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ABSTRACT 
 

 

Accurate heights are needed in engineering and geodynamics.  The classical technique of height 

determination is spirit leveling. In recent years GNSS-leveling offers an efficient alternative. The 
paper deals with the combination of existing leveling networks. In many cases, in a specified 

area more than one leveling network exist, realized at different epochs and based on different 

techniques and instrumentation. Hence, the surveyor should have the capability to exploit all the 
existing height information in order to establish an optimal network, i.e. the most accurate one. 

We describe a methodology for the optimal combination of vertical networks when these share 

some common benchmarks. Its advantage is the fact that all the existing height information can 
eventually be transferred to a new vertical network that is more accurate than the individual 

networks.  The approach is tested on three co-located leveling networks (one trigonometric 

network, two spirit leveling ones) in a regional area located in Greece. The results reveal 

a significant improvement of 5 mm of the standard deviations of the height estimates compared 

to the prior situation.  
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differ significantly from country to country, or even 

from region to region within each country. E.g the 

Greek vertical networks present great inconsistencies 

and systematic effects. The main reason of this 

problem is, that the height reference system has not 

been unified; see e.g, (Kotsakis et al., 2012). In 

addition, the height information of the benchmarks of 

the triangulation network of the state is not consistent 

to that of the stations of the official vertical network. 

Till now there is no official study on the 

quantification of the vertical datum discrepancies. 

When a classical leveling campaign is organized 

and implemented in the field, it is possible to find 

height benchmarks from previous realizations of 

vertical networks. These benchmarks are normally 

endowed with the height value itself (referring to 

some datum) and its associated accuracy. 

A straightforward procedure for the surveyor is to re-

measure the existing benchmarks and to quantify and 

qualify the vertical offsets between the new and the 

old campaigns respectively. Significant offsets can be 

attributed to different datum choices, to instrumental 

systematic biases, or even to gross errors in the 

observations or computations.  In the majority of all 

cases we do not have the observation material of the 

older campaigns, and the information about the 

choices of the datum and about other network 

constraints is missing. Hence, there is a need to 

introduce a proper mathematical tool in order to 

exploit and assimilate all existing height information, 

old and new, in an optimal way. By optimal we mean 

that the combination leads to the most accurate 

1. INTRODUCTION 

Spirit leveling can reach sub-mm accuracy 

depending on the length of the leveling line. Over 

long distances GNSS-leveling becomes superior to 

spirit leveling. This is the reason why e.g. the 

distortions of the North American height system could 

be detected (e.g., Vanicek and Krakiwsky, 1982; 

Torge, 2001). During the last decades, the availability 

of GNSS techniques changed drastically the concept 

of geometric height determination. The cumbersome 

spirit leveling measurements are gradually replaced by 

the GNSS leveling (e.g., Hofmann-Wellenhof and 

Moritz, 2005). The usefulness of GNSS-leveling for 

the determination of normal, dynamic or orthometric 

heights is strongly dependent on the quality of the 

available gravimetric geoid. If one seeks for geometric 

vertical positioning, GNSS leveling would be the 

method of choice without having to perform 

cumbersome spirit leveling together with gravity 

measurements; see Wang et al. (2012). 

Numerous studies and models are implemented 

in the direction of GNSS leveling theoretical 

background and practical realization (e.g., Kotsakis 

and Sideris, 1999; Fotopoulos, 2003; Hirt et al., 

2011). The main concept of the GNSS leveling is 

based on the simultaneous use of different kinds of 

heights: ellipsoidal heights from GNSS and 

geoidal/quasi geoidal heights from gravity 

measurements and global geopotential models to 

derive orthometric or normal heights as they result 

from spirit leveling. A crucial problem of 

orthometric/normal height systems is that their datums 
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shift term connecting the heights of the k
th

 network to 

the optimal one. The term 
ke  refers to the height 

errors of the k
 
network. In order to proceed to the final 

solution, we shall separate the algorithm into three 

sequential steps. 

From the network design aspect, it will be hardly 

the case that all networks have a common overlapping 

part. The combined networks may overlap in pairs. 

