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ABSTRACT

The mathematical model and algorithms for calculating the position of GLONASS satellites by means of their broadcast
ephemeris is presented in the paper. The algorithms are based on the generalized problem of two fixed centers. One of the
advantages of the analytical solution obtained from the generalized problem of two fixed centers is the fact that it embraces
perturbations of all orders, from the second and also partly from the third zonal harmonics (Aksenov, 1969). GLONASS
broadcast ephemeris — provided every 30 minutes — contain satellite position and velocities in the Earth fixed coordinate
system PZ-90.02 (ICD, 2008), and acceleration due to luni-solar attraction. The GLONASS Interface Control Document
recommends that a fourth order Runge-Kutta integration algorithm shall be applied. In the Department of Geomatics (AGH
UST) a computer program has been established for fitting position and velocity of GLONASS satellites using their broadcast
ephemeris. Intermediate GLONASS satellite orbits are calculated considering also the second and third zonal harmonics in
the gravitational potential of the Earth. In this paper results of the analytical integration of the equation of the motion of the
GLONASS satellites compared to the numerical solution are provided.
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1. INTRODUCTION

The problem of two fixed centers is a special

case of the restricted three — body problem. The two
) . . ) 2) o

fixed centers problem is well known in classical y= (g iy )(1_;7 ) sinw,
celestial mechanics: two fixed centers with masses m; (1
and my,, attract some massless particle, moving in their
field according to Newton’s laws. The integrability of
this problem was the first time proved by Euler, by

x= (fz +cz)(1—772) cosw,

z=co+<n.

The fundamental plane of this system is the

means of the separation of variables. A review of
publications on the problem of two fixed centers,
including its generalizations and applications are
presented in (Lukyanov et al., 2005). A good example
how to implement the model of the generalized
problem of two fixed centers for geodetic applications
is given in (Aksenov, 1969).

It is well known that the force function in the
generalized problem of two fixed centers
approximates the potential of the earth’s gravitation
within the square of the earth flattening (Aksenov,
1969; Lukyanov et al, 2005). It is therefore
appropriate to adopt intermediate orbits for earth
satellites obtained by solving the generalized problem
of two fixed centers (Demin, 1970; Aksenov, 1977).
The solution of the generalized problem of two fixed
centers in a geocentric coordinate system may be
written in the form (Aksenov, 1977, p. 49) :

equator and the principal axis x points towards the
vernal equinox. The rectangular coordinates x, y, z are
associated with the spheroidal oblate coordinates & 7,
and w (Aksenov, 1977, p. 49; Escobal, 1965,
p. 146). The oblate spheroidal coordinate system finds
substantial use in the theory of satellite motion based
on the problem of two fixed centers. The coordinates
&, n, and w are orthogonal: that is, the coordinate
surfaces are an ellipsoid (£ = const.), a hyperboloid
(77 = const.) and a plane (w = const.), which intersect
one another at right angles (Demin, 1970; Aksenov,
1977). The constants ¢ and ¢ are specified by the
conditions (Aksenov et al., 1963).
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o= J; ] 1 _ 4,
2-J, 2 2-J, ¢’ 3)
J3
J, -
[2"]2J
where J,, Js are the second and the third
gravitational zonal harmonics of the Earth,

respectively, and a. is the equatorial radius of
the reference ellipsoid. Assuming WGS-84,
a.=6378137.0 m, » =1.082626684-107, and
J3=-2.53265649-10° (NIMA  Technical Report,
TR8350.2, 2000), we obtain: ¢ = 209.728939 km,
and o =-0.035571596.

2. CALCULATION OF THE INTERMEDIATE
ORBIT ELLIPTIC ELEMENTS IN THE
GENERALIZED PROBLEM OF TWO FIXED
CENTERS

The intermediate satellite orbit in the generalized
problem of two fixed centers is most simply described
by the elements: q, ¢, i, @, 2 M which for ¢ = 0 and
o = 0 coincide with the corresponding Keplerian
elements (Aksenov, 1977).

The position and velocity components of
GLONASS satellites, taken from the navigation
message, are re-computed from ECEF (Earth
Centered, Earth Fixed) Greenwich coordinate system
(PZ-90.02) to an absolute coordinate system.

We assume that at the initial moment ¢ = ¢, the
values of the geocentric rectangular coordinates in an
absolute system  xo, )9, zo as well as of their

derivatives with respect to time X, y,,Z, , are known.

The presented algorithms are in general based on the
book of Aksenov, 1977.

First, from the following formulae three
constants: o, (the energy integral), a, (the area
integral), and o5 are determined (Aksenov, 1977).

