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ABSTRACT 
 

 

A geodetic measurement of shifts and deformations is a well-known method. In the paper there 
is presented a methodology of the shifts assessment based on the robust estimation calculation 
and the following statistical testing. The methodology is exceptional in the fact, that every point
can be potentially unstable and selection of the stable points is a part of the calculation process.
No undoubtedly stable points are needed. Procedure was applied to a geodetic network of Prague
Castle.  
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Earth surface, but also for monitoring of shifts under 
the surface. There may also be used the ground 
penetrating radars (Hruška and Hubatka, 2000).  

The fundamental parts of the whole common 
geodetic methods are the knowledge and the 
accessibility of points that are stable throughout the 
continual or epoch measurements. When all points can 
be affected by changes, it is difficult to make 
conclusions on the shift of individual observed points. 
This situation may arise, for example, if the stable 
points are located too far from the measured points 
and determination of the shifts is not therefore
accurate. In this case it is suitable to use a process of 
evaluation presented in this article. First it is 
necessary to determine probably shifting points. The 
basic tool for evaluation can be a robust linear 
transformation (calculation of the transformation key 
by the robust adjustment).  

At first the principle of used robust methods will 
be explained (for this article only m-estimates), 
further their application to a linear transformation and 
the total processing procedure of the stage mea-
surements. The procedure was applied to a geodetic 
network of Prague Castle in two different types of 
measurement (first for a height network and second 
for a positioning network). The process was divided in 
two, because the measurements were done separately 
too. The height measurement was done by a precise 
levelling and the position was done by a trigonometric 
measurement of angles and distances by a total 
station. The presented examples have one more 
special feature: Monitoring was carried out on the 
basis of annual requirements by the management of 
the Prague Castle and unfortunately the set of the 

1. INTRODUCTION 

A geodetic measurement of shifts and 
deformations is a well-known method. The 
methodology, attributes and possibilities of this 
method are described in many publications. It is 
possible to present the measurement of shifts and 
reshaping of construction (Rueger, 2006), their parts 
(Procházka et al., 2010) or complex engineering 
facilities (Teskey et al., 1996), geological structures 
(Colesanti and Wasovsky, 2006) and the whole 
geological areas (Švábenský et al., 2012) or (Darby 
and Williams, 1991). Usually the terrestrial methods 
are chosen for the measurement. In case of heights it 
is best to use the precision leveling, for a position the 
geodetic networks and the link traverses are used, and 
of course the methods of Global Navigation Satellite 
Systems (GNSS e.g. in (Gokalp and Tasci, 2009)), 
photogrammetry (e.g. (Pavelka and Řezníček, 2010) 
or (Hamouz et al., 2014)), 3D laser scanning (e.g. 
(Dunning et al., 2009) or (Koska et al., 2008)) and 
Synthetic Aperture Radar interferometry (SAR, e.g. in 
(Colesanti and Wasovsky, 2006)). With all these 
methods it is necessary to create the measurement 
accuracy project of the shifts as is required in 
standards, e.g. in CSN 730405. This subject is also 
described in (Sabová and Pukanská, 2007). Also other 
non-geodetics methods are used for measurements. 
The geotechnical methods (Procházka et al., 2010) are 
usually used in a smaller areas for measurements of 
inclinations and deformations of individual building 
or landscape elements. The key parts in the 
measurements are geotechnical boreholes which are 
described also in (Procházka et al., 2010). These 
boreholes are used not only for monitoring of the 
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The unknowns in the vector x are determined by 
the method of maximum likelihood, provided that the 
density of the probability p(li) observation li is directly 
proportional to the function f(li, x), i.e. the following 
applies: 
 

   ,i ip l f l x  .               (6)
 

The density of the probability p(l) for an 
independent measurement is then: 
 

