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ABSTRACT  
The paper presents analysis relating to the method of local quasigeoid modelling based on the geophysical technique of
gravity data inversion, using non-reduced surface gravity data and GNSS/levelling height anomalies. One of the main 
problems occurring in the application of the method is to determine the model weighting matrix, the purpose of which is to
control the inversion process. This paper presents the analyses concerning the determination of certain constant coefficients
signed as   ,   and  , appearing in the definition of the model weighting matrix. The calculations performed

indicate that because of the accuracy of the density model, the coefficient   should be in the range of 01.0001.0   , and

the range 005.00025.0    should be adopted as the optimal. As the optimal values of the coefficients   and  , 

values 1.0  and 01.0 , for the zones of constant density with area less than about 130 2km  were determined. 
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2. DESCRIPTION OF THE ANALYZED 
APPROACH 

The analyzed method is based on a certain, local 
model of disturbing potential on the earth’s surface 
and in outer space. The required input data are the
previously mentioned gravity anomalies or gravity 
disturbances and the disturbing potential, calculated 
on the basis of GNSS/levelling height anomalies. The 
height anomalies are converted into the disturbing 
potential (as well as the reverse conversion) based on 
the Bruns formula (see e.g. Torge, 2001). 

Following Trojanowicz (2007; 2012), let’s 
consider  a  point  P  situated on  a terrain surface 
(Fig. 1). Disturbing potential at that point can be split 
into three components: 

 potential T  produced by topographic masses 
lying above the geoid, with density distribution 
function  . 

 potential T  produced by disturbing masses 
occurring under the geoid surface (down to the 
compensation level) with density distribution 
function  .  

 potential rT which represents the remaining 

influences. 
Potentials T  and T  are calculated by 

Newton’s integral and expressed respectively: 

1. INTRODUCTION 

The paper Trojanowicz (2007) proposed an 
approach to local modelling of the quasigeoid, based 
on the solution of the linear problem of gravity data 
inversion. The method has a potential to use 
unreduced gravity data in the form of gravity 
disturbances or free air anomalies defined on the 
earth’s surface and measured GNSS/levelling height 
anomalies. Test results of sample calculations,
presented in the papers Trojanowicz (2007; 2012), 
pointed to several advantages of this approach. First,
should be mentioned a local modelling of the 
quasigeoid using local data and lower requirements 
with respect to the amount of needed gravity data and 
resolution of a digital terrain model in comparison to 
the established, integral methods. It should be 
emphasized that in these calculations very high 
accuracy of the developed models was obtained (at the 
level of precision of GNSS/levelling test data). 
However, the applied method of calculation does not 
have a final, closed-form. There are several elements 
that require deeper analysis. This study represents 
another step towards a final, stable solution and 
concerns the detailed analysis of certain elements of 
the algorithm. Although the algorithm was described 
in details in the papers Trojanowicz (2007; 2012), due 
to the need to highlight the problem covered by this
study, it will be recalled again. 
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Fig. 1 Disturbing potential model. 

Based on Eq. 3, inversion task is formulated in 
the form: finding the density distribution functions 
and   in defined areas   and  , and deriving the
coefficients of the polynomials modelling the 
potential rT  to satisfy equation (3). 

Solution of the given task using linear inversion, 
following Blakely (1995), requires discretization of 
the continuous 3D functions   and  . The regions

  and   are therefore divided into finite volume 
blocks and a constant density (which become the 
investigated value) is then assigned to each of the 
blocks. 

In studies completed until now, it is assumed that 
the division of area   is defined by a digital terrain 
model (DTM) in the form of rectangular blocks. Since 
the determination of the density for each block of the 
DTM would require calculations of a large number of 
unknowns, DTM blocks are grouped into zones of 
constant density. Thus the investigated, zone density

k  refers to all of the DTM blocks situated in zone k. 

