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ABSTRACT  
The mathematical model and algorithms for calculating the position of GLONASS satellites by means of their broadcast
ephemeris is presented in the paper. The algorithms are based on the generalized problem of two fixed centers. One of the
advantages of  the analytical solution obtained from the generalized problem of two fixed centers is the fact that it embraces
perturbations of all orders, from the second and also partly from the third zonal harmonics (Aksenov, 1969). GLONASS 
broadcast ephemeris – provided every 30 minutes – contain satellite position and velocities in the Earth fixed coordinate
system  PZ-90.02 (ICD, 2008), and acceleration due to luni-solar attraction. The GLONASS Interface Control Document 
recommends that a fourth order Runge-Kutta integration algorithm shall be applied. In the Department of Geomatics (AGH
UST) a computer program has been established for fitting position and velocity of GLONASS satellites using their broadcast 
ephemeris. Intermediate GLONASS satellite orbits are calculated considering also the second and third zonal harmonics in
the gravitational potential of the Earth. In this paper results of the analytical integration of the equation of the motion of the 
GLONASS satellites compared to the numerical solution are provided. 
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The fundamental plane of this system is the 
equator and the principal axis x points towards the 
vernal equinox. The rectangular coordinates x, y, z are 
associated with the spheroidal oblate coordinates , , 
and w (Aksenov, 1977, p. 49; Escobal, 1965, 
p. 146). The oblate spheroidal coordinate system finds 
substantial use in the theory of satellite motion based 
on the problem of two fixed centers. The coordinates 
, , and w are orthogonal: that is, the coordinate 
surfaces are an ellipsoid ( = const.), a hyperboloid 
( = const.) and a plane (w = const.), which intersect 
one another at right angles (Demin, 1970; Aksenov, 
1977). The constants c and σ are specified by the 
conditions (Aksenov et al., 1963). 
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1. INTRODUCTION 

The problem of two fixed centers is a special 
case of the restricted three – body problem. The two 
fixed centers problem is well known in classical 
celestial mechanics: two fixed centers with masses m1

and m2, attract some massless particle, moving in their 
field according to Newton’s laws. The integrability of 
this problem was the first time proved by Euler, by 
means of the separation of variables. A review of 
publications on the problem of two fixed centers, 
including its generalizations and applications are 
presented in (Lukyanov et al., 2005). A good example 
how to implement the model of the generalized 
problem of two fixed centers for geodetic applications 
is given in (Aksenov, 1969).  

It is well known that the force function in the 
generalized problem of two fixed centers 
approximates the potential of the earth’s gravitation 
within the square of the earth flattening (Aksenov, 
1969; Lukyanov et al., 2005). It is therefore 
appropriate to adopt intermediate orbits for earth 
satellites obtained by solving the generalized problem 
of two fixed centers (Demin, 1970; Aksenov, 1977). 
The solution of the generalized problem of two fixed 
centers in a geocentric coordinate system may be 
written in the form (Aksenov, 1977, p. 49) : 
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From (4) we obtain the following constants â , ê , ŝ . 
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The elements â , ê  and isinŝ   are analogous 

to the major semi-axis, the eccentricity and the sine 
inclination  of  the elliptical orbit, respectively. When 
c =  = 0, they coincide. The parameters a, e, s can be 
determined by the method of successive 
approximations at the level of small quantities of 
order 4.  
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where the small dimensionless parameter  i is defined 
as follows: 
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For GPS and GLONASS satellites that parameter 
is less then 1/100. 

Substituting   = 0 we find approximate values
for a, e, s, which we then adopt as first approximation. 
The process of approximation ends in case the 

following conditions: ,10 7
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Practically the third approximation will be sufficiently 
accurate. 
 