A more common situation will be that of a new GNSS 

leveling network, which overlaps with any of the old 

traditional networks, while the latter are completely 

disjoint. A more extreme situation may arise if all 

points of an ensemble of old traditional networks that 

are completely disjoint are being re-observed by 

GNSS leveling. Our algorithm adjusts all heights of 

all networks in combination and not just the common 

parts (which may even be void as explained above) to 

account for the implicit correlations. We expand the 

algorithm into three steps: 

 
FIRST STEP: THE ESTIMATION OF THE INNER 

CONSTRAINTS SOLUTION  

The information that is available are the heights 

of each network (denoted as 
kh ) and their associated 

standard deviations. The minimum constrained 

solution 
kh  differs from any other solution 

kh   by the 

shift term 
kt  , which can be expressed with the 

following formula: 
 

k

k k k

n t h h 1                                                           (3) 

 

The derivation of the so called inner constraints 

approach (see Blaha, 1971; Dermanis, 1987; Koch, 

1999) is realized implementing the following optimal 

criterion:  
 

( ) ( ) ( ) min
k k

k T k k k T k k

E E n nt t     h h h 1 h 1         (4) 

 

where k

Eh  stands for the heights derived from the 

inner constraints solutions. Therefore   means that 

the norm of the adjusted heights becomes minimum 

one. The solution of Eq. (4) is obtained as follows: 
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                           (5) 

 

The new inner constrained solution reads: 
 

1( )

1

k k k k k

k k k

k k k k T T k

E n n n n n

T k

n n n

k

t

n

    

 
  
 

h h 1 h 1 1 1 1 h

I 1 1 h
               (6) 

Second  

heights that can be determined based on the available 

information. 

The present paper deals with a new methodology 

for the optimal combination of vertical networks. We 

formulate all the necessary mathematical background 

for this purpose and the new technique is implemented 

and tested based on real data in an area located in the 

Northern part of Greece.  

 
2. THE MATHEMATICAL MODEL 

We may distinguish between three situations that 

arise in practice in relation to the records of past 

leveling network solutions: 

 

(a) The complete solution is available, that is the 

height estimates and their complete covariance 

matrix. 

(b) The height estimates are available together with 

their variances, i.e. the diagonal part of the 

covariance matrix only is known. 

(c) The height estimates only are available. 
 

Solely in case (a) we may obtain a statistically 

optimal solution for the combination of the leveling 

networks. The algorithm presented here applies to the 

sub-optimal solution of case (b) where only the 

variances of the estimated heights are known, without 

any covariance information. For the case (c) all one 

can do is to assume that all heights within each 

network have the same variance and no correlations.  

Suppose that we have r different vertical 

networks and their associated formal errors of the 

estimated height parameters. In addition, let us 

consider that in those networks there is a number of 

common points. Our main concern is to define the 

vertical optimal network, implementing an alternative 

approach for their combination. The new strategy 

relies on the appropriate reconstruction of the normal 

equations of each network and their combination for 

the final solution. For each of the k vertical networks , 

we can write the following mathematical expression: 
 

1 ,1 1

,k k k

k k k

k

k k k

n k n n

h h t e

h h t e

  

  

                                                    (1)       

1,2,...,k r          

or, in a more compact matrix form: 
 

k

k k

k n kt  h h 1 e                                          (2) 

 

where kn  is the number of points in the k network and 

r  the number of the networks to be combined. The 

vector k
h   contains all the observed heights of the k 

network. The vector [1 1]
k

T

n 1  has length 

equal to kn . The vector kh  contains the unknown 

heights of all points of the k network and at least one 

of them are shared by another network and 
kt   is the 
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SECOND STEP: ESTIMATION OF THE FULL COVARIANCE MATRIX, NORMAL EQUATION AND RIGHT HAND 

TERM 

The full covariance matrix E

kC   of k

Eh  can be easily derived, implementing the propagation law, as follows: 
 

 

 

2

2

1 1 1 1

1
( )

k k

k k k k k k k k k k k k

k k k k k k

k

T T
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k k k k k

E T T T
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n
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   

1 C 1
C I 1 1 C I 1 1 C C 1 1 1 1 C 1 1

C C 1 C 1 C 1 1 1 1 C

                       (7) 

 

where 
kC  is the (diagonal) error covariance matrix of the k network heights. 

