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ABSTRACT 
 

 

Precise coordinates of control points, obtained from GNSS data processing can be utilized in
geodynamic research. Periodic surveys allow for determination of displacements. They form 
a data set for geodynamic interpretation. Of particular importance is permanent monitoring of 
control points. This mode of measurement requires advanced methods of GNSS data processing.
One such method is the Modified Ambiguity Function Approach (MAFA). So far many tests of
this method have been performed and the results show it is efficient. It is even possible to obtain 
a good solution based on GNSS data from a single epoch. In this article, three validation
procedures for the MAFA method are proposed. They are based on different principles than the
validation methods in classic the approach of precise positioning, in which test statistics are 
formed from the quadratic forms of residuals associated with the most likely set of integer
ambiguities and the second most likely set of integer ambiguities. In the MAFA method the
proposed procedures are based on defining the confidence region of the float solution and then
testing whether the final solution is included in this region. To test the new validation procedures
an experiment was designed and performed. Single epoch solutions for some baselines have been 
analysed and the results of this research presented in this paper. Finally, some conclusions were
drawn based on this analysis.
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(Tiberius and Jon, 1995), projector test (Wang et al., 
1998; Han, 1997), ellipsoidal integer aperture (EIA) 
estimator (Teunissen, 2003, 2005) and penalized 
integer aperture (PIA) estimator (Teunissen, 2004). 
A lot of research has been done on analysing 
statistical and probabilistic aspects of the integer 
ambiguity estimators (Teunissen, 1998a,b, 1999, 
2002; Xu, 2006). Recently, comparative studies of 
different ambiguity validation methods have been 
performed (Wang et al., 2000; Li and Wang, 2012;
Teunissen, 2013). In the case of real time deformation 
monitoring it is necessary to apply a precise, 
positioning technique, that gives results 
instantaneously. One very promising method of real 
time, precise positioning is the Modified Ambiguity 
Function Approach (MAFA). This method of carrier 
phase processing is based on least squares adjustment 
with condition equations in the functional model of 
the adjustment problem (Cellmer et al., 2010; Cellmer 
2011a, 2011b). The ambiguities are not explicitly 
solved in this approach. However their integer nature 
is preserved in the final solution, due to condition 
equations.  The functional model for the carrier phase 
adjustment is relatively weak. Therefore different 
techniques for improving the efficiency of the MAFA 
method have been proposed (Cellmer, 2011a, 2011b, 
2013). Three of them are the most important: cascade 
adjustment, integer de-correlation and search 
procedure. These procedures allow obtaining the 
correct solution, even if the a priori position is several 
metres away from the actual one. Until now, many 

INTRODUCTION 

An integral part of survey data processing is 
results validation. This is particularly important for 
precise measurements that provide data on 
deformation analysis, in geodynamic studies. In 
classic measurements, statistical tests often are applied 
for detecting outliers in a data set or for the 
examination of the significance of the displacement 
(Caspary, 2000; Nowel, 2015a, 2015b). Contemporary 
geodynamic research often utilizes GNSS as a tool for 
precise positioning in mountainous areas (Hefty, 
2007; Kontny et al., 2006; Lidberg, 2010; Schenk et 
al., 2010; Wielgosz et al., 2011). The problem of the 
validation of the results is particularly important in 
precise, satellite positioning, in which the carrier 
phase data is processed. It is well known, that in the 
classic approach, e.g. in the LAMBDA method, the 
whole process of precise GNSS positioning includes 
three steps: float solution, integer ambiguity 
resolution (together with validation procedures) and 
fixed solution (Teunissen, 1995). Ambiguity 
validation has been a challenge for many years, and is 
still regarded as an open problem (Verhagen, 2004). 
Most validation procedures are based on testing the 
quadratic form of the least-squares residual for 
different combinations of ambiguities. Over the past 
few years, various ambiguity validation methods have 
been proposed, e.g. the F-ratio test (Frei and Beutler, 
1990; Euler and Landau, 1992; Abidin, 1993), R-ratio 
test (Euler and Schaffrin, 1991; Leick, 2004; 
Teunissen and Verhagen, 2009), difference test 
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x  – parameter vector (increments to a priori
coordinates vector x0), 

A – design matrix (n×3),  
   – vector of misclosures (n ×1), 
0 – DD geometric distance vector computed 
using a priori position and satellite
coordinates. 