2u =V2_2GM(§0—CO'770)
1="%o —Jo )

2 27,2 2 2.2
az :roVO _ro' —C Zj +Q0, (4)

a3 = Xp)o — VoXo-

where
GM =398600.4418 km’/s>

Vo =5+ 35 + 25,

1 =xg+ v +(zg—co),

r(; = XoXo + Yo + (ZO - ca)z'o,
JO :é:()2 +02’7§:

_ 2GM&yn, (C2770 + Co'sco)
Q= 7 :
0

From formulas (1) we find that

; )

- > g Wo = A (6)

. GM 20:10:22 o0
a=——, e =1+ > = > %
2ay (Gm) )

The elements a, é and S=sini are analogous

to the major semi-axis, the eccentricity and the sine
inclination of the elliptical orbit, respectively. When
¢ = 0= 0, they coincide. The parameters a, e, s can be
determined by the method of successive
approximations at the level of small quantities of
order &".

a =all=c? ==t )eeili-stJi-et o+
1-e2 =(1-&)1-a2(1+3¢2)(1-7 )+ 2611 -57)

1 3

[l+e[-2(4+23-2)+ e-4(3—2s-z)ﬂ (®

1=y = (=82 i+ 22 (- e2)-
—&ls (1 —¢ )[(3 - 2s} )+ e (1 +4s] )] ~e2o(1-7s? )}

where the small dimensionless parameter & is defined
as follows:

c
& = ,1=0,1,2,3...
' aiil—eizi

For GPS and GLONASS satellites that parameter
is less then 1/100.

Substituting ¢ = 0 we find approximate values
for a, e, s, which we then adopt as first approximation.
The process of approximation ends in case the

following conditions: |a[ T ai| (107,

e =€ (1070, sy —s{ <107, are  fulfilled.

Practically the third approximation will be sufficiently

accurate.

3. DETERMINING THE ANGULAR ELEMENTS
@.Qy AND M, OF A SATELLITE ORBIT

First, according to (Aksenov, 1977, p. 108,109)
the auxiliary variables y, and ©,are computed

according to the following formulae:

a(l-ee)-&

o= &oe— a(E - e)’

)
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ae (l —e’ )Joz,éo
0'2[505— ale - e)]2 \/1 - kzz(l —cos? l//o)’

siny, =
in which

1+52(1—e2)(1—2s2)+g4(1—e2)-
e -[(3—16.?2+14s4)—2ez(1—s2)2} ’ (10)

0-2 =

2

— JoMall - &) {1—%(3—432 —ez)—
o {(8 —725% + 64s4)+ ]

8|2 (2 —40s” + 48s4)+ e*

i aec, (1 -e? )sin Wor1— kzzsin2 Vo
=

- Jo(1 +Ecosy/0)2

>

k=g’ {sz - 82(1 —10s* +11s* + ezs4)}.

For ®, we have

sin@, = -0 —7_,
§—1yd
(11)
cos®, = (S — }/d)JOHO ,
oy(s— 770d)2 \/1 —kisin?©,
where
o=

Jordi—2) {1+§(1_s2)(3+ez)+ C (o127}

—%4(1—s2)[(9+11s2)+ Alo+345* 14352

. (s —d)e cos@Nl—kl2 sin” @,

o= Jo(1+dsin®, )

’ (12)

2 =821+ 07— —48(1-57J1- ¢}
d=cos{i-e(5-652)-e2(1-252)]}

y=-co {1-25>—&[3-125° +105* Js 2125 ||

With &= 0, o =0, the angle y,, coincides with
the true anomaly and ©, with the argument of
latitude of a Keplerian orbit. Next we calculate the

orbital elements ,, QQ, , and M, according to the
following formulae:

k(L k).
w0:®0—(l+v)1//0—?1 1+71 sin20, +

13
-i-k—22 1+V+k—22 sin2 )
8 2 y/O’
where

V:%(1+0'2)(12—15s2)+

4
+%[288—1296s2 +1035s* —e2(144+ 28857 —510s4)].
(14)

cosisin®, +

Qo =wy— arctg( J — MW~y siny, —
cos®,

— i Sin 2y — 145 sin 3y — 44 cos (1//0 + a)(o)),
(15)

where

p=-2 a{gz(l + 0'2)+i4(6—17s2 —246232)},
2 8

= 2&%a e{l + %2[(4 —28s? )— e’ (6 + 7s2)]},

we e L], g

1y = 6‘42{63 (2—82),

u=c'cas (l—ez),

o) = Vi, + @y . 17)

Next, from the following formula we obtain the
eccentric anomaly Ej.

