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ABSTRACT  
The paper presents the foundations of MAFA method, as well as its application to the processing of new GPS and Galileo 
signals. The presented numerical tests have been carried out on the basis of data obtained from a hardware GNSS signal 
simulator as there are currently too few Galileo satellites on orbit. In the proposed methodology, first linear combinations
have been formed using new GNSS signals. These linear combinations constitute a data set for a cascade adjustment 
algorithm employing extended MAFA method. Feasibility of a single-epoch precise positioning has been tested. The single-
epoch positioning is particularly important for reliable real-time landslide and deformation monitoring. The obtained test 
results show a high success rate of the extended MAFA method. The number of the correct single-epoch solutions varied from 
85 % to over 99 % depending on the baseline length and accuracy of an a priori position. Thus, the MAFA method may be 
successfully used with new GPS and Galileo signals, even for the processing of single-epoch data. 
 
 
KEYWORDS: GNSS data processing, Ambiguity Function, MAFA method 

 

process can be assured (Han and Rizos, 1996; Jung 
and Enge, 2000; Urquhart, 2009). Another method of 
improving the efficiency of the MAFA method was 
proposed by Cellmer (2011b). This technique exploits 
an integer de-correlation procedure. After transfor-
mation of the observation equations with an integer 
de-correlation matrix, a model of an adjustment 
problem turns into an equivalent model, but a better 
conditioned one. Since there were some limitations in 
applying the MAFA method, (Cellmer, 2012a) 
derived the necessary condition for obtaining the 
correct solution with this method. The condition is 
associated with the accuracy of the a priori position 
and the wavelength of LC forming an observation set. 
The a priori position must exist inside a certain region 
around the correct position. Therefore, the 
approximate position for carrier phase data processing 
should be as good as possible. In case of the single-
epoch positioning, when triple differences cannot be 
formed, the accuracy of the approximate position can 
be increased using Network Code DGPS Positioning 
(Bakula, 2010). However this accuracy can be still 
insufficient for MAFA method, even if the de-
correlation procedure and the cascade adjustment are 
applied. Hence, the search procedure can be applied as 
the technique of overcoming this problem. This 
procedure is based on testing the objective function 
values for different vectors of misclosures in the 
functional model of the adjustment. This procedure 
allows obtaining correct solution, even if the a priori 
position is several meters away from the actual one. 
The next section presents the theoretical basis of the 

INTRODUCTION 

GNSS is one of the major tools in contemporary 
geodynamic studies (Grácová, 2007; Schenk et al., 
2006, 2010b). Vast amounts of research on the 
application of GNSS to geodynamic research have 
been conducted since over twenty years. Currently the 
main effort is focused on ensuring a high accuracy and 
reliability of the solution (Kaplon and Cacoń, 2009; 
Schenk et al., 2010a). Real-time landslide or 
deformation monitoring often requires GNSS data 
processing in kinematic mode, which is sensitive to 
data gaps or cycle-slip effects. However, recent 
developments in GNSS algorithms allowed for 
instantaneous (singe-epoch) precise positioning that is 
robust for these adverse phenomena. On the other 
hand, this approach is very difficult to perform and 
requires the state of the art algorithms (Kashani et al., 
2007). Lately a new approach to carrier phase data 
processing has been developed, which is based on 
ambiguity function method. The Modified Ambiguity 
Function Approach (MAFA) is based on the least 
squares adjustment (LSA) with condition equations in 
the functional model of the adjustment problem 
(Cellmer et al., 2010; Cellmer, 2011a, 2012a). This 
ensures that the condition of the ambiguity 
„integerness” is satisfied in the final results.  In GNSS 
positioning the functional model for the carrier phase 
data adjustment is relatively weak. Therefore, 
different linear combinations (LC) of L1/E1, L2, 
L5/E5 or other GPS and Galileo carrier phase 
observations are applied in the cascade adjustment so 
that the appropriate convergence of the computational 
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   1 1
λ λ= round - -Φ ρ Φ ρ                                   (8) 

 

where: 
v  – residual vector (n×1), 
x  – parameter vector (increments to a priori  

coordinates vector X0), 
A  – design matrix (n×3),  
  – misclosures vector (n ×1), 
0 – DD geometric distance vector computed 

using a priori position and satellite 
coordinates. 