The area   is treated in calculations as a plate of 
constant thickness. This plate is divided into blocks of 
constant density j , which form a set of one or more 

layers of cuboids. 
All calculations are performed in a local 

Cartesian coordinate system. The Z-axis of the 
coordinate system is directed towards the geodetic 
Zenith and the X and Y axes lay on the plane of the 
horizon and are directed to the North and East,
respectively. The origin of the coordinate system can 
be set in the middle of the area. In this case the 
and  regions are defined as a rectangular grid of 
rectangular prisms (Fig. 2). 

After defining the areas   and  , the potential 
(3) can be written as a linear function of unknown
parameters: k  and j , and the coefficients of 




  dV
r

GT
                (1)

 







dV
r

GT                 (2)

 

where G is the Newton’s gravitational constant, dV

and dV  are elements of volume, and r is the distance 

between the attracting masses and the attracted 
point P. 

Regions   and   cover a limited area of 
interest. Because the data used for calculations 
(gravity anomalies and disturbances, and 
GNSS/levelling height anomalies) contain information 
about density distribution also outside these regions
(including masses lying below the compensation 
level), the potential rT  is introduced into the 

calculations. The role of the potential rT  is to model

this "unwanted" part of the data. Furthermore in 
practice, each model of the gravimetric geoid or 
quasigeoid (based only on gravity data) indicates a 
systematic offset and tilt with reference to 
GNSS/levelling data, caused by the long-wavelength 
errors of geoid or quasigeoid model and systematic 
errors of both levelling and satellite data (Tscherning,
2001). So, another role of the potential rT  is to link 

the gravity and the GNSS/levelling data - it has to 
cover the previously mentioned offset and tilt between 
the gravimetric quasigeoid and GNSS/levelling data.
It was assumed for calculations that both the distorting 
effects mentioned can be modeled by harmonic 
polynomials of a low degree.  

The disturbing potential on the terrain surface
finally, can be written as: 
 

TTTT rP                 
(3)
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Fig. 2   and   regions in the Cartesian coordinate system. 
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Calculations performed according to equations
(6) and (8) should take into account earth’s curvature.
If we assume a local, spherical model of the geoid
(Fig. 2), curvature of the earth can be included by
designation of coordinates z, which defines either top 
or bottom surface of the rectangular prism i or j of 
regions   and   respectively, for each data point. 
Using the height H of this surface over the geoid it 
can be written: 
 

)( 22
hdRRHhHz                           (10)

 

where R – mean radius of the Earth, hd  – horizontal 

distance of i or j block center from the survey point 
In the Cartesian coordinate system defined above 

the origin of the Z-axis is always under the actual 
survey point, at a depth equal to the height of the point
and the direction of the Z axis remains constant. 

The solutions of the integrals (7) and (9) and 
their vertical (z) derivatives, that should be used in 
practical calculations, can be found in e.g. Forsberg 

polynomials  describing  the  potential rT . Assuming

a fixed form of the polynomials, the potential (3) can 
be written in the form: 
 

δrρtaw TTT   TTTT rP              (4)
 

where: 
 

awT PPPPPr ZaYXaYaXaaT 54321
1 

       (5)

PPP ZYX ,,  - coordinates of point P 

],...,[ 1 laaTa  is the vector of polynomials 

coefficients ua  (u=1...l),  

],...,[ 1 lwwTw  depends on used polynomial, 
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n – number of DTM zones (where for each zone the 
constant density k  will be calculated), mk – number 

of rectangular prisms of the DTM in zone k, 

212121 ,,,,, iiiiii zzyyxx  - coordinates defining 

rectangular prism i of DTM, ],...,[ 1 nTρ is the 

vector of constant densities of topographic masses, 

],...,[ 1 nttTt  comes from (6) and values kt  (k = 

1…n) are defined as:  
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1 This polynomials were used in all calculations 
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The problem of non-uniqueness of the gravity 
inversion is solved by introducing the condition, 
suggested by Li and Oldenburg (1998): 

 

mindτWdτ τ
T               (14)

 

where τW  is the model weighting matrix defined in 

Li and Oldenburg (1998). 
Condition (14) for all unknowns is written as: 