£y l-e Vo
tg—C= |—Z g 20
£ V122 %2 (18)

Finally we determine mean anomaly M.
My = Ey—eysin Ey — Ay + Asiny, +
+ A,siny + A cos ((//0 + a)(o))+ ﬂQ’sinZ(l//O + a)(o)), (19)

where the coefficients A , 4, A,, A/, A, and " are
defined as follows (Aksenov, 1977, p. 90 ):

A= —%g“ (1-e2f 28 -325% +255%)

A= —2184sze (4 - 5s2)(l - 62)3/2 ,
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(20)

2 = —% S2(1—62)3/2{1—%2[(12—1%2)—62 (4—5&)]},
¢ =ell=&?(1-e?)(1-s2)+ &5 (1= )3+ €2

With ¢ = 0, o = 0, the element w, coincides
with the argument of perigee, €, is the longitude of

the ascending node and M is the mean anomaly of the
Keplerian orbit at epoch #,.

4. ALGORITHM OF CALCULATION OF A
SATELLITE POSITION AT INSTANT ¢

The position of the satellite in space is defined
by the six known intermediate orbital elements a, e,
s =sini, w,, Qy and M, .

M:no(t—t0)+MO, 1)

20}

U YR (22)

The parameters y,wand E are calculated by
the technique of successive approximations:

tg Yin _ [1+e E

2 -z ¢ (24)

Ojp =VWi + 0. (25)

E, =M+ e sin E +Ay, —Asiny;, —A,sin2i
- A’é sin 2(‘//i+1 + a)Hl)_ﬂ’l' cos (V/HI + a)i+1)’
i=1,2,3,....

A reasonable initial value for E,is M. The process of
approximation ends when the following condition is

fulfilled: |E,,—E[(10"°. Usually 3-4 iterations are

sufficient.

The Cartesian coordinates are computed (at
instant t) using the following formulae (Aksenov,
1977, p. 93):

x= p(cos@cosfl—asin@sinﬁ—ﬂsinf) ),
y=p(cos@cosf)+asin@cosﬁJr,Bcosf)), 27)

z=co+p'(s-sin@+y),
where

E=a(l—ecosE),
2 2
®:W+w+%(l+%jsin2(w+a))—

2 k5. 3 4.
——= | 1+v+—=|sin2y +—k, sindy +
8 ( 2 Vi se Y

4 2

2
+%sin4(l//+a))— hiks sin 2y cos2(y + ),

f)zyl//+QO + 4 8iny + p, Sin 2y + 3 sin3y + (28)

+ 11 cos(y + @)+ whysin 2(y + ),

e e

B

1+dsin®
¢
P dsin®’
o =COSi,

ﬁ:2£0as{1—52(4—5s2 +ezs2)}.

Table 1 Positions, velocities and luni-solar accelerations of the GLONASS satellite GLN20, in the PZ-90.02
reference frame, from broadcast ephemeris file, 17 October 2011. Epoch ¢, and #.

words [units]

to=11"45™00.0° UTC

f=12"15™00.0° UTC

X [km] 12317.93408200 10391.4926758

Y [km] -2245.13232422 3032.69384766

Z [km] 22212.8173828 23096.2607422

X [km/s] -1.25356674194 -0.864193916321
Y [knvs] 2.77420043945 3.04328060150

7 [knvs] 0.980820655823 -0.00542259216309
X5 [km/s’] -0.931322574616-10° 0.0

Y, [km/s’] 0.0 0.00

Zyg [km/s?]

-0.186264514923-10°®

-0.279396772385-10°®
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Table 2 Calculation intermediate orbital elements of the GLONASS satellite GLN20 at epoch 17 October
2011, t,=11" 45" 00.0° UTC.

item words [units]

words [units]

1 xp [km] 11881.413366
2y [km] -3950.207035

3 7y [km] 22212.817383

4 x, [km/s] -0.564121

5 yo [knvs] 3.788976

6  Zo [knvs] 0.980821

7 Vg [km?/s] 15.6365838761
8  rg [km’] 650512863.357182

9 & [km’] 650502263.311214

10 7 [rad] 0.8712144653
11 7 [km%s] 124.3079598242
12 J, [km’] 650535649.531330

13 Q, [km'/s’] -4137728.33716742
14 o [km’/s’] -7.8132471441
15 a5 [km'/s’] 10167603454.3809

16 oy [km'/s] 42789.9984002332
17 & [km] 25507.988833

18 ¢ -0.000010606
19 32 0.8199198099
20 ¢ (i=0) 0.0082220048
21 a (i=1)[km] 25507.67852

