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ABSTRACT  
In this study shape optimization of fibers in composite fiber reinforced structure is presented. The problem targets the optimal 
shape with respect to the maximum bearing capacity and the minimum deformation of the whole composite set up. The shape 
is constrained by a constant volume (area) ratio. The optimization includes a process of seeking the overall properties of 
composites, i.e. localization and homogenization. Since no a priori estimate of the shape of fibers is known, numerical tool,
finite element method, is employed. Such a problem is important in a wide range of applications, prevailingly in fiber 
reinforced concrete assessment, biomechanics, biophysics, and in the mechanics of classical composites with epoxy matrix. 
Since many types of fibers are used in various fiber reinforced concretes (fibers from polypropylene, steel, glass, clay, basalt, 
hemp, etc.), a deeper study is of importance to engineers and researchers. Application on FRC is preferred, i.e. fiber volume
ratio is small, while classical composites require relatively very high volume ratio. The theory involves an original procedure 
leading to the optimal shape of fibers; it is then applied in the form of a numerical study. Also two examples from
experiments verify the theoretical results. The problems are solved as two-dimensional, i.e. a unidirectional distribution of
fibers is supposed.    
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In  Oliver  et  al. (2012)  and  Kato et al. (2010) 
a minimization of suppressing damage along the 
interfacial boundary between fiber and matrix is 
studied. Such a problem is very close to that being 
solved in this paper. Both the latter studies consider 
the fibers in their main function, which is the bridging 
of fissures or cracks occurring along the tensile layers 
during bending of concrete beams. Note that the fiber 
reinforcement is very small in this case, i.e. the fiber 
volume ratio is about 1 %. On the other hand the 
application of fiber reinforcements of concrete can 
appear also in a bunker construction, protective walls, 
Szuladzinski (2012), aircraft shelters, Prochazka et al. 
(2011), etc. This is why this paper focuses on the 
composites with higher fiber volume ratios (0.04 to 
0.07). In this context it is worth noting the paper by 
Cangiano et al. (2003) that optimizes the quality of the 
interfacial zone between the fiber and matrix.  

In the presented paper the localization and 
homogenization procedures are first suggested, which 
basically follow the idea published by Suquet (1987). 
The idea is relatively old, but still it seems to be the 
most reliable in numerical treatment with composites.

Another approach leading to the effective 
material properties are based on introducing the 
polarization tensor that simplifies the description of 
the boundary conditions and domain fields; this can be 
found in Prochazka et al. (1996). It enables one to 
solve the problem in terms of boundary elements 

1. INTRODUCTION 

In this paper a classical problem of localization 
and homogenization is used for estimating an optimal 
shape of fibers in a composite structure. The 
properties of the material of both the fiber and matrix 
in the trial composite are known a priori, as they are 
required by the actual requirements of designer of the 
composite: fiber reinforced concrete. The optimal 
shape of fiber is sought in such a way that both 
minimum stress and deformation is attained. From the 
above arguments the only unknown is the shape of 
fibers. A constraint is applied to the area (volume) of 
the fiber, which is supposed to be constant for each 
distinguished case of iterative process solving the 
optimization problem. The constrained area of the 
fiber is involved into the formulation using 
Lagrangian multiplier, which is identified as a density 
of the surface energy along the interface of phases. 
Based on finite element method suiting for the 
solution of this problem the mathematical formulation 
is presented and after that an original numerical 
approach is outlined. The total energy of the system is 
minimized with respect to either displacements or 
stresses. The design parameters are beams led from 
the origin of the coordinate system centered in the unit 
cell. This problem requires star-shaped fibers. In 
experimental part results from tests with various 
cross-sections of fibers and various fiber volume 
ratios are mentioned.  
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Fig. 1 Geometry of the unit cell and the domain the problem in which is solved.  
 

matrix and by the ratio of the of phases), general 
procedure for homogenization and localization is 
briefly mentioned in what follows.  