 

The LS solution of the formula (6) is: 
 

x =  -(ATPA)-1ATP ,                                               (9) 
 

with P standing for the weight matrix. 
 
WIDE-LANE LINEAR COMBINATIONS FORMED 
OF GPS AND GALILEO SIGNALS 

Unfortunately the functional model of carrier 
phase adjustment is relatively weak. It is especially 
true when L1 and other signals are used separately. 
For this reason, Equation (9) does not give a stable 
solution. The graphical interpretation of the objective 
function is represented by a very irregular surface 
(Figure 1). There is a high risk that the computational 
process will point to one of the local minima as the 
final solution instead of to the global minimum where 
indeed is the correct one. Since L1 (GPS) and E1 
(Galileo) as well as L5 (GPS) and E5a (Galileo) 
signals have equal frequencies, it is possible to create 
double differenced observations between the 
mentioned systems. Therefore it is proposed here to 
apply the following 'wide-lane' linear combinations 
(LCs) of new GPS and Galileo signals: 
 

LC(1,-1)=L1-L5, LC(1,-1)=L1-E5a,  
LC(1,-1)=E1-E5a or LC(1,-1)=E1-L5                           (10) 
 

with wavelength (1,-1)= 0.751 m. 
 

As we can see from Figure 2, a surface 
representing the objective function is much smoother 
when using LC(1,-1) instead of a single signal. In this 
case a risk of finding a solution at any of local minima 
is considerably reduced. 

 
DE-CORRELATION PROCEDURE IN MAFA 
METHOD 

The efficiency of the MAFA method can be also 
improved by using the de-correlation procedure. The 
DD ambiguities a are usually strongly correlated. 
Hence, fixing one value of ambiguity through 

MAFA method followed by the description of the 
techniques improving its efficiency, resulting in the 
extended MAFA algorithm. In the last part of the 
paper, a numerical example, results of the tests and 
conclusions are given. The presented research rely on 
full operational capability of Galileo system and GPS 
system with available signals on L5 frequency. This 
assumption forced to use simulated observations 
derived from the hardware GNSS signals simulator 
(courtesy of ESTEC/ESA). 
 
MAFA METHOD 

The following simplified form of the observation 
equation for double differenced (DD) carrier phase 
observable is assumed, (Hofmann-Wellenhof et al., 
2008; Leick, 2004; Teunissen and Kleusberg, 1998): 
 

 + = 1
λ

Φ v ρ acx ,                                                      (1) 

where:
   – DD carrier phase observable (in cycles)
   – signal wavelength 
v    – residual (measurement noise) 
xc   – receiver geocentric radius vector
(xc)  – DD geometrical range 
a – integer number of cycles (DD initial 

ambiguity) 
 

Then taking into account the integer nature of the 
ambiguity parameter a and assuming that the residual 
values are much lower than half a cycle, (Cellmer et 
al., 2010, 2011a, 2011b), the Equation (1) can be 
rewritten as follows:  
 

 1+ - = - 1
λΦ v round Φ ρ                                            (2) 

Or 

   1 1
λ λv = round Φ - ρ Φ - ρ ,                                  (3) 

 

where round is a function of rounding to the nearest 
integer value. The residual (3) takes into account the 
integer nature of ambiguities.  The right side of the 
Equation (3) can be expressed in the form of the 
following, differentiable and continuous function, 
(Cellmer, 2011b, 2012a): 

 





arcsin[sin ]for cos

arcsin[sin ]for cos <

Ψ = round(s) - s

1
- (πs) s s : (πs) 0
π
1

(πs) s s : (πs) 0
π





  
 


, (4) 

where s is an auxiliary variable: 
 

1
λs =Φ - ρ ,                                                                (5) 

 

After linearization, the general formula of the 
residual equations can be shown in the following 
form: 

 

v= 1
λ Ax+                                                              (6) 
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Fig. 1 Plot of LS objective function for L1 carrier phase data.  