22 & (=1) 0.0000015658
23 §% (=) 0.8199097563
24 ¢ (i=1) 0.0082222049
25  a (i=4) [km] 25507.678491

26 €% (i=4) 0.0000015675
27 §? (i=4) 0.819909756
28 ¢ (i=4) 0.0082222049
29 e 0.0012519478

30 o, [km’/s] 100834.261470836
31 &, [kmy/s] 0.0049314043
32 5 0.00000000009
33 w, [rad] 1.4863757692
34 o, [km?s] 100835.150279399
35 1o [rad/s] 0.0000382876
36 ki 0.0000554971
37 d -0.0002648328
38 Y -0.0001871300
39 0, [rad] 1.2946375300
40 @, [rad] 6.0914509486
41 v -0.0000050595
42 W 5.9622124440
43 u -0.0000430857
44 m -0.0000000718
45 s -0.00000000001
46 n 0.0

47 4o -0.0000000076
48 @' [rad] 6.0914434283
49 Q, [rad] 4.9805303799
50 E, [rad] 1.4851283455
51 y) 0.0000000012
52 A 0.0000000009
53 2 0.0

54 A 0.0000000009
55 A -0.0000138571
56 e* 0.0012519867
57 M, [rad] 1.4838736773
58 ny [s' 0.0001549725

5. NUMERICAL TESTS

287

Knowing the satellite position and velocity at
epoch 7, (Table 1) from broadcast ephemeris the
intermediate orbital parameters of the GLONASS
satellite GLN20 are computed. Detailed numerical
examples of these computations are given in Table 2.
Firstly, the coordinates X, Y, Z and velocity vector
components (Table 1) at epoch t, are transformed
from the ECEF coordinate frame (PZ-90.02) to an

absolute coordinate system Xo Yo, Zo, Xg,)o»Z0.

(Table 2, 1+6) using the formulae given in GLONASS
ICD 2008. Table 2 contains all the values of the
computed parameters in agreement with the formulae
and designations given in section 2 and 3. Computed
orbital parameters are highlighted in bold. The
algorithm of the computation of satellite positions,
described in section 4, is illustrated in detail in
Table 3 and Table 4.
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Table 3 Luni-solar accelerations in an absolute coordinate system and orbital parameters of the GLONASS
satellite GLN20 at epoch #, and #,, 17 October 2011.

item words [units] fo=11"45™00.0° UTC t=12"15™00.0° UTC
1| &0 [km/s] -9.2212106887- 107" 0.0
2 | Fpg [km/s] 1.3059277289- 10 0.0
3| Zg0 [kms’] -1.8626451492- 10 -2.7939677239- 107
4 | a (i=4) [km] 25507.678491 25507.66778
5 1 & (i=4) 0.0000015675 0.0000015649
6 | s (i=4) 0.8199097560 0.8199097528
7 | @, [rad] 6.0914509486 6.0911021308
8 | Q [rad] 4.9805303799 4.9805303167
9 | M, [rad] 1.4838736773 1.7631751942

Table 4 Calculation of position of the GLONASS satellite GLN20 at epoch 7= 12" 00™ 00.0°, 17 October 2011.

item | words [units] t = ty+15™ t=t-15"

1 M [rad] 16233489021 16236998816
2 w (i=1) [rad] 1.6245990807 1.6249490022
3 o (i=1) [rad] 6.0914427289 6.0910939094
4 E (i=1) [rad] 1.6246029369 1.6249528586
5 w (i=4) [rad] 16258529142 1.6262017771
6 o (i=4) [rad] 6.0914427226 6.0910939031
7 E (i=4) [rad] 1.6246028200 16249527413
8 ¢ [km] 25509.396008 25509.395025

9 O [rad] 14341122025 14341122460
10 | O [rad] 4.9804602561 4.9804601779
11 p [km] 25516.951759 25516.950778

12 | p' [km] 25516.09048 25516.089499

13 | « 0.4243704089 0.4243704127
14 | B -0.0002247771 -0.0002247772
18 | x [km] 11259.895951 11259.895712

19 y [km] -512.795156 -512.794967

20 |z [km] 22876.805241 22876.804074

Moreover, on the base of broadcast ephemeris
the intermediate orbital elements of satellite GLNS
are computed for various epochs between 1:45 to
5:15 (March 18, 2011) at 30 minutes interval. Based
on these orbital elements forward (for 15 minutes) and
backward (for 15 minutes) positions of GLNS5 satellite
are computed. The difference between forward and
backward positions are given in (Fig. 1). In the next

numerical example, on the base of known orbital
elements of GLNS5 satellite obtained at epoch t
forward (for 30 minutes, t; + 30) and backward (for
30 minutes, t; - 30) satellite positions are calculated,
and then the results were compared with the
corresponding coordinates given in the broadcast
ephemeris. Differences between these computations
are shown in (Fig. 2). Worth mentioning is that from
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1.5
1 = mDx
= O
.E. 0.5 |— Dy
N ODz
o {
& J I lJ
. -05
x ||
A
-1
-1.5
2:00 2:30 3:00 3:30 4:00 4:30 5:00
t [h:min]

Fig. 1 Differences Dx, Dy, Dz, between the coordinates of satellite GLN5 obtained from
reference time points 1" 45™ to 5" 15™ on March 18, 2011, forward for 15 minutes and
backward for 15 minutes.