         1 2
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A prerequisite for the method of maximum 
likelihood is the knowledge of the probability 
distribution. With regard to the central limit theorem it 
is further assumed that the measurements have normal 
distribution N(Ax,). Then, for the likelihood 
function, applies: 
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The task is to maximize the likelihood 
(probability), the problem is solved by differentiation 
of the unknowns x and standard deviations  and 
obtained by placing the expressions to zero. Due to 
the characteristic function of the normal distribution 
and the likelihood function it is advantageous to 
derive the logarithm of this function:  
 

   2 2
2

1
2

2 2 2
Tn n

ln L ; , ln    


   l x .         (9)

 

(After the derivation according to the unknowns 
x, the result is an estimation of the least squares 
method). The expression is therefore maximized  
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Or, using the previous logarithmic formulas,
minimized 
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which leads to the least squares method. This function 
of estimation is given by the assumption of a normal 
distribution of the measurement and must be replaced 
by a more suitable function, because the normal 
distribution prerequisite is not accomplished. The 
calculation of robust M-estimators (Huber, 1964) is 
determined by minimizing the expression: 
 

  
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n
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l ,g min .


 x ,                          (12)

 

where  is a suitable estimator function („score 
function“), gi(x) is a function of unknowns 
parameters. The estimator is not constant as in the 

observed points was not the same in each epoch, but 
even this uncommon results of measurement can be 
evaluated using this methods.     

 
2. PRINCIPLE OF THE ROBUST ADJUSTMENT 

The robust adjustment used for the 
transformation key calculation is the key of the 
method, outliers (here possible shifts) are there more 
reliably identified than in case of use of the least 
squares method (LSM). From the point of view of the 
adjustment the methods of the robust estimate are 
much more resistant against the outliers’ presence 
(here shifted points). The robust methods are 
described in detail in the fundamental article (Huber, 
1964), in overview in (Huber, 1981), (Koch, 1999) 
and (Hampel et al., 1986), and in (Štroner and 
Hampacher, 2011) with extensive list of the individual 
methods. Precisely is the calculation procedure 
described in (Třasák and Štroner, 2014) together with 
the testing of the outlier detection efficiency in 
geodetic networks. Useful methods of the robust 
adjustment are based on the maximum likelihood 
method. 

According to (Koch, 1999) it is a solution to the 
minimization problem. The base is formed by the 
requirement for the maximum likelihood solution 
given by expression:   
 

 arg sup L ,
x

x l x  ,               (1)

 

Where l is the random vector (measurement), L(l, x)
the likelihood (probability) function, x  estimate 
parameters (unknowns). In other words, the solution 
has to be the most probable one. If the random vector 
of an observation l has a density of probability f (x), 
which depends on the fixed and unknown parameters 
x, then the likelihood function is: 
 

   L , fl x x  .                                          (2)
 

The linear model of the problem is:  
 

Ax l ε   ,                (3)
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where x is the vector of unknowns, l is the vector of 
observations (measurements),  is the vector of real 
error, A is the matrix of linear (linearized) 
relationships between measurements and unknown 
parameters. The number of measurements n is larger 
than the number of unknowns u. It is a calculation 
with adjustment. The measurements are independent. 
The equation of the observation for measurements li: 
 

T
i i il   a x  .                (5)
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After derivation: 
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For minimization following must apply: 
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The real errors are not known, they will be 
replaced by their estimations – corrections. Solving 
the normal equations method of least squares is 
computationally simple. For using the calculation it is 
necessary to formally multiply the standardized 
corrections iv̂  by the correction coefficient wi. 

Following must therefore apply: 
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and then: 
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The correction coefficient wi represents some 
weight of the measurement li, whose size is directly
dependent  on the size of standard corrections iv̂ , tj. 

wi = wi(vi,i). After the introduction of the correction 
coefficient a modification can be done: 
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It is also possible to define the diagonal weight
matrix W: 
 

 1 2 ndiag w ,w ,...,wW              (26)
 

and solve the normal equations in the form: 
 

T TA WA x A W l .              (27)
 

Weights wi depends on the corrections vi, i.e. on 
the estimate of the unknown x. The estimate must be 
determined iteratively, the result of the least squares 
method can be used as a first approximation.  
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case of the least squares method. The derivation of the 
estimator (i.e. the influential function) is: 
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The x  estimate of an unknown parameters x: 
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The robust estimate can be found using  il , x . 