One can immediately think to invert the covariance matrix E

kC  in order to derive the Normal Equation 

matrix 
kN . However, the matrix E

kC  is not invertible, since the associated covariance matrix of the inner 

constraints approach is a pseudoinverse matrix (thus singular). At this point, we shall recall the inner constraints 

covariance matrix formulation (e.g, Dermanis, 1987): 
 

1 2 1

2

1
( ) ( ) ( )

k k k k k k k k k k

E T T T T T

k k n n n n n n k n n n n

kn

       C N 1 1 1 1 1 1 N 1 1 1 1                                                                          (8) 

 

Combining Eq. (7) and (8) we get the associated Normal Equation matrix of the k
th

 network: 
 

  

1

2

1
k k k k

E T T

k k n n n n

kn



 
   
 

N C 1 1 1 1                                                                                                                             (9) 

 

Then, the right hand term 
 

k k ku N h                 (10) 
 

 is directly computed from the already known matrices 
kN  and 

kh . 

 
THIRD STEP: THE ADDITION OF NORMAL EQUATIONS FOR THE FINAL NETWORK SOLUTION 

 

In the final step, we compute the necessary matrices for the total adjustment. The final Normal Equation 
matrix will be: 

 

 
1
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1 2
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0
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                                                                                                          (11) 

 

where , 1...k k rN  is the sub-matrix containing the information for the m common points  for each network k, 

1, ,
kNN N  stands for the part consisting of the elements regarding the non-common points and 1, ,

km mNN N   

represent  the matrices correspond to the correlation between the common and the non-common points and 

kN being the number of the non-common points. The right-hand term is defined as: 
 

1

1

T
r

T T T

k r

k

 
  
 
u u u u                                                                                                                                    (12) 

 

The normal equation matrix has a rank deficiency equal to one. In fact any correct leveling network 

adjustment ends up with a singular covariance matrix due to the rank defect of the design matrix and 

consequently of the normal equations matrix. This is the algebraic consequence of the physical fact that observed 
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height differences are invariant under changes of the height origin. The vertical datum remains undefined and 

height estimates are not unique. The final solution is derived through the inner constraints approach and it is 

expressed as follows: 
 

1ˆ ( )T

E N N  h N 1 1 u                                                                                                                                             (13) 
 

where 
kN m N   the total number of the points (common and non-common). We should notice here that the 

vector 
ˆ

ˆ
ˆ

c

E

E k

E






 
  
  

h
h

h
 refers to the estimated corrections which should be added to the approximate height values 

in order to derive the final estimated heights ˆ
Eh . In addition, the vector 

,1 ,ˆ ˆˆ
E

T
c c c m

E Eh h   
 

h  corresponds 

to the m common points of the networks, while the term 
1ˆ ˆˆ k

E

T
Nk

E Eh h   
 

h  to the non-common points. 

The covariance matrix of the estimated points is: 
 

1 2 1

2

1
( ) ( ) ( )

E

T T T T T

N N N N N N N N N N
N

       
h

C N 1 1 1 1 1 1 N 1 1 1 1                                                                              (14) 

 

An equivalent covariance matrix expression is: 
 

 1 1( ) ( )
E

T T

N N N N

   
h

C N 1 1 N N 1 1                                                                                                                          (15) 

 

The rescaled covariance matrix will be: 
 

2ˆ
E E


h h
Σ C                                                                                                                                                          (16) 

 

where the a posteriori variance factor is  (e.g Angermann, 2004): 
 

 2
ˆ

ˆ
T T

E E

f







b P b u h
                                                                                                                                           (17) 

 

where b  is the vector of the reduced observations (for each network k o

E h h  where the superscript o denotes the 

approximate values) and f the number of redundant information (degree of freedom). An equivalent mathematical 

expression for the a posteriori variance factor can be written as: 
 

 2
ˆ

ˆ
T T

E E

d







b P b u h
                                                                                                                                           (18) 

 

where d is the difference between the total number of observed heights at all networks and the number of the 

unknowns. The weight matrix EP of the observations of all contributing networks is expressed as follows: 
 

1

1

1

1
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Ehr
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P

P

P C

                                                                                                                (19) 

 

where 
1

...E E
rh h

C C is the error covariance matrix of the observed heights of each combined network. 

However, the covariance matrix E
ih

C is singular as already mentioned. In order to overcome the singularity, 

we add a relatively small positive quantity δ to the diagonal elements of the matrix (Bjerhammar, 1973; Sillard 

and Boucher, 2001). The new weight matrix will be constructed from the following alternative form: 
 

1...

0 1

E E
i ih h

i r





 





C C I

                                                                                                                                                      (20) 

 

At this point we should summarize the aspects of our approach. It is optimal in the sense that the norm of 

the estimated heights becomes minimal. In other words the heights are estimated close to the a priori heights. At 

the same time the trace of the covariance matrix becomes minimal. In other words, we get in sum the best 
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Table 1 The set of common stations, their heights and associated errors in the three examined vertical networks. 

