 

0M
dζ  values as an example). The

reduction in accuracy of the height anomalies
determination near the border of the elaboration area
(the edge effect) is the expected phenomenon and it
reaches the largest values for the M0 variant.  

The area where the edge effect is significant is
separated by a dashed line in Figure 7 and constitutes
the external part of the whole elaboration area. The
internal part defines a certain sub-area (the efficiency
area), in which the calculated height anomalies are
very close to their “theoretical” values. Points situated 
inside the efficiency area are used for estimating the
precision of the method.  
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Table 4 Comparison of GNSS/levelling height anomalies with height anomalies determined from the models 
“geoid94” and ”GUGiK 2001”.  

 min max RMS σ unit 
94geoid SLζ ζ−  -10.8 10.2 ± 5.5 ± 4.8 cm 

*
94geoid SLζ ζ−  -5.8 6.1 ± 2.8 ± 2.8 cm 

GUGiK SLζ ζ−  -5.4 1.4 ± 1.9 ± 1.4 cm 

Table 5 Basic statistics of differences 
075M

dζ , 
9675M

dζ , 
0875M

dζ . 

 min Max RMS σ unit 

075M
dζ  -7.1 7.4 ± 3.4 ± 3.4 cm 

9675M
dζ  -4.1 3.4 ± 1.7 ± 1.7 cm 

0875M
dζ  -4.1 5.2 ± 1.8 ± 1.8 cm 

The M0 variant (without any global geopotential 
model) features slightly higher values of all the basic 
statistics of discrepancy. This decrease of accuracy 
depends on the distance between the known 
GNSS/levelling points, and is minor but distinct when 
the mean distance is approx. 40 - 50 km (Tables 2 and 
3) and significant for larger distances (Table 5). This 
factor indicates clearly the need for using global 
geopotential models in the  calculations. 

Table 4 presents the accuracy parameters of 
models developed with classical methods. Referring 
to these results, it should be noted that the height 
anomalies obtained by gravity inversion methodology, 
based on gravity data in 5' 5'×  grid, in terms of 
accuracy correspond to height anomalies calculated by 
the FFT technique based on gravity data with 1' 1'×
resolution. Usage of the same resolution of gravity 
data ( 5' 5'× ) in both the techniques, shows better 
results in the gravity inversion technique. 

It  should  also be noted, that in the recent years
a number of analyzes of accuracy of global
geopotential models for the area of Poland (e.g.
Kryński and Łyszkowicz, 2005; Kryński and Kloch-
Główka, 2009; Łyszkowicz, 2009a; Łyszkowicz,
2009b) and locally, for the Lower Silesia area
(Trojanowicz, 2009) were carried out. The outcomes 
included in Tables 1, 2 and 3 are consistent with 
results obtained previously and show a very high
accuracy of EGM08 model. 
  
5. CONCLUSIONS 

Three examples of local modelling of quasigeoid 
heights using the gravity data inversion technique 
have been discussed in this paper. The examples differ 
in the area under examination and, to some degree, in 
the nature of the terrain, as well as density of gravity 
points that have been used for analysis.  

Bouguer gravity anomaly BgN Hζ
γ

⎛ Δ ⎞
= −⎜ ⎟

⎝ ⎠
. 

The second model is the previously used
„GUGiK 2001” quasigeoid model. 

For this test area, additional calculations were
done by increasing the distances between known
points. Table 5 includes the basic statistics of the
differences 

075 0M M SLdζ ζ ζ= − , 
9675 96M M SLdζ ζ ζ= − , 

0875 08M M SLdζ ζ ζ= −  for this variant, where distances

between adjacent known points are between 53 and
109 km, and the mean distance is about 75 km. The
variant encompasses 23 points which are recognised
as known data points and 77 unknown test points. 

 
4. DISCUSSION OF THE RESULTS 

Analysing the results for the test area P1, one has
to notice the very high conformity of the determined
height anomalies with the “GUGiK 2001” model. The 
extreme differences presented in Table 1 do not
exceed accuracy of the “GUGiK 2001” quasigeoid
model, and the RMS value of mismatch does not
exceed 7±  mm. Global geopotential models are not
very important, which is also worth emphasising here.
Application of these models increases modelling
accuracy to a very limited degree and that increase is
almost the same for both the used global geopotential
models. 

The fit of the model in question to the POLREF
network points for the areas P2 and P3 indicates a
high accuracy of the model. The RMS values of

96M
dζ and 

08M
dζ  (Tables 2, 3, 5) do not exceed the

mean error of GNSS/levelling data. Comparing the
results with relevant accuracy parameters of EGM96
and EGM08 models, one can notice the lack of
significant impact of the geopotential model quality 
on the final result. 
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Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., 
Luthcke, S.B., Torrence, M.H., Wang, Y.M., 
Williamson, R.G., Pavlis, E.C., Rapp, R.H. and Olson, 
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On the basis of the results presented, some of the
features characterizing the approach may be indicated.
First of all, the method itself facilitates local
modelling of the quasigeoid height using local data.
The method features a small edge effect and for this
reason it can be used for small areas, using
gravimetric data only from a region for which the
quasigeoid model is determined, as well as from its
closest surroundings.  

In comparison to the established, integral
methods, the approach under consideration seems to
have significantly smaller requirements with respect
to the amount of needed gravity data and resolution of
a digital terrain model. That is mainly indicated by the
accuracy obtained for the test field P3. 

The shortcoming of this method is the need to
use the GNSS/levelling height anomalies. In the 
examples discussed, mean distances between adjacent,
known  GNSS/levelling points, can be estimated in
the  range  between  ca.  30  km (region P1) and ca.
45-52 km (regions P2 and P3). Increasing this
distance  for  the  test  region  P3  to  approximately 
75 km, would decrease accuracy, mainly for the
variant that does not use the global geopotential
model. This decrease in accuracy is particularly
noticeable for points situated close to the border of the
study area. Taking into consideration slightly better
modelling results with variants which use global 
geopotential models, also in the other presented
examples, it is sensible to use these models for any
quasigeoid modelling using this approach. 
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