Let 0  be a bounded domain describing the trial 

2D unit cell, which is assumed as a square, for 
simplicity. The domain is equipped by either global
(macro) coordinate system 210 xx or local (micro) 

coordinate system 210 yy . In 0  the conservation of 

momentum requires 
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and the linear Hooke law is valid as,  
 

1,2)  ,(   ε:Lσ   i,j,k,lL klijklij                        (2)

where the standard notation of tensor products and 
tensor differentiation is used with upright writing 
tensor notation.  

 Tensors ),(y ,][ε ,][σ 21
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the stress tensor, the strain tensor and the point 
coordinate, respectively.  

The relations between both the local and macro 
levels are given as the Lebesque measures on the unit 
cell 0 , i.e. 
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where  ij are components of the overall stress 

tensor, ijE  are components of the overall strain 

tensor and  meas  stands for measure; in most cases 
the measure of 0 is one. From (2) it is obviously 

seen that while the components of the stress and strain 

which are probably the most efficient in solving this 
problem.  The polarization tensor (or tensors) helps to 
ensure that uniform materials properties are extended 
from inside of the phases; this is a condition required 
in the boundary element procedures.  

The process of optimization used in this paper is 
similar to that described in Prochazka et al. (2009), 
where it is applied to a problem of optimal 
distribution of thickness of various plates. Possible 
generalization to the optimization of debonding 
composites reveals in Kato et al. (2009) and Valek et 
al. (2009). The paper presented here differs from the 
other in the selection of the cost function, which 
appears to lead to more accurate results then in the 
case of functionals used previously.      

For the practical use of the theory and 
applications paper by Prochazka et al. (2011) may 
serve, which provides users with concrete material 
properties, i.e. elastic coefficients like Young’s 
moduly and Poisson’s ratio.  

Note that the self-sustained problem in this paper 
is quite newly formulated. First the idea of 
homogenization and localization is briefly described. 
As said before the approach of Suquet is employed 
leading to a well-posed problem (providing that the 
material properties of the phases are given), then the 
cost functional (function) is proposed and the Euler 
equations are formulated. From that, the optimization 
process is suggested. A set of examples addresses the 
most common cases emerging in practice.   

The variables being denoted by the bold face 
letters are either vectors or higher order tensors. The 
colon means multiplication of matrices by vectors or 
matrices.   

 
2. HOMOGENIZATION AND LOCALIZATION 

In order to go into the core of the problem of the 
fiber shape optimization in fiber reinforced concrete 
with fibers of various material properties (given by the
quality of the material properties of the fiber and 
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of the maximum bearing capacity and in the same 
time the minimum of displacements. 

Because of symmetry, let us consider only the 
first quarter Ω , see Figure 1.  

Let ijE  be successively given as unit impulses, 

i.e. select 00 , ji from the set of integers (1,2), 

1
00
jiE and 0ijE  for 0ii   and 0jj  . 

Substituting into (3) the weak formulation is easy to 
obtain and the finite element solution for 

21* )]([u H  can be found.  

Necessary boundary conditions are shown in 
Figures 2 to 4. 

tensors are dependent on the position at the micro 
level the appropriate overall variables are independent 
on x . On the other hand the unit cell is cut out of the 
composite and it represents not only the point x but 
also its neighborhood, so it means that the conditions 
inside of the unit cell can change from point to point
in the whole composite. A typical set up of a unit cell 
considered is depicted in Figure 1. 
 The aim of the homogenization is to determine 

the relation E:LΣ * , where *L  is the overall 

stiffness tensor. In our problem *L  is sought to deliver 
the best material properties obeying the requirement 

Fig. 2 Original and computational model for responses of 11E . 

Fig. 3 Original and computational model for responses of 22E . 