Values are in meters. 

Common points             #1 network               #2 network             #3 network 

R1 100.46±0.021 100.550±0.003 100.590±0.003 

R2 108.66±0.022 108.75±0.003 108.790±0.002 

R3 99.477±0.017 99.578±0.004 99.611±0.001 

R4 90.987±0.021 91.061±0.003 91.116±0.003 

R5 150.441±0.020 150.530±0.005 150.57±0.003 

R6 120.563±0.029 120.640±0.006 120.680±0.001 

R7 160.710±0.017 160.83±0.004 160.840±0.002 

R8 88.679±0.017 88.776±0.005 88.806±0.002 

R9 112.574±0.016 112.671±0.003 112.700±0.001 

R10 97.665±0.011 97.747±0.004 97.797±0.003 

 

Fig. 1 The examined vertical networks and their location in Greece. 

 

constructed using one of the standard weighting 

schemes for leveling. Then the Normal Equation 

matrix is directly computed, and we proceed with the 

computation of the right hand term u and the 

combination of the Normal Equations. Nevertheless, it 

is not guaranteed that the assumed loops coincide with 

the consisting networks geometry.   
 

3. NUMERICAL IMPLEMENTATION 

The proposed approach was implemented and 

tested with real world data, using three different 

leveling networks located in the Northern part of 

Greece close to the city of Drama (Fig. 1). The first 

and the second network consist of 20 stations each, 

the third of 15 respectively. These three leveling 

networks share 10 common stations. Solely standard 

deviations are available to denote the accuracies of the 

points. Furthermore the datum definitions are 

unknown. Table 1 presents the height estimates and 

accuracies of all height estimates. This could be very 

useful when combining old height determinations 
(which in many cases were measured with low 

accuracy methods, e.g, trigonometric leveling) or/and 

in cases of inconsistencies due to different datum 

definitions show up. We should here emphasize that 

the proposed approach does not address the absolute 

level of the adjusted network. It handles solely the 

estimation of relative datum offsets between the 

participating networks, based entirely on the available 

accuracy estimates of the existing height values. 

When we are dealing with old leveling studies it 

is true that only variances are given and not the 

covariances (diagonalized covariance matrix). 

However, in such studies, there is a drawing of the 

levelling network indicating the observed network 

loops. Thus, it is trivial to reconstruct the design 

matrix of the network, If the loop lengths are known, 

even approximately, the weight matrrix P can be 
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Table 2 The approximated and adjusted common stations heights along with their associated standard errors. 

Values are in meters. 

 
station app. value  est. value and error  

R1 100.569 100.528±0.003 

R2 108.777 108.730±0.002 

R3 099.609 099.553±0.003 

R4 091.087 091.052±0.002 

R5 150.557 150.512±0.003 

R6 120.679 120.635±0.003 

R7 160.837 160.789±0.002 

R8 088.800 088.752±0.003 

R9 112.697 112.652±0.003 

R10 097.774 097.738±0.002 

 

Table 3 The residuals statistics.  

 
statistical quantity value in mm 

min -28.3 

max 28.1 

average 00.0 

standard deviation 09.3 

 

 

Fig. 2 The standard deviations of the heights of the common stations with respect to each network. 

affected by some systematic errors. The standard 

errors of the non-common points vary from 11 to 

35mm for the first network, 1 to 6mm for the second 

network and 1 to 4mm for the third one, respectively.  

The degree of freedom is 20 (55 observed minus 35 

unknown heights). 

The least squares adjustment for the optimal 

reference network realization is laid out in Table 2. 

The approximate heights are estimated for each station 

from the observed heights weighted mean average 

(weights equal to the reciprocal error variance of the 

height with respect to each network). The associated 

standard errors were estimated from the re-scaled 

covariance matrix of the unknown parameters (Eq. 

16). Figure 3 visualizes the standard errors of the 

the associated accuracies for each one of the three 

networks. Figure 1 depicts the network of common 

points.  