 

The LS solution of (2) can be computed from: 
 

x = - (ATPA)-1ATP                                                  (4)
 

with P standing for the weight matrix. If no elevation 
dependent factors to weighting are applied, the weight 
matrix of DD carrier phase observations is formed as 
an inverse of the following covariance matrix: 
 

2
0

4 2 2

2 4 2

2

2 2 2 4

 
 
  
 
 
 




  
Q                                              (5)

where 0 is a standard deviation of a carrier phase 
observation. 

On the current state of development, 
decorrelation (Cellmer, 2011a, 2011b) and search 
(Cellmer, 2013) procedures are mandatory part of the 
MAFA method. If there is  poor approximation of the 
a priori position, the cascade adjustment is applied 
(Cellmer et al., 2010). In the case of single-epoch 
positioning, the following formula for approximation 
of the ambiguity covariance matrix is used as a base
for the de-correlation procedure: 

 

 k    

-1-1T T
aQ P - PA A PA A P                             (6)

where k-factor with value from the range (0;1), 
guarantees that the expression in the brackets is 
a positive definite matrix. This factor simulates the 
involvement of an additional group of observations in 
the positioning problem. An interpretation of 
coefficient k, has been presented in detail in (Cellmer, 
2012b ). 

The de-correlation procedure is necessary, 
because the DD ambiguities a are usually strongly 
correlated. Hence, fixing one value of ambiguity 
through rounding the first term in (4) to the nearest 
integer, has an impact on the rest of the ambiguities. 
Therefore, the correlation between ambiguities should 
be taken into account. An alternative way of solving 
this problem is to transform the observation equations 
into their equivalent form but with de-correlated 
ambiguities. This can be done using integer de-
correlation Z matrix (Teunissen, 1995; Liu et al., 
1999): 
 

Qaz = ZQaZ
T,                                                             (7)

 

where: 
Z    – integer de-correlation matrix 
Qa  – ambiguity covariance matrix 
Qaz – diagonal transformed ambiguity 

covariance matrix. 

tests of single-epoch positioning, using the MAFA 
method have been carried out (Cellmer, 2013). The 
results of the tests are very promising, and preliminary 
studies concerning the necessary condition for the 
MAFA method have been carried out. The results of 
these studies are presented in (Cellmer, 2012a). 
However, until now, no reliable validation technique 
has yet been developed. In this paper, three validation 
techniques are proposed. The foundations of these 
techniques are different from the above-mentioned 
validation procedures, which are implemented in 
classical methods of GNSS data processing. Each of 
them is based on forming a confidence region and 
then testing whether the final solution is inside it or 
not. The idea for this approach was inspired by the 
method of testing the significance of displacement in 
deformation measurement theory (Caspary et al., 
1990; Chen, 1983). 

The next section presents the foundations of the 
MAFA method. The techniques improving its 
efficiency are also presented. The third section 
contains a description of the proposed validation 
techniques. In the fourth section, the experiment is 
described. Thereafter, the results of the tests are 
analyzed and presented in a graphical form. Some 
conclusions have been drawn from this analysis and 
are presented in the last section.  

 
MAFA METHOD 

The MAFA method has been widely described in 
many articles (Cellmer et al., 2010, 2011a, 2011b, 
2012a, 2013).  

The following model for a double differenced 
(DD) carrier phase observable is assumed, (Hofmann-
Wellenhof et al., 2008; Leick, 2004; Teunissen and 
Kleusberg, 1998): 

 

 + = 1
λ

Φ v ρ acx                                                     (1)
 

where:
   – DD carrier phase observable (in cycles)
    – signal wavelength 
v     – residual (measurement noise) 
xc    – receiver geocentric radius vector
(xc)  – DD geometrical range 
a – integer number of cycles (DD initial 

ambiguity) 
 

Taking into account the integer nature of the 
ambiguity parameter a and assuming that the residual 
values are much lower than half a cycle, the linearized 
general formula of the residual equations can then be 
shown in the following form (Cellmer et al., 2010): 

 

= 1
λ

v Ax                                                                (2)

with: 
 

   1 1
λ λ= round - -Φ ρ Φ ρ0 0                                   (3)

where: 
v  – residual vector (n×1), 
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domain. Two 2-distributed statistics are formed: 
 

-1
1 xfs T = dx Q dx 2

3                                                 (11)
 

T
2 c c c n ms = v P v 2                                                  (12)

 

where: 
dx – components of distance between position of 
fixed solution and position of float solution 
Qxf – cofactor matrix of position coordinates of 
float solution 

vc – residuals vector of float solution 
Pc – weight matrix of float solution data set 
n – number of observations in float solution 
m – number of parameters in float solution 
 

Subscript in 2 - statistics denotes the number of 
degrees of freedom. 