W Dxf ODxb W Dyf ODyb
a) s b) .
2.5
—| 0.5
€’ B
— 15 = 0
= <.
5 1 &-0s
y— 0.5 [Py
> = -1
O o (m]
05 15
1 -2
2:15 245 315 345 415 445 515 2:15 245 315 345 415 445 515
t [h:min] t[h:min]
W Dzf ODzb
C) 15
1
— 05
£
= i
Qo
570.5
-1
N
0O .15
2 L
25
2:15 245 315 345 415 445 515
t [h:min]

Fig.2 Differences between the coordinates of GLN 5 satellite given in navigation file and its

values obtained from forward (..f) and backward (..b) processing with #30 min time interval,
on March 18, 2011.
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21 coordinate differences (as shown in Fig. 2) only
two differences exceed 2 m.

6. CONCLUSIONS

The major aim of this paper was to illustrate
a procedure for computing orbital intermediate
elements from the GLONASS broadcast ephemeris.
The paper concentrates on the practical issues of
implementing the model of the generalized problem of
two fixed centers for computing satellite positions
illustrated by the example of GLONASS broadcast
ephemeris. The GLONASS broadcast ephemeris are
transmitted as a half-hourly satellite state vector,
expressed in  PZ-90.02 geocentric  Cartesian
coordinates and are nominally valid for 30 minutes.

According to GLONASS ICD 2008 the
computation of the satelite positron at time t from
a satellite state vector with reference time t, requires
the numerical integration where the longest
integration period recommended should be 15 min
forward and backward from the current state vector.

The proposed analytical algorithm provides good
results when calculating positions of the GLONASS
satellites in the time-range of 30 minutes forward and
30 minutes backward from the given current state
vector. Results presented in Figure 2, are more
accurate then the mean square error of broadcast
positions of GLONASS-M satellites, which is about
10 m (GLONASS ICD, 2008, Table 4.2). The
analytical solution, obtained from the generalized
problem of two fixed centers, demands less time for
calculation than the method of numerical integration.

ACKNOWLEDGEMENT

This work has been partially supported by the
project No. 11.11.150. 006, AGH — University of
Science and Technology in Krakow.

The authors are grateful to anonymous reviewers
for their constructive comments and suggestions.

REFERENCES

Aksenov, P., Grebenikov, A. and Demin, V.G.: 1963, The
generalized problem of motion about two fixed centers
and its application to the theory of artificial Earth
satellites, translated in Soviet Astron. — AJ. 7, No. 2,
American Institute of Physics, 276—283.

Aksenov, E.P.: 1969, Mechanical interpretation of the force
function in the generalized problem of two fixed
centers, Soviet Astron. — AJ. 12, No 4, American
Institute of Physics, 681—-685.

Aksenov, E.P.: 1977, Theory of motion artificial Earth’s
satellites (in Russian), Nauka Press, Moscow, pp.360.

Demin,V.G.: 1970, Motion of an artificial satellite in an
eccentric gravitation field, translated and published as
NASA Technical translation, TT F-579, Wshington
D.C. (Translation of Dvizheniye Iskusstvennogo
Sputnika v Netsentral’nom Pole Tyagoteniya, Nauka
Press, Moscow, 1968).

Emelyanov, N.V.: 1992, The acting analytical theory of
artificial  Earth  satellites,  Astronomical &
Astrophysical Transactions, 1, 119 - 127, Gordon and
Breach Science Publishers S. A.

Escobal, P.R.: 1965, Methods of orbit determination, J.
Willey & Sons, Inc.

GLONASS Interface Control Document (ICD), Edition 5.1,
Moscow, 2008.

Lukyanov, L.G., Emelyanov, N.V. and Shirmin, G.I.: 2005,
Generalized problem of two fixed centers or the
Darboux-Gredeaks problem, Cosmic Research, 43,
No. 3, Springer Verlag, 186—191.

NIMA Technical Report, TR8350.2, 2000.