Only when the function  il , x  is bounded it is the 

robust estimate, because it is proportional to the 
influence function (Hampel et al., 1986). The 
influence function describes the effect of further 
observations to the estimate. Along with the 
breakdown point, these are important characteristics 
describing specific robust estimate. The breakdown 
point is the smallest proportion of observations that, 
after replacing by any values, can lead to incorrect 
values of the estimate (see (Hampel et al., 1986)).  

For routine calculations it is appropriate to 
introduce the concept of a standard error, i.e. the 
proportion of errors and the corresponding standard 
deviation of a measurement: 
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The estimates of real errors are the corrections vi

standard corrections iv̂  are defined: 
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It results in the estimate function: 
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Because   T
i ig x a x , the calculation of 

estimation can be adjusted to the form 
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For the least squares method the following 
applies: 

The density of probability of the normal 
distribution: 
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The function  (without constants, after 
application of the logarithm): 
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where A is Jacobi matrix, P diagonal matrix of 
weights (on the diagonal are measurements’ weights 
Pii = K/i

2, K is chosen constant), dx increment vector 
of unknowns, l’ vector of reduced measurements. 

Robust weight change W must be then applied: 
 

  1
 T Tdx A PWA A PW l'  ,            (34)

 

where robust weight change is determined by the 
equation: 
 

 1 2 ndiag w ,w ,...,wW ;  i i iw f v , ,           (35)
 

where corrections are determined by the equation: 
 

 v Adx l'                (36)
 

with variance-covariance matrix: 
 

  v K
 

11 T TCov P A A PA A .            (37)
 

Robust changes are derived from the standard 
deviations of measurement and corrections obtained in 
adjustment. Various methods of calculating of the 
changes in weights can be used, derived on the basis 
of expected probability distribution of deviations from 
the normal distribution. Here it is worth mentioning 
Huber method (described in (Štroner and Hampacher, 
2011)). When creating a robust estimator Huber came 
out from the normal random variable distribution. His 
solution is based on the replacement of the edge parts 
of the normal probability distribution by the Laplace 
distribution (a special form of the exponential 
distribution), which leads to greater probability of 
outlaying measurement on the distribution’s edges.  

For purposes of the analysis in this paper a L1

norm (the method minimizes the sum of absolute 
errors, and is also known as Least Absolute 
Deviations Method) was used, which, as a function of 
the probability distribution, uses directly Laplace 
distribution, which has in comparison to a normal 
distribution a greater probability of outlaying 
measurements occurrence. For homogeneous 
measurement (measurements with the same standard 
deviation) is a robust weight change given by the 
function 
 

i iw 1/ | v |                (38)
 

and there is no need to know the standard deviation in 
this case. For nonhomogeneous measurement 
(measurements with the different standard deviations) 
is a robust weight change given by the function 
 

i iw / | v |   .             (39)
 

The calculation is done iteratively, residuals used 
to calculate robust weights’ changes are always used 
from a previous calculation. More to the calculation 
procedure in (Štroner and Hampacher, 2011). 

If the residual exceeds the statistic criterion 
given by standard deviation of the residua and the 

    m mv Ax l .              (30)
 

In (Huber, 1964) the convergence of this 
calculation is proved. 

As stated before, the robust adjustment methods 
are mostly based on the principle of maximum 
likelihood method and their basic property is 
(compared to in geodesy widely used the least squares 
method) high resistance against the influence (against) 
of outlying measurements. The principles and 
derivation of least squares and robust methods can be 
found in (Štroner and Hampacher, 2011). Most 
practically usable robust methods are based on 
adjusting of the weights in the calculation method of 
least squares (reweighting), such a calculation is then 
relatively easy. Methods are presented in (Štroner and 
Hampacher, 2011) too.  