 

mindxWdx x
T               (15)

 

where 









τ

a
x W0

0W
W , and aW  is the zero 

weighting matrix assigned to the vector of polynomial 
coefficients (5). 
The weighting matrix τW , in the analyzed solution, is

defined as (Trojanowicz, 2012): 
 

cd
τ WWW                (16)

 

where matrix dW  is a diagonal matrix defined by the
depth weighing function, elements of which are 
defined as: 
 





 








 forw

forw

j

kd
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where  ,   are constant coefficients and kw , 

jw  equal to the value of the vertical component of 

gravitation produced by zone k of constant density of 
the   region or cuboid j of region  , in the point on 
the terrain surface, above the center of the constant 
density zone k or cuboid j;  
matrix cW defines spatial correlations between zones 
of constant density and is defined as: 
 

 
 

n

i

t

sp1

ipc CW               (18)

 

where ipC  is a matrix defining correlation between a
couple of zones of constant density (i, p).  

In the matrix ipC only four elements, that 
correspond to couple zones (i, p), are not equal to zero 
and are defined as: 
 

ii
ip
ii wwC  ,   pi

ip
ip wwC  ,   ip

ip
pi wwC  ,   

pp
ip
pp wwC                                          (19)

 

where 
2
ip

pi
d

yx
ww


  ,   is a constant 

coefficient, x , y are mean distances between 

adjacent zones of constant density in x and y direction, 

ipd  is the distance between centers of zones i and p. 

and Tscherning (1997), Nagy (1966), Nagy et al. 
(2001). 

Inversion of gravity data is usually accomplished 
by adopting a certain reference density model. When 
the determined density model would be written as

   sn
TTT  ,...,,,...,, 11 δρτ , after adopting a 

reference model in the form 

   00
1

00
1000 ,...,,,...,, sn

TTT  δρτ , the vector of 

unknowns could be written as  TTT dτadx , , where

0ττdτ T  is the sought vector of density 

differences. 
On the basis of the disturbing potential model so 

defined, and taking into account that the problem will 
be solved by least squares methods, proper
observation equations can be formed. The key data are 
the disturbing potential values determined from 
GNSS/levelling height anomalies, gravity
disturbances and free air anomalies defined on the 
earth’s surface. The observation equations for these 
data can be written as: 

 
0T

PTPP TvT  dxf      
 

0TT
P

PQ

zz
gPP g

U
vg 










  dxffz 

           (11)

 

where    snl rrttww ,...,,,...,,,..., 111
T  TTT r,t,wf is 

the known vector, zf  is the z derivative of the vector 

f , gPgPTP vvv ,,   are adjustment errors, Q  is a 

normal gravity acceleration on telluroid and zzU  is its 

vertical gradient, 0
T0 xfPT ,  

0
TT0 xffz

PQ

zz
P

U
g 













, 0
T0 xfzPg  are the 

approximate observation quantities determined on the 
basis of the vector   TTT

000 ,τax  , where the vector 0a

is l-dimension zero vector . 
The formulated equations (11), for a series of 

observations, may be written as: 
 

LAdxv                (12)
 

where  ,...,...,,..., gPgPTP
T vvv v  is the vector of

adjustment errors, 
  ,...,...,,..., 000

PPPPPP
T ggggTT  L  is a known 

observation vector and A is the design matrix of 
known coefficients. 

The system of equations (12) is solved by the 
general condition of the least squares: 

minPvvT                 (13)
 

where P is the given weight matrix. 
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In relation to the above, densities are also
decomposed into two components gGM   and 

gGM   . The components GM  and GM  are 

estimated based on the data GMT  and GMg or 

GMg . The components g  and g  are determined 

based on the residual data. For both the mentioned 
steps of density modelling different reference density
models  o ,0 , can be adopted. 