Fig. 4 Original and computational model for responses of 12E . 
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consists of finding such a domain f  from a class 

}  measure;{≡ fff cO   of admissible domains, 

where C is a constant, which minimizes .  
Let us concentrate on the construction of the 

functional. First, the Hill lemma is valid; see e.g. 
Suquet (1987):  
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Since it holds mf
0   , one can consider 

only f as a representative of m , because of (4).
Moreover, the concentration factors are depend on 
displacement u . The admissible class O  involves the 
star shaped areas and the beams identifying the 
domain of the fiber are restricted in such a way that 
they do not cross C  and  . The Lagrangian 

involving the side condition using the Lagrangian 
multiplier is written as: 
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owing to Hill's energy condition (6). Coefficient λ is 
a Lagrangian multiplier. Substituting (4) and (5) to (7) 
gives: 
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and the concentration factors are dependant only on 
vector r . Even, only one of the two has to be 
calculated, which belongs to the fiber area, for 
example.  
 
3.1. EULER'S EQUATIONS 

First, differentiating (9) by u (Gateaux 
derivative) reveals the standard Lagrange variational 
principle, which describes the behavior of 
displacements, strains and stresses inside of the 
domain  (or )0 . This problem is to be solved in 

each iteration and for each unit impulse of the 
movements of beams sr . The problem is solved for 

external loading given by unit displacements on the 
boundary   (Figs. 2 to 4). 

The partial solutions lead to the influence tensors 

(fourth-order "concentration factor tensors") fm A,A , 

and consequently to mf B,B , which are constructed 
from the successive relations: 
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where  
the superscript fp for fy  , mp for my  , I

is the unit fourth-order tensor and fc and  mc  are the 
appropriate volume fractions. Finally, the overall 
Hooke’s law and the overall stiffness tensor are found 
as, 
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3. OPTIMIZATION FOR MINIMUM TOTAL 
STRAIN ENERGY 

The formulation of the cost functional will be 
done in terms of the constrained total energy. This 
formulation is elegant, as it covers the solution of the 
problem of the linear elasticity for an arbitrary fiber 
shape and, moreover, it leads to the minimum stresses 
and the minimum displacements as well, see, 
Prochazka et al. (2009). Since, on the other hand, the 
internal energy and the external energy are identical 
the energy density calculated for a specific case 
delivers the results given by either the displacement or 
the traction on the surface 00    if the dual 

variable remains the same for all cases of iterative 
process.  

One of natural questions for engineers dealing 
with composites could be: determine such a shape of 
fibers that the bearing capacity of the entire composite 
structure increases and attains its maximum. It means 
that the stresses are minimized in the domain  , their 
excesses are suppressed, and even the displacements 
reach the minimum. This is a problem of optimal 
shape of structures and can be formulated for 
composites as follows: Let the uniform strain fields 

klE (components of unit impulses of the overall strain 

tensor) are applied in the domain   (in our case 
successively the unit displacements are applied along 
the boundary of the unit cell, see Figs. 2 to 4). This 

produces concentration factors f
mnklA  and m

mnklA as 

described in the second section. Let 

),,A,A( mfmf  be a real functional of f
mnklA , 

m
mnklA  and mf , . Our problem of optimal shape 
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Fig. 5 Sample triangulation of fiber and a typical triangle. 
 

used instead and the average has to be used instead of 
arithmetic average (12). The movements of the beams 

sr are improved according to the rule, which says that 

the bigger difference   the shorter beams sr are 

appropriate. From practical examples it is recognized 
that this algorithm is very fast and delivers reliable 
results.  

Differentiating by   completes the system of 
Euler's equations ( sT are triangles created by the 

origin and the boundary element on C , i.e. abscissa 

connecting two adjacent interfacial boundary nodal 
points): 
 


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n

s 1
meas Ts  = C                                                     (13)

In order to calculate the current area, a sample 
triangulation of the fiber used in this study is depicted 
in Figure 5. 