 
3. PRINCIPLE OF THE PROCEDURE OF SHIFTS 

DETERMINATION - GENERAL CALCULATION
PROCEDURE 

From the available epochs of measurement one 
has  to  be  chosen,  and  that will be considered to be 
a basic one, and to which will be determined shifts 
related.   Then   there will  be  gradually  carried out 
a transformation of all other epochs to the system of 
basic one, the transformation key will be determined 
by a robust adjustment. Here is a set of identical 
points as a set of measurements, whose errors due to 
the expected shift does not come from a normal 
probability distribution. Robust estimation method 
identifies those points that, in calculating the 
transformation parameters appear to be outlaying. 
These points will be from the set of identical points 
excluded. There will the obtained a sets of the 
identical points that will have various size. To 
calculate the final transformation key will be used 
only those points that are not identified as outliers and 
it will be calculated by the least squares method. Then 
determined transformation key will be used to 
transform all network points in the epoch to the 
system of the basic epoch. Differences between the 
coordinates of points in the basic epoch and 
transformed coordinates can be shifts, these
differences are then tested by the statistical test.
Basically the linear transformation between two 
epochs i and j is given by the equation: 
 

i j X RX T ,               (31)
 

where Xi, Xj are vector of the coordinates, M matrix of 
the scale coefficients, R rotation matrix, T translation 
vector. The calculation procedure of iterative 
adjustment is based on the assembly of normal 
equations in the form: 
 

T TA PAdx A Pl'  ,             (32)
 

  1
 T Tdx A PA A Pl' ,             (33)
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4.2. THE HEIGHT ANALYSIS 

For the first analysis only height measurement 
was chosen. The reason for this decision is a very high 
and long-term achieved precision of 0.7 mm/km, also 
the high reliability and resistance of the method to 
systematic errors. Height measurements are almost 
entirely a matter of method levelling from the center 
with the addition of precise trigonometric method 
used to bridge the Jelení příkop (Deer Moat). Scheme 
of the performed measurements is in Figure 1. 
Measurements were conducted with use of the Zeiss 
Ni 007 instrument, and in the last two epochs with use 
of the digital levelling instrument Trimble Dini 12T 
was used. 

 
4.2.1.  NEW CALCULATION OF LEVELLING  

MEASUREMENTS EPOCHS 

Overall, there were 18 epochs re-processed and 
re-adjusted, all of them measured between years 2004 
and 2012. Original intention of the measurements was 
not to carry out assessments, but monitoring of 
individual objects. Monitored objects changed during 
the years and in different epochs unequal sets of 
points were measured. Because of the relative solution 
of all monitoring, the measurement onto the stable 
points outside the Prague Castle area was not 
performed, and therefore none of the points can be 
considered to be stable. 

Processing was made with regard to these facts 
in epochs by the least squares adjustment, in the GNU 
Gama software (gama-local, more in (Čepek, 2005)). 
As the measured values served averaged height 
differences measured back and forth. The a priori 
standard deviation was chosen to be σ0 = 0.7 mm, 
because measurements were conducted predominantly 
by the Zeiss KoNi 007 instrument. 

The results of the new adjustment are relative 
heights of points at each epoch. For further analysis, a 
standard deviation of height of one point is assumed 
to be σp = 0.36 mm as the average of standard 
deviations of all points in all epochs. To identify the 
shifts between the epochs there was chosen an easy 
criterion, the height difference between the epochs 
should exceed ∆H = up·√2·σp = 1.0 mm for the 95 % 
(up = 2, up is coefficient of the standard normal 
distribution, also known as t) or 1.3 mm for the 
probability of 99 % (up = 2.5). 