Fig. 2 Plot of LS objective function for LC(1,-1) .  

Qaz – diagonal transformed ambiguity cova-
riance matrix. 

 

By multiplying Equation (1) with Z, one can 
obtain a new equation with a new integer ambiguity 
vector az: 

 

Z Z Z( )  Z CΦ v ρ x a
 .                                         (12) 

 

This way Equation (12) replaces Equation (1). 
Applying de-correlated observation Equation (12) in 
the place of Equation (1) increases the probability of 
obtaining the correct solution. A subsequent part of 
the computational process results from this equation. 
There are many various methods of finding the Z 
matrix (Hassibi and Boyd, 1998; Liu et al., 1999; Xu, 

rounding value s in (5) to the nearest integer as in (2), 
has an impact on the rest of the ambiguities. 
Therefore, the correlation between ambiguities should 
be taken into account at rounding the right side of the 
Equation (2). An alternative way of solving this 
problem is to transform of the observation equations 
into their equivalent form but with de-correlated 
ambiguities. It can be done using integer de-
correlation Z matrix (Teunissen, 1995; Liu et al., 
1999): 

 

Qaz = ZQaZ
T,                                                           (11) 

 

where: 
Z    – integer de-correlation matrix 
Qa   – ambiguity covariance matrix 
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condition (17). This correction is necessary to direct 
the solution search process into Voronoi Cell of the 
correct position (Cellmer, 2012a).  

Hence in place of Equations (3) and (4) one may 
use adequately: 

 

   = 1 1
e eλ λv round Φ - ρ Φ - ρ a                            (19)

 

and 
 





arcsin[sin ] + for cos

arcsin[sin ] for cos <

e e

e

e

Ψ = round(s) - s + a

1
- (πs) a s s : (πs) 0
π
1

(πs) a s s : (πs) 0
π





  
  


, (20)

 

Further, the Equation (6) is rewritten as follows: 
 

v  =  1
λ Ax+e,                                                          (21)

 

with the new misclosures vector: 
 

   1 1
e e= - -λ λround  Φ ρ Φ ρ a0 0 ,                  (22)

 

Due to the integer values of the vector ae the 
search procedure is necessary. The search procedure 
will consist of testing the values of the objective 
function vTPv for different vectors ae. It is proposed 
here that the vector ae will consist only of the 
following values -1, 0 and 1. This assumption 
significantly reduces of the search region. It is 
justified when the derivation was preceded with the 
de-correlation procedure described above. All possible 
vectors ae can be represented by ei column vectors 
forming the E matrix. The vectors ei consists of the 
elements -1, 0 or 1 in all possible combinations. 
Generally the E matrix can be formed using the 
following recursive formula: 
 

 = -1 0 1

=

1

n

 
 
 
  

n-11
1 3

n-1
1 3

E

E 1
E

1 E





,                                                  (23)

 

where: 

1 k
1 – k-element row vector of ones 

 – Kronecker product symbol 
n – number of ambiguities. 
 

The dimension of matrix E is nm with the 
number of columns: 
 

m=3n ,                                                                     (24)
 

The example of the E matrix for n=3 is: 
 

-1 -1 -1 -1 -1 -1 -1 -1 -1  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1 1

-1 -1 -1  0  0   0  1  1  1 -1 -1 -1  0 0  0  1  1  1 -1 -1 -1 0  0  0  1  1 1

-1  0  1 -1  0   1 -1  0  1 -1  0  1 -1

3E

 0  1 -1  0  1 -1  0  1 -1  0  1 -1 0 1

 
 
 
  

(25)
Each column of the E matrix is substituted into 

(22) for ae and the criteria vTPv =min is tested. The 

2001). In order to find the Z matrix, the ambiguity 
covariance matrix Qa is required. This matrix can be 
evaluated on the basis of the following observation 
equations which were derived from Equation (1) using 
linearization procedure: 

 

v=Ax+Ba–l ,                                                            (13) 
 
where: 

l – misclosures vector (observed minus 
computed)  