The area of each triangle is calculated according 
to the well known formula: 
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It is obvious from the later relation that constant 

sE  remains the same for each admissible s . It 

appears that if r is too long then E  is too small and 
vice versa. This conclusion offers a very efficient 
algorithm for the optimization. For more details see 
Prochazka et al. (2009), where beam problems are 
solved. 

It still remains to improve the area, which after 
differentiation by sr can be different from required C . 

It is immediately seen that a standard quadratic 
collinear mapping can be applied to get the desired 
area. 

 
3.2. EXAMPLE 

Since finite element method serves a numerical 
tool one can expect that the mesh of the unit cell 
influences the results significantly. In these numerical 

The stationary statement leads to a dif-
ferentiation of the functional by the shape (design) 
parameters sr  
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which can be rewritten as:  
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and n  is the number of DOF on C .  

It remains to state the design parameters r
identifying the change of the boundary C of the 

fibers. If  rs, s = 1,...,n are the distances of the origin 
from the current boundary of the fiber at point 

Csy  , symbol Es corresponds to the strain energy 

density at the point of the interfacial boundary, in our 
case at the nodal point s . Eq. (11) requires Es to 

have the same value for any s. In other words, if the 
strain energy density sE were the same at any point 

on the "moving" part of the boundary C , the optimal 

shape of the trial body would be reached.  
The approximation of the final value of E is 

calculated as the arithmetical average of the calculated 

sE , i.e. 

nEE s

n

s
/

1



 ,  EEEc s /)(    c   is the step   (12)

It appears that the excesses of   are not too 
large, as is in the case of optimization of beams, 
Prochazka et al. (2009). There the logarithmic scale is 
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starting mesh considered in this paper for the fiber 
volume ratio of 0.07.  

In Figure 6 a comparison between the results 
from examples of stiffer matrix (left picture) and 
stiffer fiber (right picture) is seen. Here the starting 
radius of fiber is 0.115, i.e. the fiber ratio is 0.0415. It 
appears that the shape of the first case (stiffer matrix) 
is very similar to that attained in Figure 7 for higher 
fiber volume ratio. Moreover, there is no danger for 
appearing nodes on C approaching the lower 

constraint 1), not speaking about violating the 
constraint 2) (because the fibers are too small). The 
interchange of the material properties leads us to 
interesting conclusions. First, there are “touch nodes” 
with the obstacle given by the lower constraint 1), i.e. 
there are the nodal points in contact with the fictitious 
circle given by the constraint 1). It probably causes 
that, in comparison to the previous case, the shape of 
interfacial boundary is wavier.  An “internal iteration” 
has to be carried out for improvement of the “touch 
nodes”. The internal iteration is carried out to fulfill 
the constraint condition on the constant fiber volume 
ratio. That one is very fast and do not cause any 
trouble as for the increase of time consumption. 

In Figure 8 the starting radius of the interface 
line is 0.15 mm, so that all nodal points are far from 
the obstacle given by the constraint 1) and the internal 
iterations are to be expected in an ample range (no 
additional collinear mapping necessary to apply). The 
fiber ratio is 0.07. In case the weaker matrix is 
assumed almost rectangular shape seems to be 
optimal. In comparison with the case of fiber ratio
0.0415 the shape of fiber seems to be more circular, 
and for higher volume ratio the shape approaches the 
circle. For stiffer fiber again significant vertices are 
observed, i.e. Dramix type fibers are of optimal shape.

studies it appears that in some cases it is true and in 
others this dependence of results of the optimal shape 
of fibers is relatively small. Two typical cases are 
selected concerning the material properties. In the first 
case a stiffer fiber and a weak matrix are observed and 
in the second case the reverse material properties are 
considered, i.e. stiff matrix and weak fibers are 
contemplated. In all combinations of material 
properties the stiffer medium is identified by modulus 
of elasticity GPa 210  ksi 30000 E  and Poisson’s 
ratio 16.0  while the weaker medium is defined by 
modulus of elasticity GPa 17  ksi 2430 E  and 

3.0 . The unit cell is always 11  mm2 and the 
starting geometry of the fiber, positioned 
symmetrically in the cell, is circular, as seen from 
Figure 6. Three typical lay ups of the fibers embedded 
into the matrix are studied with various meshes.  