 
3. TEST CALCULATIONS 

The test calculations were carried out in relation 
to  the area of Lower Silesia. For the calculations 
1518  gravimetric  points2  were used, covering an 

area of about 23,000 2km  (approximately 1 point per

15 2km ) and 28 POLREF3 network points, with 
measured GNSS/levelling height anomalies ( SL ) of

accuracy approx. cm2  (Kryński et al., 2005). This 

accuracy was later determined to be too optimistic and 
estimated at the level of 3-4 cm (Kryński, 2007). 

Calculations were done in a local Cartesian 
coordinate system, the origin of which was in the 
point '651 , '3016  (Fig. 3). The elements 

of weighting matrix (17) were calculated using a unit
density. 

The POLREF network points were divided into 
two groups. The first group consisted of 14 points, 
marked with triangles in Figure 3, is treated as a group 
of data points. The remaining 14 points, marked by 
circles in Figure 3, is a group of test points. The 
calculation was carried out in several series for 
different values of the coefficients. In each calculation
run,   on   the   basis   of   1518  gravity  points  and
14 GNSS/levelling data points, a quasigeoid model
was built. The model accuracy was afterwards
estimated, based on 14 test points. To assess the 
accuracy of the topographic mass density distribution
model, a numerical model of topographic mass 
density (NMTD) was used, which was built on the 
basis of a map of rock slab density above sea level
(Krolikowski and Polechońska, 2005). The density
map was also used to draw a sketch of the density of 
topographic masses shown in Figure 4. 

As mentioned above, the calculations were 
performed for several different values of the 
coefficients  ,  , and  . Table 1 contains 

values of coefficients adopted for test calculations. 
All calculations were carried out in three 

variants, i.e. without any global geopotential model 
(M0) and with the two global geopotential models:
EGM96 (Lemoine et al., 1998) and EGM08 (Pavlis et 
al., 2008) marked as M96 and M08. 

The least square objective function is now 
written as: 
 

min dxWdxPvv x
TT             (20)

 

Solution of equation (12), taking into account the 
condition (20) has the form: 

 

  PLAWPAAdx x
TT 1

            (21)
 

Matrix xW  defined by formulas (15-19) depends 

on three coefficients  ,  , and  adopted in the 

calculation as constants. The purpose of the paper is 
an attempt to determine the optimal values of these 
coefficients, simultaneously enabling determination of 
the best quasigeoid model and a model of topographic 
mass densities. Additionally, this paper is focused on 
analysis of these coefficients. In particular, the study
concern the influence of the size of constant density 
zones and the impact of global geopotential models on 
values of these coefficients. In test calculations it was 
assumed that matrix P is defined on the basis of 
observation errors. Measurement errors were adopted 
as the errors of GNSS/levelling height anomalies. To 
estimate the errors of gravity data the initial modelling 
procedure was used, in which the weights of gravity 
data were assumed small, in order not to limit the 
estimated parameters of the model (e.g. 

mGal20gm ). Then the standard deviation of the 

adjustment errors of gravity data was estimated. This 
value was then taken as gravity data errors in the next, 
main calculations. 

In the presented approach calculations can be 
performed using also the global geopotential model. 
This variant of calculations uses the remove-compute-
restore technique, where the disturbing potential is 
presented as a sum of the global component GMT  and 

residual potential gT  ( gGM TTT  ). The 

calculations are carried out in three stages
(Trojanowicz, 2012): 

1. The global component is removed from the data 
and the residual data are formed:  GMg TTT 

for GNSS/leveling and GMg ggg   or 

GMg ggg    for gravity data. 

2. Model of residual disturbing potential is build 
based on the residual data. At the new points the 
residual disturbing potential values are 
determined from this model. 

3. At the new points global component is restored: 

gGM TTT   

2 Data referred to the International Gravity Standardization Network 1971 (IGSN71), provided by the Polish Geological 
Institute 

3 POLish REference Frame - data provided by the Head Office of Geodesy and Cartography of Poland 
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Fig. 3 Test region. 

Fig. 4 Theoretical densities of topographic masses (sketch was drawn on the 
basis of a map of rock slab density above sea level (Królikowski and 
Polechońska, 2005)). 