B – ambiguity functional model matrix 
 

The covariance matrix of the unknown vector x 
=[x, a]T can be presented as: 

6 

   
   
    

Ω

-1T T
x xa

x T T
ax a

Q QA PA A PB
C = =

Q QB PA B PB
          (14) 

 

where: 

  
  

-1-1T T T TQ = B PB - B PA A PA A PBa             (15) 

 

In the case of the single epoch data, matrix B is 
an identity matrix and Qa computed according to 
formula (15), is not positive definite. It causes 
difficulties with the de-correlation procedure and 
leads to incorrect solutions. Therefore, an additional 
coefficient k is imposed, (Cellmer, 2011a, 2011b, 
2012b): 
 

  
  

-1-1T T
akQ = P - PA A PA A Pk                          (16) 

 

An interpretation of coefficient k, has been 
presented in detail in (Cellmer, 2012b).The use of the 
coefficient k is equivalent to the simulation of 
additional observations, e.g. code observations, as in 
the generalized least squares model presented in 
(Wielgosz, 2011). The Qak matrix can be applied to 
the de-correlation procedure as an approximation of 
the ambiguity covariance matrix. 
 
SEARCH PROCEDURE IN MAFA METHOD 

In (Cellmer, 2012a) the necessary condition for 
applying MAFA method was described. This 
condition can be formulated as follows: 
 

 1
0λa = round Φ - ρ                                                  17) 

 

where: 
a – true ambiguity 
0 – DD geometric distance computed using a 

priori position coordinates. 
If the above condition is not satisfied then the 

observation Equation (2) takes the following form: 
 

 + = -1 1
e eλ λv - ρ round Φ ρ a                             (18) 

with integer ae. The ae value is an integer ambiguity 
correction resulting from non-fulfillment of the 
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NUMERICAL TESTS 

The presented numerical tests were performed 
using GINPOS software developed at the University 
of Warmia and Mazury (UWM) (Paziewski, 2012). 
This software is a development version of MPGPS 
developed at the Ohio State University (OSU) 
(Grejner-Brzezinska et al., 2009; Wielgosz et al., 
2011). There are just several satellites transmitting 
new GPS L5 signal and new Galileo E1 and L5a 
signals, however in the near future one may expect 
increasing number of new satellites offering these new 
signals. Therefore in this contribution we present the 
results of processing of GPS+Galileo data that were 
obtained with a hardware GNSS signal simulator at 
ESTEC/ESA research and technology center. Please 
note that the simulated signals were collected with 
regular GNSS receivers. Simulations were performed 
for selected locations of real ASG-EUPOS network 
stations - KUTN and KONI and for RR01 station set 
as a rover. ASG-EUPOS is the Polish part of 
European Position Determination System (Bosy et al., 
2007). 

Figure 3 depicts layout of the processed
baselines. The simulated observing session duration
was 4 hours, dated 20 September 2010 (10:00 - 14:00
GPST). The observations with 120-second interval 
were selected to set up the data set. Septentrio TURN
receiver was used for data recording. Data sets of each 
baseline consisted of 120 epochs. This long interval 
was selected in order to avoid correlation between the 
results from the subsequent epochs and to test the 
proposed algorithm under changing satellite number 
and geometry. In the first test, the data were processed 
according to the proposed approach independently for 
each epoch. In this test the search procedure was not 
applied. The ambiguity covariance matrix was formed 
according to formula (16), as a basis for the de-

value of ei minimizing vTPv is chosen to final 
positioning according to formula (9). Misclosure 
vector in this equation is calculated by (22) and 
contains optimal values of ae from the search 
procedure. Summarizing, the search procedure is 
based on the misclosure vector modifications followed 
by the test of the resulting objective function values.
The MAFA method together with the search 
procedure can be used for processing of the short 
sessions or even for processing of the observations 
obtained from just a single-epoch. 