The constrained beams of nodal points 
describing the interfacial boundary between fiber and 
matrix are selected as: 
 

1. 1.0)(  ar   mm,  20  (the lower bound 

means that no nodal point of the interfacial 
boundary between the fiber and matrix can be too 
close to the singular point centered at the origin 
of local coordinates)  

2. 1.0cos/)(  dr   mm,  20   (the upper 

bound means that the nodal points of the interface 
cannot be too close to the external boundary of 
the unit cell). 

 

In all cases studied in what follows the fine mesh 
is considered the best FEM approximation. The results 
attained on the course mesh are shown for comparison
and possible estimate of sensitivity.  

In Figure 6 the starting meshes are shown, the 
left one is an example of the course mesh for the fiber 
volume ratio of 0.0415 and the right one is the best 

 

   

Fig. 6 Starting meshes fiber ratio 0.0415 0.07. 
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Fig. 7 Fiber ratio 0.0415, stiff matrix   stiff fiber. 

Fig. 8 Fiber ratio 0.07: stiff matrix   stiff fiber. 

zero tensor) are monitored in a unit cell the following 
picture can be drawn for various fiber volume ratios 
(Fig. 10). This example is not directly connected with 
the problem of FRC but shows us that either greater or 
smaller fiber volume ratio there is no basic change of 
the character of the optimal shapes from the point of 
view of numerical results.    

 
4. EXPERIMENTS 

    The optimization problems described in this 
article deal with an optimal shape of fibers in fiber 
reinforced concrete. It is of great importance to us at 
which stage of curing process the optimization should 
take place. Such a study is not covered here. This is 

Figure 9 provides us with comparison between 
fine and coarse meshes. The resulting shapes change 
in details, but the nature of the shape of fibers remains 
almost unchanged. More or less, the lower obstacle 
(fictitious circle, condition 1)) affects the shape 
slightly. The number of beams defining the nodal 
points of interface slide during the iteration is the 
same manner in both cases depicted in Figure 9. It is 
of interest to us that here, although couple of points is 
in a contact with the fictitious circle identifying the 
lower constraint 1), the change of the shape is not 
decisive when applying the fine mesh. 

Considering another example where optimal 
holes (the stiffness tensor of the fiber is put equal to 



P. P. Procházka and M. Válek 
 
 

 

118 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Fiber ratio 0.0415, stiff fiber, course   fine meshes. 

The scheme of the samples fiber-concrete 
aggregate in which has been tested is depicted in 
Figure 11. In the container the cement paste with 
embedded one fiber to five fibers symmetrically 
positioned  in  the  aggregate is pored and cured. 
Three samples have been tested for the optimal shape 
of  fibers  (Dramix type) and another three samples 
had  standard  rectangle’s fibers. The steel fibres with 
a diameter of 0.095 mm, length of 80 mm were used 
for laboratory tests. 

     Specimens of the rectangular or Dramix 
shapes with diameter 30 mm and height of 50 mm 
were made (Fig. 11). During the preparation of 
specimens, one to five steel fibres were placed into the
cement mixture in the cylinder, considered as a re-
presentative volume element, so as 50 mm of fibre lies 
in the specimen and remaining part of 30 mm serves 
for fibre fixation in the grip installed in the measuring 
device. When one fibre was used, it was placed in the 
centre of the specimen, two to five fibres were placed 
in the plane passing through the centre of the 
specimen, symmetrically to the centre. The distance 
between fibres was 5 mm. The experiment was 
prepared with high quality of preparation of cement 
pasta and the positioning of the fiber was also 
extraordinarily accurate. The results of this study 
testify for this, as the variance is very small.  