3. DETERMINING THE ANGULAR ELEMENTS

00, AND 0M OF A SATELLITE ORBIT 

First, according to (Aksenov, 1977, p. 108,109) 
the auxiliary variables 0  and 0 are computed

according to the following formulae: 
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where J2, J3 are the second and the third 
gravitational zonal harmonics of the  Earth, 
respectively,  and  ae  is   the  equatorial  radius  of 
the reference ellipsoid. Assuming WGS-84, 
ae=6378137.0 m,    J2	 =1.082626684·10-3,	 	 	 	 	 and
J3=-2.53265649·10-6 (NIMA Technical Report, 
TR8350.2, 2000),  we  obtain:  c = 209.728939 km,
and  σ = -0.035571596. 

 
2. CALCULATION OF THE INTERMEDIATE 

ORBIT ELLIPTIC ELEMENTS IN THE 
GENERALIZED PROBLEM OF TWO FIXED 
CENTERS 

The intermediate satellite orbit in the generalized 
problem of two fixed centers is most simply described 
by  the  elements: a, e, i, , , M which for c = 0 and 
σ = 0 coincide with the corresponding Keplerian 
elements (Aksenov, 1977). 

The position and velocity components of 
GLONASS satellites, taken from the navigation 
message, are re-computed from ECEF (Earth 
Centered, Earth Fixed) Greenwich coordinate system 
(PZ-90.02) to an absolute coordinate system. 

We assume that at the initial moment t = t0, the 
values of the geocentric rectangular coordinates in an 
absolute system  x0, y0, z0 as well as of their 

derivatives with respect to time 000 ,, zyx  , are known. 

The presented algorithms are in general based on the 
book of  Aksenov, 1977. 

First, from the following formulae three 
constants: α1 (the energy integral), α2 (the area 
integral), and α3 are determined (Aksenov, 1977). 
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From formulas (1) we find that 
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orbital elements 00,  , and M0 according to the 

following formulae: 
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Next, from the following formula we obtain the 
eccentric anomaly E0.  
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Finally we determine mean anomaly M0. 
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where the coefficients   , 1 , 2 , 1 , 2  and *e  are 

defined as follows (Aksenov, 1977, p. 90 ): 
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With   = 0,  = 0, the angle 0 coincides with 

the true anomaly and 0  with the argument of 

latitude of a Keplerian orbit. Next we calculate the 
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approximation ends when the following condition is 

fulfilled: 10
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The Cartesian coordinates are computed (at 

instant t) using the following formulae (Aksenov, 
1977, p. 93):   
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With  = 0,  = 0, the element 0  coincides 

with the argument of perigee,  0  is the longitude of 

the ascending node and M0 is the mean anomaly of the 
Keplerian orbit at epoch t0.  

 
4. ALGORITHM OF CALCULATION OF A 

SATELLITE POSITION AT INSTANT t 

The position of the satellite in space is defined 
by  the  six  known intermediate orbital elements a, e,
s = sini, 0 , 0  and M0 . 
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The parameters Eand ,  are calculated by 

the technique of successive approximations:  
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Table 1 Positions, velocities and luni-solar accelerations of the GLONASS satellite GLN20, in the PZ-90.02
reference frame, from broadcast ephemeris file, 17 October 2011. Epoch t0 and t1. 

        words [units] t0 = 11h 45m 00.0s  UTC t1 = 12h 15m 00.0s   UTC 

      X  [km] 12317.9340820000000000 10391.49267580000000 

      Y  [km] -2245.1323242200000000 3032.69384766000000 

      Z  [km] 22212.8173828000000000 23096.26074220000000 

      X  [km/s] -1.2535667419400000 -0.86419391632100 

       Y  [km/s] 2.7742004394500000 3.04328060150000 

      Z  [km/s] 0.9808206558230000 -0.00542259216309 

      LSX   [km/s2] -0.931322574616·10-9 0.00000000000000 

      LSY   [km/s2] 0.0000000000000000 0.00000000000000 

      LSZ   [km/s2] -0.186264514923·10-8     -0.279396772385·10-8 
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Table 2 Calculation intermediate orbital elements of  the GLONASS satellite GLN20 at  epoch 17 October
2011, t0 =11h 45m 00.0s  UTC. 

 
item words [units]   words [units]  