The processing algorithm in this case will consist 
of the following steps: 

 

 

a priori position determination 
(e.g. using code observations) 

   forming  
                 double difference of L1/E1, L5/E5a, 
                 geometric ranges, 
                 model matrix A,  

weight matrix P

de-correlation procedure

search procedure 

    final position determination 
(vector of the coordinates) 

 

 15'  30'  45'  15' 

  3' 

  6' 

 12' 

 15' 

  19oE 

52oN 
 9.00' 25.0 km 59.5 km
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RR01

 

Fig. 3 Map of ASG-EUPOS network and baselines layout.  
http://www.asgeupos.pl/webpg/graph/dwnld/map_pl_EN.jpg 
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Fig. 4 Linear 3D residuals of the a priori and final position for 25 km baseline. 

Fig. 5 Linear 3D residuals of the a priori and final position for 60 km baseline. 
 

data set consisted of new GPS and Galileo 
observations. Among 120 epochs 1 solution was 
wrong and it was correctly identified by the validation 
procedure. Figure 5 shows the results of processing of 
the 60 km. In this case, the data set also consisted of 
new GPS and Galileo observations. There were two 
outliers. They have been identified by the validation 
procedure. Unfortunately, this procedure also points 
out to some solutions as incorrect while actually they 
are correct. Generally, the results for 25 km baseline 
were good whilst for 60 km baseline the validation 
procedure did not work properly, as it was too 
conservative rejecting a number of correct solutions.  

Figures 6 and 7 present the results of the second 
test of single-epoch positioning based on new GPS 
and Galileo observations when the a priori position 
was more than 4 m away from the actual position. In 

correlation procedure. Figures 4 and 5 present the 
results of 25 km and 60 km baselines processing in the 
single epoch mode. There are 120 independent 
solutions, each from a separate epoch. Green lines 
depict 3D residuals of the position obtained from the 
single epoch positioning using MAFA method
(without search procedure), with respect to reference 
position which was set in the signal simulator. The 
coordinate residuals were computed as: 

  2 2 2
dV X Y Z   , where ∆X, ∆Y and ∆Z are 

components of the residuals with respect to reference 
position. The black lines depict the solutions that did 
not pass test of the validation procedure. The red lines 
depict the linear residuals of the a priori position, with 
respect to reference position. The a priori position 
was computed in the code-differential mode (DGPS).
Figure 4 concerns 25 km baseline processing using
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Fig. 6 Linear 3D residuals of the absolute a priori position and final position for 60 km baseline.

Fig. 7 Linear 3D residuals of the absolute a priori position and final position for 60 km
baseline. 

CONCLUSIONS 

A novel strategy for processing new GPS and 
Galileo signals with MAFA method was presented. In 
order to increase the availability and reliability of the 
solutions the new linear combinations based on L1/E1 
and L5/E5a signals were derived. A newly developed 
search procedure was implemented so that the correct 
solutions can be obtained even in a case of poor 
accuracy of the a priori position. The computational 
process allows obtaining precise position even on the 
basis of processing of a single observational epoch 
only. The high efficiency of the proposed algorithm 
was confirmed  by  numerical  tests  performed for 
25 km and 60 km baselines. The number of correct 
single-epoch solutions varied from 85 % to over 99 % 

this case a priori positions were derived from absolute 
point positioning (SPP) based on code observation.
This time due to poor accuracy of a priori positions
the search procedure was applied in the computational 
process. Figure 6 depicts the results of 25 km baseline 
processing. In this case, only 8 from 120 obtained
solutions were incorrect and all of them were correctly 
identified by the validation procedure. Figure 7 shows 
the  results  of 60 km baseline processing. There are
18 outliers. This represents 15 % of all obtained 
solutions. All of them were identified by validation 
procedure. However, in many cases, this procedure 
indicated also the correct solutions as incorrect ones.
Thus, again in the case of long baseline the validation 
procedure did not work properly.  
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depending  on  the  baseline  length  and  accuracy of 
a priori position. The results of the presented 
numerical tests show the usefulness of the proposed 
methodology, although the validation procedure still 
requires some improvement. Since the weak point of 
the proposed approach is the currently applied 
validation procedure, the authors intent to focus their 
next research on development of new validation 
method. It is expected that the improved validation 
will be based on statistical tests and selected concepts 
of the computational geometry (Voronoi cells). 
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