In the last stage of curing after 28 days pullout 
tests were carried out with the aim to get σ - ε (force-
displacement) relations for all five samples. The 
results are seen from Table 1. Almost linear behavior 
before reaching the peak value testifies for brittle 
behavior at the fiber-matrix contact. The toughness of 
the aggregate is surprisingly high in both cases. Also 
brittle material behavior is seen from the pictures, 
although bearing of the aggregate persist to the 
nonlinear zone.   

Fig. 10 Optimal shape of holes for various 
volume fractions. 

why a large extent of tests has been carried out for 
fiber reinforced concretes, which are reinforced by 
standard fibers with rectangular cross-sections and the 
Dramix type fibers (adapted as straight fibers) with 
optimal cross-section and the results are compared. In 
both cases steel fibers are used as the reinforcement.  

Testing machine MTS Alliance RT/30, see 
Figure 11 is used for the tests having been carried out 
for the purpose of this study. It is an 
electromechanical tool for compressive, tensile, and 
bending tests of material. Maximum compressive and 
tensile force is 30kN. The size of possible samples is 
150 x 150 x 250 mm (width x length x height). The 
velocity of loading was in our case 0.04 mm/minute.  
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Fig. 11 Loading machine with adapted jaws. 

Table 1 Comparison of limit pull-out force. 

Fiber ratio 1 % 2.5 % 4 % 5.5 % 7 % 
Dramix straight fibers [N] 383.33 800 1192 1774 1907.50 
Rectangular straight fibers 228.33 386.67 570 625 808.33 

both phases, but the nature of the optimal shape does 
not change. The optimal shapes are completely 
different if the fiber is much stiffer then the matrix 
and vice versa if the matrix is stiffer.  

The results from the numerical studies of FRSC 
(fiber reinforced steel composites) have also partly 
been studied experimentally and the comparison of the 
results from tests and from numerical approach is 
reasonable.  

It is necessary to note that the choice of the cost 
functional principally influences the optimization 
target. In one previous paper by the first author of this 
work it was shown that maximum bearing capacity is 
attained together with the minimum displacement 
field. On the other hand this approach, based on the 
constraint created by Lagrangian multipliers, is usable 
in wide range of other shape optimization procedures. 
One is found in Prochazka et al. (2009), other can be 
formulated for biomechanics, where from given 
material properties of all phases on micro-level and 
overall properties on macro-level the optimal shape 
can be found (keeping the effective properties in 
reasonable bounds, given by Hashin and Shtrikman 
bound estimates, for example). Next the optimal 
effective properties in a heat transfer problem can be
solved  in  a  similar way as in this work. The latter is 
a content of the paper by the authors submitted to 
CMES, where the boundary element method is 
suitable, Prochazka et al. (2012).   

From the table it is obvious that the Dramix type 
fibers exhibit principally higher bearing capacity than 
that created from the fibers with rectangular shape. 
This is in full compliance with the numerical results.  

 
5. CONCLUSIONS  

Shape optimization of fibers in a composite 
structure presented in this paper is based on an 
original formulation of optimal shape problems
leading to Euler’s equations belonging to the 
optimization. The problems are concentrated on fiber 
reinforced concrete, namely to such cases where 
higher fiber volume ratio is required. An optimal 
shape design of fibers is formulated with the goal
obtaining the highest bearing capacity and the 
minimum displacements in a unit cell. Finite element 
method is the numerical tool; its mesh is adapted to 
the current iteration step as a spring web. The 
examples are selected in such a way that the 
restriction on the possible optimum of the fiber shape 
is applied and one of the phases is much stiffer than 
the other. It appears that the assumption of stiffer fiber 
leads to the convex relation r  and φ while if the 

stiffness is interchanged this relation changes to 
concave. These relations are very important for 
selecting the appropriate shapes of the phases and 
should be respected in the design of the composite 
elements. The optimization shows very important 
results: in details it depends on the volume ratios of 
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