1 0x  [km] 11881.413366000000 30 2  [km2/s] 100834.26147083600 

2 0y  [km] -3950.207035000000 31 0  [km/s] 0.00493140430 

3 0z  [km] 22212.817383000000 32 2
2k  0.00000000009 

4 0x  [km/s] -0.564121000000 33 0  [rad] 1.48637576920 

5 0y  [km/s] 3.788976000000 34 1  [km2/s] 100835.15027939900 

6 0z  [km/s] 0.980821000000 35 0  [rad/s] 0.00003828760 

7 2
0V  [km2/s2] 15.636583876100 36 2

1k  0.00005549710 

8 2
0r  [km2] 650512863.357182000000 37 d  -0.00026483280 

9 2
0  [km2] 650502263.311214000000 38   -0.00018713000 

10 0  [rad] 0.871214465300 39 0  [rad] 1.29463753000 

11 0r  [km2/s] 124.307959824200 40 0  [rad] 6.09145094860 

12 0J  [km2] 650535649.531330000000 41   -0.00000505950 

13 0Q  [km4/s2]  -4137728.337167420000 42 0w  5.96221244400 

14 1  [km2/s2] -7.813247144100 43   -0.00004308570 

15 2
2  [km4/s2] 10167603454.380900000000 44 1  -0.00000007180 

16 3  [km2/s] 42789.998400233200 45 2  -0.00000000001 

17 ̂  [km] 25507.988833000000 46 3  0.00000000000 

18 2ê  -0.000010606000 47 0  -0.00000000760 

19 2ŝ  0.819919809900 48 )0(  [rad] 6.09144342830 

20   (i= 0) 0.008222004800 49 0  [rad] 4.98053037990 

21 a   (i=1) [km] 25507.678520000000 50 0E  [rad] 1.48512834550 

22 2e  (i=1) 0.000001565800 51   0.00000000120 

23 2s  (i=1) 0.819909756300 52 1  0.00000000090 

24   (i=1) 0.008222204900 53 2  0.00000000000 

25 a   (i=4) [km] 25507.678491000000 54 1  0.00000000090 

26 2e  (i=4) 0.000001567500 55 2  -0.00001385710 

27 2s  (i=4) 0.819909756000 56 *e  0.00125198670 

28   (i=4) 0.008222204900 57 0M  [rad] 1.48387367730 

29 e  0.001251947800 58 0n  [s-1] 0.00015497250 

 

absolute  coordinate system  x0, y0, z0, 000 ,, zyx  ,

(Table 2, 1÷6) using the formulae given in GLONASS 
ICD 2008. Table 2 contains all the values of the 
computed parameters in agreement with the formulae 
and designations given in section 2 and 3. Computed 
orbital parameters are highlighted in bold. The 
algorithm of the computation of satellite positions, 
described  in  section  4, is illustrated in detail in 
Table 3 and  Table 4.  

 

5. NUMERICAL TESTS 

Knowing the satellite position and velocity at
epoch t0 (Table 1) from broadcast ephemeris the 
intermediate orbital parameters of the GLONASS 
satellite GLN20 are computed. Detailed  numerical 
examples of these computations are given in Table 2.
Firstly, the coordinates X, Y, Z and velocity vector 
components (Table 1) at epoch t0 are transformed 
from the ECEF coordinate frame (PZ-90.02) to an 
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Table 3 Luni-solar accelerations in an absolute coordinate system and  orbital parameters of the GLONASS 
satellite GLN20 at epoch t0 and t1, 17 October 2011. 

item words [units] t0  = 11h 45m 00.0s  UTC  t1 = 12h 15m 00.0s   UTC 

1 0LSx  [km/s2] -9.2212106887· 10-10 0.00000000000000 

2 0LSy  [km/s2] 1.3059277289· 10-10 0.00000000000000 

3 0LSz  [km/s2] -1.8626451492· 10-90 -2.7939677239· 10-9 

4 a   (i=4) [km] 25507.678491000000000 25507.66778000000000 

5 2e  (i=4) 0.000001567500000 0.00000156490000 

6 2s  (i=4) 0.819909756000000 0.81990975280000 

7 0  [rad] 6.091450948600000 6.09110213080000 

8 0  [rad] 4.980530379900000 4.98053031670000 

9 0M  [rad] 1.483873677300000 1.76317519420000 

Table 4 Calculation of position of the GLONASS satellite GLN20 at epoch t = 12h 00m 00.0s, 17 October 2011.  