 
4.2.2. CALCULATION OF ROBUST ANALYSIS 

The results of the adjustment are relative heights 
of points at each epoch. It is not possible to consider 
any of the points to be stable, therefore  the 
transformation with redundant measurements was 
chosen for the analysis and calculated with use of the 
robust estimation, which is highly resistant against the 
outlaying (here shifted) values. 

There is only a one-dimensional transformation 
(only heights) needed, scale between the epochs does 
not change and therefore the transformation equation 

reliability coefficient, the point is considered to be 
unstable. 

 

4. USE OF THE PROCEDURE ON THE 
DEFORMATIONS AND SHIFTS 
DETERMINATION OF THE PRAGUE CASTLE 
AREA 

Prague Castle is one of the most important 
historical, political and tourist areas of the Czech 
Republic, since 1918 also the seat of the President of 
the Czech Republic. 

According to (Wikipedia, 2014), the Prague 
Castle complex was created by sequential additions 
and renovations of the settlement founded in the 9th 
century. With its dimensions of 570 m length and 128 
m width it is one of the largest castle in the world. It is 
considered to be not only symbol of the city, but also 
the Czech statehood. Historic buildings located in the 
area are however affected by the aging process and the 
effects of changes in the surroundings. In order to 
predict further developments in this area, the long 
term periodic measurements for determining the 
stability of historic buildings in the area of the Prague 
Castle are carried out. 

Geology in the area plays major role, according 
to (Záleský and Chamra, 2001) it was originally not 
complicated, but anthropogenic activities related to 
structural modifications of Hradčany hill during the 
last centuries made it considerably more complicated. 
The bedrock of the area has been reworked and 
expanded by the fills of different origin.  
 

4.1. GEODETIC MEASUREMENTS AT PRAGUE 
CASTLE 

Geodetic measurements were in the area of 
Prague Castle carried out in various range since its 
construction, but the periodic monitoring of selected 
historic buildings and slope stability is a matter of the 
last 15 years. There are changes monitored in tilt and 
relative height in individual buildings and areas. The 
first measuring was conducted by the Department of 
Special Geodesy in 1999, since then it is still ongoing 
and have been supported by several grants. The 
findings and conclusions of the measurements were 
summarized in (Procházka et al., 2011). These 
measurements were initially concentrated on the fault 
monitoring of individual buildings, and later 
connected via a network of reference points for both 
height measurements (precise levelling) and the 
position measurement. But because of this non-
systematic evolution of the measurement there are 
differences between epochs in configuration of the 
network and of monitored points, according to actual 
demand.  

So far these measurements were evaluated only 
locally with respect to each building and it’s stability 
without an overall view of the situation of possible 
shifts of individual parts of the surface of the Prague 
Castle area. 

 



M. Štroner et al. 

 

 

330 

 
 

0 100 200 m

Fig. 1 Scheme of the height geodetic measurements in the Prague Castle area (underlying map from (Google 
Maps, 2014)). 

case of outlaying measurements, here shifted points, 
fails to give proper results. For these reasons, it is 
advisable to use a robust method, which does not have 
such a property. The height difference between the 
two epochs is determined by an iterative calculation of 
the weighted average, where the weights are 
calculated on the basis of corrections from previous 
calculation (m-th iteration). 
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


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 .            (43)

 

The individual epochs were not measured at 
regular time intervals and also measured points 
changed, so the procedure has been used where at the 
selected epoch (namely 10) were gradually transfer-
med all the others. As the reference epoch was chosen 
epoch 10, because most points were measured in this 
epoch, both in initial and especially in the terminal 
epochs. The calculated shift Ti, j is not important, 
significant are individual corrections signaling shifts 
of the point between the epochs. 

for heights H between epochs i and j degrades as 
follows: 
 

 i j i, jH H T  .              (40)
 

When calculating the relationship between the 
two epochs, it is determined only by height shift Ti,j, 
and  there is the average height difference between the 
epochs: 

 

1

n

k ,i k , j
k

i , j

H H
T

n






 .             (41)

 
Ideally, this shift will exactly suit to all points, 

though practically it does not, and therefore for every 
point n = 1 .. k can be calculated corrections: 
 

 n n,i n , j i , jv H H T    .              (42)

 

These corrections contain a component of 
measurement inaccuracy, and if there was a height 
change, this influence too. Mean as a method 
corresponds with the least squares method, and in the 
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Fig. 2 Example of the relative points’ shifts. 