Table 1 The values of coefficients adopted for test calculations. 

  100 10 1 0.1 0.01 0.001 0.0001 

  100 10 1 0.1 0.01 0.001 0.0001 

      1      0.1      0.01     0.005     0.0025 0.001 0.0001 
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Table 2 Size of the analyzed zones of constant density. 
 

Zoning symbol  Single zone dimension 
[km] 

Single zone area 
[km2] 

Z1 3.130.17   227.5 
Z2 0.108.12   128.0 
Z3 0.82.10     81.9 
Z4   7.65.8     56.9 

3.1. ESTIMATION OF OPTIMAL VALUE OF 
COEFFICIENT   

In order to determine the optimal value of the 
coefficient  , the calculation results were divided 

into groups. The main group was a series of 343 
calculations performed for all adopted values of
coefficients  ,   and   (Table 1), done for one 

of the assumed zoning (Z1, Z2, Z3 or Z4), and for one 
variant (M0, M96 or M08). Analyzed groups are
therefore 12. For each of the seven values of 
coefficient   (analyzed in one group), the best result 

was selected (1 out of 49 determined for different 
values of the coefficients   and  ). For the 

analysis two parameters were adopted: error of 
quasigeoid model m  (calculated based on 14 test 

points) and error of topographic mass density
distribution model m  (calculated on the basis of

NMTD). 

Figure 5 presents graphs of the best parameters 

m  and m  as a functions of coefficient  . 

In Figure 5 the strong influence of coefficient 
on accuracy of the density model is presented. 
Clearly, the best results were obtained in all the 
variants for 0025.0  or 005.0  and good 

results for 01.0001.0   . 

Analyzing the results of calculations concerning 
the accuracy of quasigeoid model, one can see a very 
small impact of the coefficient   on the error m  in

variants M96 and M08. Considering the optimistic
accuracy of GNSS/levelling data of approximately 

cm2 , one can observe that for these variants the 

accuracy of the quasigeoid model does not depend on 
  (in terms of accuracy of used test data). The M0 

variant shows little relation between error m and 

coefficient       for   the   zoning   Z1,  Z2  and  Z3

(a decrease of accuracy for the coefficients 001.0
can be observed). The relation is not the case for 
division of Z4, for which the accuracy of the model is 
practically the same for all tested values of the 
 coefficient. 

In variants M0 and M96, for components g

and g , the constant value 22000 ρ 3kg/m 4 was 

assumed as the reference density model for the area 
 . Reference density model for the area   ( 0δ ) was 

adopted as “negative density”, which balanced 
topographical masses of the area  . So the density of 
separate prism of the area   was calculated based on 

the equation 
j

ii
j h

H
δ

0
0 

 , where 0, iiH  are mean 

height and reference density of zone i of the   area, 
situated directly above prism j of area  , jh  is height

of prism j. For modelling the components g  and

GM  the values 00  , 00   were adopted as

reference density model. 
In variant M08, for components g  and g

the values 00   and 00   were adopted as

reference density model. For components GM  and

GM  constant value 22000 ρ 3kg/m  was assumed 

for the area   and for the area  , defined above, 
“negative density” was calculated.  

The differences in defining the reference density 
models were introduced based on a series of 
preliminary calculations, in which the described above 
ways of defining the reference density models were
mixed. As the final procedure of definition of the 
reference density model was selected the one which
provides the highest accuracy of both topographic 
mass density and quasigeoid models. 

To estimate the correlation between the 
coefficients and size of constant density zones, the 
calculations were carried out adopting the dimensions 
of the zones defined in Table 2. 

In order to carry out the analysis for all variants,
4116 computing series were performed. Thus, there 
was a large number of results obtained. An analysis as 
well as concise and readable presentation of such a 
vast amount of data is challenging. Taking this into 
account, the analysis were carried out in two stages. In 
the first stage the optimal value of the coefficient 
was analyzed and determined. In a second step the 
optimal values of the coefficients   and  were

estimated. 