The first network was established in the early 

1980s using trigonometric leveling (blue circles). The 

second was realized in the late 1990s (green 

diamonds) and the third one (grey triangles) in 2005 

respectively (both with spirit leveling). At first glance, 

there are obvious offsets between the networks (e.g 

the first and the third networks have a discrepancy of 

~13 cm). This offset could be a consequence of the 

different datum definitions among the networks 

(official vertical datum versus the height datum of the 

triangulation benchmarks). In addition, the estimated 

heights from trigonometric leveling could possibly be 
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 Fig. 3 The histograms of the standard errors before and after the combination. 

practically at the same level, while for the third one, 

we obtain slightly worse standard errors. Before the 

combination, the mean height standard error was 

13.5 mm, while after the combination becomes 

8.6mm. Figure 3 visualizes the histograms of the 

distribution of the standard deviations before and after 

the combination, respectively. This practically de-

monstrates that the implementation of the alternative 

strategy's leads to an improvement at the level of 5mm 

for the standard deviations of the more accurate 

points. The less accurate points see an improvement 

of 10 mm and more. 

For the completeness of our analysis we 

measured on hindsight three randomly selected height 

differences out of the common points using spirit 

leveling measurements. We examined the quality of 

the measured height differences against the estimated 

height differences from the optimal vertical network. 

For the leveling observations we used the Leica 

DNA03 instrumentation (accuracy: 1 mm/km). We 

measured the height differences using double leveling. 

The standard errors of the observations were 3 mm. 

Table 4 presents the validation results and the 

associated standard deviations. 

unknown parameters. The a posteriori variance factor 

is estimated 1.2845 mm
2

. We also apply a 3-σ 

criterion for outlier rejection (σ=9.3 mm) and found 

that all the observations pass it. Table 3 presents the 

residuals statistics.  

Firstly we can observe that for the common 

points we obtain standard errors up to 3 mm. The 

accuracies differ 1-2 mm from the most accurate 

solution (third network). At the same time, we have 

a clear improvement of the accuracies of the first 

network. Another interesting fact is the improvement 

of the standard deviations for the non-common 

stations. For the first network the standard deviations 

are improved from 7 to 21 mm, for the second by 1 to 

5mm and for the third by 2 to 4 mm, respectively. 

The combination of the different height networks 

decreases the quality of some of the most accurate 

heights to be found in the third network at the level of 

1-2mm. One should note that our aim is to handle all 

the existing information based on all 35 benchmarks. 

This alternative computational scheme improves the 

standard deviations of the common points of the first 

network by 10 mm. For the second network, the 

height standard deviations of the heights remain 

Table 4 The external validation results. Values are in meters for the differences and in km for the leveling 

length. 

 
 measured difference estimated difference leveling length  discrepancy 

R1-->R2       8.202±0.003    8.201±0.002 0.85  0.001±0.003 

R3-->R4     -8.501±0.003   -8.501±0.001 2.42  0.000±0.003 

R9-->R10  -14.914±0.003 -14.912±0.002 1.15 -0.002±0.003 
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The results show that the estimated height 

differences of the optimal network agree within 3 mm 

with the observed height differences.  

 
4. CONCLUSIONS AND FURTHER 

INVESTIGATIONS 

The new approach is designed for the optimal 

combination of different height information from 

different vertical network realizations in a specified 

area. Optimal means that the adjusted heights will 

have minimum norm with respect to the a priori 

heights and minimum trace of their covariance matrix. 

The mathematical tool of this methodology is based 

on the reconstruction of the normal equations and 

implementing the inner constraints approach. The new 

methodology was tested in a local leveling network 

with three independent realizations by different 

techniques, having 10 common points. The new 

standard errors for the common points are found at the 

level of 2-3 mm which is close to the accuracy of the 

best contributed network (in terms of its initial 

accuracy).  Meanwhile, the non common points 

standard errors of the first network is improved, while 

on the second one the standard deviations remain at 

the same level. The improvement of the mean 

standard error of the non-common points is found at 

the level of 5 mm, as it is shown in Figure 3. The third 

network’s accuracy does not seem to be improved. 

However, we shall again address that our main 

concern is to exploit all the existing height 

information, not only the common points among the 

networks. Finally, three exemplary height differences 

have been re-measured by spirit leveling with 

millimeter accuracy which showed no significant 

differences to the estimates.  

The new approach can be beneficially adopted 

for the densification of existing leveling networks. 

Thus, time and cost consuming re-measurements can 

be avoided. The proposed methodology can easily be 

expanded to include GNSS-leveling networks. Also 

the approach can be migrated by temporal evolution 

terms to account for time-dependent systematics in 

vertical networks. 
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