Fig. 3 Relative points shifts (underlying map from (Google Maps, 2014)). 

As a result of the new evaluation of the 
deformation measurements at the Prague Castle, the 
scheme of relative height shift points was created, 
which is shown in Figure 2 and in Figure 3 is an 
overview showing the subareas’ shifts. Points 
highlighted by the circle were identified as unstable, 
their height difference between the epochs exceeded 
∆H = up·√2·σp = 1.0 mm for the 95 % (up = 2). 

 
4.3. THE POSITIONAL ANALYSIS 

The positional network consists of geotechnical 
boreholes, one deeply stabilized point (originally 
hydrogeological borehole) and selected geodetic 
points (Fig. 4). The geotechnical boreholes are usually 

4.2.3. RESULTS 

The calculation results are determined cor-
rections after the transformation, which can be 
interpreted as deviations of individual points from the 
common state from a common level.  

When plotted on a graph, these corrections can 
give an idea of the shift of individual point between 
epochs. Because of the large number of points it is not 
possible to show all of it, an example is in Figure 2. 
Zero shift means, that point was not measured in the 
epoch. In Figure 3 there is an overview showing the 
points’ shifts indicating some subareas’ shifts. 
Characteristic shifting points are marked by the dark 
dot, light dots marks points considered to be stable. 
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Fig. 4 Scheme of the measured points at Prague Castle (underlying map from 
(Google Maps, 2014)). 

calculated from the average altitude of the area H = 
300 m. GNSS vectors were also transferred to this 
projection, including the transformation of the 
covariance matrix. GNSS measurement was realized 
at points 5013, 1003, 1005, 1011, 1012, in a minor 
number of epochs also at points 1002 or 524.  

Each epoch of the measurements was adjusted 
(by the least squares method) separately (together 
terrestrial and GNSS measurements) in the GNU 
Gama software (gama-local; (Čepek, 2005)). In the 
adjustment were considered the accuracies of 
measurement of both terrestrially measured values 
(through the standard deviations) and GNSS vectors 
(through their covariance matrix). The results of the 
adjustment are points, coordinates and their 
covariance matrix. The calculation was made as fixed 
on one point, which is probably stable and, in 
particular, to ensure that in all epochs the coordinates 
will not be too different for each point. One point 
fixation also does not affect neither the shape nor 
scale of the network. The absolute network location 
(absolute values of the coordinates) is not essential 
due to an examination of changes by the linear 
transformation. In total there were processed 8 epochs, 
from the year 2008 to year 2012 (two of each year, 
spring and autumn). In all epochs, was by the chi2 test 
confirmed the achievement of the estimated accuracy. 
The number of observations ranged from 104 (59 
unknowns) to 232 (107 unknowns). For further 
processing of each epoch were used only coordinates 
and their covariance matrix. 

located near of significant buildings or near of those, 
which are at risk, such as the cathedral of St. Vitus, St. 
George, the Royal Summer Palace, etc. Positional 
network is determined by both classical terrestrial 
accurate polygons, and partly by GNSS (Global 
Navigation Satellite Systems) methods. 