4 Value close to the mean density of topographic masses for lowland areas of Poland (Królikowski and Polechońska, 2005) 
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Fig. 5 Graphs of the best parameters m  and m  as a functions of coefficient  . 

Fig. 6 Graphs of the best parameters m  and m  as a functions of coefficient  , for variant M0, zoning Z5. 

In conclusion, it should be noted that for the M0 
variant the constant density zone size  slightly affects
the optimal values of coefficient   for larger zones. 

It  can  be  assumed  that  for zones of area less than

57 2km  (zoning Z4) the accuracy of the quasigeoid 
model does not depend on coefficient  . 

Inspecting again Figure 5, far better qasigeoid 
models should be noted for all variations using global 
geopotential models. This clearly indicates that in 
practical calculations the available global geopotential 
models should definitely be used.  

Taking into account the above conclusions, due 
to the accuracy of the density model, coefficient 
should be in the range 01.0001.0   . In performed 

tests the best results were obtained for 0025.0
and 005.0 . 

In order to clarify the relation between 
coefficient   and accuracy of quasigeoid model, for 

variant M0, an additional series of calculations 
assuming a constant density zone with dimensions of 

ca. km54.6   and area of ca. 232km were performed.

This zoning is marked as Z5, and similar graphs as in 
Figure 5 are shown in Figure 6. 

Analyzing the graphs it can be stated that 
dependence of the density model accuracy on 
coefficient   is similar to the variants previously 

described. However, the graph of dependence of 
accuracy of the quasigeoid model on coefficient  is 

similar to the results obtained for zoning Z4 (omitting
the approx. 2 mm increase in accuracy for coefficients

001.0 ). 
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Fig. 7 Parameters m  and m  as a function of coefficients   and  , for zoning Z1. 
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Fig. 8 Parameters m  and m  as a function of coefficients   and  , for zoning Z2. 
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Fig. 9 Parameters m  and m  as a function of coefficients   and  , for zoning Z3. 
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Fig. 10 Parameters m  and m  as a function of coefficients   and  , for zoning Z4. 
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density of the topographic mass model, the coefficient

  should be equal 0.1. Due to the accuracy of the 

quasigeoid model, a coefficient 1  should be 

adopted.  
Taking this into account, the determined

coefficients 1.0  and 01.0  can be 

considered  universal  for  zoning with  a  single  zone 
of  constant density area which is less than approx.

130 2km  (zoning  Z2,  Z3  and  Z4). For zoning with 
a larger single zone of constant density, there are 
some “shifts” in optimal values of these coefficients. 

The found optimal values of the coefficients 
( 1.0  and 01.0 ) for variant M08 are 

essentially boundary values. For quasigeoid modelling 
slightly different values of the coefficients (e.g.

10  and 1 ) can be adopted, keeping in mind 

that the determined density model will not be the best 
model. 
 
4. CONCLUSIONS 

The main objective of this study was to 
determine the optimal values of the coefficients  , 

  and   which are crucial for constructing a model 

weighting matrix. The importance of global
geopotential models for the determined coefficients 
and the influence of the size of constant density zones
on their values were also analyzed. As a result of this 
research the following conclusions can be formulated:

Because of the accuracy of the density model, 
the coefficient   should be in the range 

01.0001.0   , and the range 005.00025.0  
should be adopted as the optimal range, regardless of 
the size of the constant density zone. 

The values 1.0  and 01.0  for zones of 

constant density with area less than approx. 130 2km
can also be assumed. For larger zones the optimal
values of these coefficients are different. 

For variants using the global geopotential model 
EGM08, a slightly better quasigeoid model accuracy 
was obtained for coefficients slightly larger than 
indicated above (for example 10  and 1 ). 

The use of larger coefficients requires further 
validation based on more accurate GNSS/leveling 
data, and  unfortunately it is associated with a 
decrease in accuracy of the topographic mass density 
model. 

At the end it should be noted that the determined 
optimal values of the coefficients must be verified at 
other test areas and for more accurate test data. 
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