item words [units] t = t0+15m t = t1-15m 

1 M  [rad] 1.6233489021 1.6236998816 

2   (i=1) [rad] 1.6245990807 1.6249490022 

3   ( i=1) [rad] 6.0914427289 6.0910939094 

4 E  ( i=1) [rad] 1.6246029369 1.6249528586 

5   (i=4) [rad] 1.6258529142 1.6262017771 

6   ( i=4) [rad] 6.0914427226 6.0910939031 

7 E  ( i=4) [rad] 1.6246028200 1.6249527413 

8   [km] 25509.3960080000 25509.3950250000 

9   [rad] 1.4341122025 1.4341122460 

10 ̂  [rad] 4.9804602561 4.9804601779 

11   [km] 25516.9517590000 25516.9507780000 

12   [km] 25516.0904800000 25516.0894990000 

13   0.4243704089 0.4243704127 

14   -0.0002247771 -0.0002247772 

18 x  [km] 11259.8959510000 11259.8957120000 

19 y  [km] -512.7951560000 -512.7949670000 

20 z  [km] 22876.8052410000 22876.8040740000 

numerical example, on the base of known orbital 
elements of GLN5 satellite obtained at epoch ti

forward  (for 30 minutes, ti + 30) and backward (for 
30 minutes, ti - 30) satellite positions are calculated, 
and then the results were compared with the 
corresponding coordinates given in the broadcast 
ephemeris. Differences between these computations 
are shown in (Fig. 2). Worth mentioning is that from 

Moreover, on the base of broadcast ephemeris 
the intermediate  orbital elements of satellite GLN5 
are computed  for various epochs between 1:45 to 
5:15  ( March 18, 2011) at 30 minutes  interval. Based 
on these orbital elements forward (for 15 minutes) and 
backward (for 15 minutes) positions of GLN5 satellite 
are computed. The difference between forward and 
backward positions are given in (Fig. 1). In the next 
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Fig. 1 Differences Dx, Dy, Dz, between the coordinates of satellite GLN5 obtained from 
reference time points 1h 45m  to 5h 15m on March 18, 2011, forward for 15 minutes and 
backward for 15 minutes. 

a) b)

c) 

Fig. 2 Differences between the coordinates of GLN 5 satellite given in navigation file and its
 values obtained from forward (..f) and backward (..b) processing with ±30 min time interval,
 on March 18, 2011. 
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21 coordinate differences (as shown in Fig. 2) only 
two differences exceed 2 m.  

 
6. CONCLUSIONS 

The  major  aim  of  this  paper  was to illustrate 
a procedure for computing orbital intermediate 
elements from the GLONASS broadcast ephemeris. 
The paper concentrates on the practical issues of 
implementing the model of the generalized problem of 
two fixed centers for computing satellite positions 
illustrated by the example of GLONASS broadcast 
ephemeris. The GLONASS broadcast ephemeris are 
transmitted as a half-hourly satellite state vector, 
expressed in PZ-90.02 geocentric Cartesian 
coordinates and are nominally valid for 30 minutes.  

According to GLONASS ICD 2008 the 
computation  of  the  satelite  positron  at  time t from 
a satellite state vector with reference time te  requires 
the numerical integration where the longest 
integration period recommended should be 15 min 
forward and backward from the current state vector.  

The proposed analytical algorithm provides good 
results when calculating positions of the GLONASS 
satellites in the time-range of 30 minutes forward and 
30 minutes backward from the given current state 
vector. Results presented in Figure 2, are more 
accurate then the mean square error of broadcast 
positions of GLONASS-M satellites, which is about 
10 m (GLONASS ICD, 2008, Table 4.2). The 
analytical solution, obtained from the generalized 
problem of two fixed centers, demands less time for 
calculation than the method of numerical integration. 
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