 
4.3.1. A NEW ADJUSTMENT OF EPOCHS OF GEODETIC 

MEASUREMENTS 

As in case of the height network all the epochs of 
the positional measurement were readjusted. To adjust 
a positional network it is advisable to choose 
appropriate cartographic projection and convert all 
measured variables to it, it is advisable to choose such 
a projection, where the corrections of the direct 
measured values are minimize. The choice of 
cartographic projection can be further specified by the 
requirements, that there should not be lengths 
distortion practically. For this purpose was selected 
the Lambert Conformal Conic projection (LCC) with 
one parallel undistorted. This is a conformal 
projection of an ellipsoid to a plane through a cone in 
the normal position. Tangent cone touches the 
ellipsoid along selected parallel which is displayed as 
unbiased. This projection was chosen due to the 
elongated shape of the Prague Castle in nearly east-
west direction. Ellipsoid was used WGS-84. Since the 
linear distortion caused by the projection is due to the 
size of the network virtually imperceptible been 
directly measured length only reduced to null by the 
scale factor to a null horizon mred = 0.99995298 
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There are some possible variants of the 
calculation, which were tested. In the first variant of 
the calculation the precisions of the coordinates are 
considered to be equal and therefore all weights are 
equal to one. This variant is very simplified, and the 
results were in comparison with the other ones very 
different and therefore will not be described further. 

In a second variant of the calculation were used 
different weights of measurements for each coordinate 
in the form of diagonal matrix only, because the use 
of full covariance matrices of point coordinates would 
require a much more complex complicate model of 
robust estimation with dependent observations. This 
problem is discussed e.g. in (Xu, 1989) or (Yang, 
1994). Computational model, however, allows only be 
attribute the accuracy to one set of coordinates, i.e., 
the set, the coordinates are in adjustment the adjusted 
(vector l). To consider the accuracy of coordinates in 
both two systems, both known covariance matrix has 
to be added. In our case, it is possible to do this step 
right, because both coordinate systems are rotated 
equally (practically), in adjustment were all epochs 
placed to the space the same way.  As follows from 
the derivation of the transformation of the covariance 
matrix of the coordinates (e.g. in (Štroner and 
Hampacher, 2011), this act is dependent only on the 
mutual rotation of coordinate systems only. 

The third and the most general used version is 
calculating the exact model transformation 
considering the accuracy of both systems. 
Measurements are now identical points in both 
systems in adjustment. Observation equations are 
therefore twofold: 
 

1
ii

1
ii

Xx

Yy

   
   
  

,              (47)

 

 
1

x ii
1

y ii

T Xx
T Yy


     

      
   

R .            (48)

Coordinates (1xi, 
1yi) are the coordinates in the 

system of the basic epoch into which it is transformed. 
Coordinates (2xi, 

2yi) are the coordinates in the system 
of other epoch which is transformed. Coordinates (Xi,
Yi) are along with elements of the transformation key 
unknown parameters. For the determination of 
weights will be used diagonal matrix again, but in this 
case it will contain the standard deviations different 
for all coordinates. This model is the most general 
from the presented ones.  

 
4.3.4. IDENTIFICATION AND TESTING OF 

DISPLACEMENT OF THE POINTS 

After calculating of the robust transformation are 
tested the residuals of the identical points through the 
limits vMi determined with use of the covariance 
matrix of the residuals for identical points using the 
formulas 
 

xi 2 xi 1xiv v v  ,              (49)

4.3.2. PROCEDURE OF SHIFTS DETERMINATION  

From the available epochs of measurement one 
has to be chosen, and that will be considered to be a 
basic one, and to which will be determined shifts 
related. Then there will be gradually carried out a 
transformation of all other epochs to the system of 
basic one, the transformation key will be determined 
by a robust adjustment. Here is a set of identical 
points a set of measurements, whose errors due to the 
expected shift does not come from a normal 
probability distribution. Robust estimation method 
identifies those points that, in calculating the 
transformation parameters appear to be unstable. 
These points will be from the set of identical points 
excluded. There will be obtained sets of identical 
points that will have various size. To calculate the 
final transformation key will be used only those points 
that are identified as outliers and it will be calculated 
by the least squares method. Thus determined 
transformation key will be used to transform all 
network points in the epoch to the system of the basic 
epoch. Differences between the coordinates of points 
in the basic epoch and transformed coordinates can be 
shifts, these differences will be tested by the statistical 
test. 
 
4.3.3. CALCULATION PRINCIPLES OF 

TRANSFORMATION 

The equation of two-dimensional conformal 
linear transformation:  
 

  X R x T , 

   
   

x

y

Tcos sinX x

Tsin cosY y

 
 

       
       

      
,           (44)

 

where X is a vector of coordinates of the identical 
point in coordinate system of basic epoch, x is a vec-
tor of coordinates of the identical point in coordinate 
system of transformed epoch, R() is the rotation 
matrix,  is rotation angle and T is translation vector. 
In the case of a redundant number of identical points 
is transforming key calculated by the least squares 
method, as described above. The matrix A and vectors 
l’ and (unknowns): 
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Fig. 5 Identified positionally unstable points (highlighted by the circle, underlying 
map from (Google Maps, 2014)). 

the points or the areas are changing, it would be in 
both position and height. In Figure 6 there are shown 
the results of both height and positional shifts, and 
these are in some areas in good agreement, in some 
not. 

The difference is probably due to the different 
sensitivity of methods given by the different accuracy 
(heights are determined with higher accuracy). 
Positional and height stabilization is different and in 
some cases the shift of the point could be only a shift 
of the surface stabilization. According to the result of 
both methods the central area is stable. Identified 
unstable points lie at the edges of the raised area of 
Prague Castle, and it also well corresponds with the 
information given in the introduction, that the bedrock 
of the area has been reworked and expanded by the 
fills of different origin. 

 
5. CONCLUSIONS 

A new methodology was described for 
evaluating of the deformation measurements at the 
Prague Castle, it involves the use of linear 
transformation and a robust estimation, namely the L1 
norm. The methodology was successfully used on the 
new evaluation of the deformation measurements at 
the Prague Castle in two different types of 
measurement (first for a height network and second 
for a positioning network). The process was divided in 
two parts, because the measurements were done 
separately and also the stabilization of the points is 

  K
 

11 T TCov P A A PA A ,            (50)
 

2 2
Mi v2 xi v1xi pv u    ,             (51)

 

where standard deviations are taken as an appropriate 
diagonal element from the covariance matrix Cov and 
up is the critical value of the two-tailed test of normal 
distribution for probability 99 %. Thus identified 
potentially unstable points are not used for the final 
calculation of the transformation key. These 
potentially unstable points are transformed by the 
final transformation key and also the standard 
deviations of the resulting coordinates are calculated. 
Then the coordinate differences are calculated, a size 
of which is then tested by the limit Mi of the 
difference calculated by the formula: 
 

2 2
Mi xi xbas pu    ,             (52)

 

where xbas is standard deviation of the coordinate in 
the base epoch, xi in the transformed epoch. Unstable 
points were identified by this procedure, these are 
504, 505, 507, 509, 510, 512, 513, 525, 1002, 1003. 
These points are marked in Figure 2. 

 
4.4. COMPARISON OF THE HEIGHT A POSITIONAL 

ANALYSIS 

Althrough the different of the displacement 
vector of each point were investigated in the 
paragraphs 4.2 and 4.3, it is highly probable, that if 
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Fig. 6 Identified points unstable in position on the left (highlighted by the circle), on the right side the 
result from evaluation of the height measurement (underlying map from (Google Maps, 2014)). 
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physically separated. As a result of the evaluation the 
scheme of relative shifts of points was created. 

Both height and positional results are in general 
mutually consistent and also consistent with observed 
phenomena in the field. According to the result of 
both methods the central area is stable. Identified 
unstable points lie at the edges of the raised area of 
Prague Castle, and it also well corresponds with the 
information given in the introduction, that the bedrock 
of the area has been reworked and expanded by the 
fills of different origin. 

However, there must be clearly stated that the 
evaluation determines only relative changes in the 
monitored area, not absolute changes. E.g. in the case 
of displacement of the whole area it will not reveal 
any change. 
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