Cofactor matrix Qxf is computed as: 
 

 T
xf c c c


Q = A P A

1
                                                   (13)

 

with Ac as a float solution model matrix. 
 

If  s1  and s2  are both 2-distributed random 
variables with 3 and n-m degrees of freedom 
respectively, then the statistic s3 below is F-
distributed: 

 

3 ,n m

n m

s
s F

s 


=
1
13

31
2

                                                 (14)

 

Hence, critical value 0 can be determined for 
degrees of freedom 3 and n-m and for assumed 
confidence level p0: 

 

 ,n mP F p   3 0 0                                                 (15)
 

The above equation is a base for the test: 

f   
s



3

0

1 then solution is rejected.                         (16)

Otherwise it can be accepted. 
 
PROCEDURE 2 ((2-TEST) 

In some cases there can be no information about 
s2 statistic (12). In this case only one statistic is 
formed:  

 
-1

4 xfs T = dx C dx 2
3                                                 (17)

 

Hence, on the basis of the formula: 
 

 2
3P p    0 01                                                  (18)

 

with assumed confidence level p0, the following test 
can be formulated: 
 

f 
s



4

0

1 then solution is rejected.                           (19)

 

Otherwise it can be accepted. 
 

By multiplying Equation (1) with Z, one can 
obtain a new equation with a new integer ambiguity 
vector az: 

 

Z Z Z( )
  Z CΦ v ρ x a                                                  (8)

 

In this way Equation (8) replaces Equation (1). 
The de-correlation procedure increases the probability 
of obtaining the correct solution. There are many 
various methods of finding the Z matrix (Hassibi and 
Boyd, 1998; Liu et al., 1999; Xu, 2001). In order to 
find the Z matrix, the ambiguity covariance matrix Qa

is required. In the case of single-epoch precise 
positioning, this matrix is evaluated using (6). 

If the a priori position is poor, then the vector of 
misclosures from (2) takes the following form: 

 

   1 1
e e= - -λ λround  Φ ρ Φ ρ a0 0                        (9)

 

Due to the integer values of the vector ae the 
search procedure is necessary. The search procedure 
will consist of testing the values of the objective 
function: 

 

T P                                                                 (10)
 

for different vectors ae. In order to reduce the search 
region, Cellmer has proposed, that vector ae, consists 
only of the values -1, 0 and 1 (Cellmer, 2013). Thus, 
the search procedure is based on the misclosure vector 
modifications, followed by a test of the resulting 
objective function values. If the procedures of de-
correlation and searching are applied then the MAFA 
method can be used for single-epoch precise 
positioning. The fundamental problem in such a case 
is the validation of the solutions. The procedures of 
validation are proposed in the next section. 
 
VALIDATION PROCEDURES 

In classic methods of precise positioning, 
validation procedures are based on testing different 
candidates of integer ambiguities. Test statistics are 
formed from the quadratic forms of residuals 
associated with the most likely set of integer 
ambiguities and the second most likely set of integer 
ambiguities. As was mentioned in the Introduction, 
different statistical tests are applied in these methods. 
All of them are based on testing sets of candidates of 
integer ambiguities. The validation methods in the 
MAFA method are based on a different principle. 
Three procedures of validation are proposed here. All 
of them are based on determination confidence region 
for solution and then testing whether obtained solution 
fall into it or not. In the first two methods confidence 
region is determined in coordinate domain and in the 
last method in ambiguity domain. Below are presented 
foundations of these three procedures. 

 
PROCEDURE 1 (F-TEST) 

First test, based on F-distribution, examines 
a significance of position displacement in a coordinate 
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 Fig. 1 The location of the test surveys. 
http://www.asgeupos.pl/webpg/graph/dwnld/map_en_dwnld.jpg 

 
-1

5 zf n2n

s
det

T
T

a da da
= da Q da =

G

2                           (27)

 

On the basis of formula: 
 

 2
nP p    0 01                                                 (28)

 

the critical value 0 is determined. Hence the following 
criterion is assumed in ambiguity test: 

If 
s



5

0

1then solution is rejected.                           (29)

Otherwise it can be accepted. 
 
EXPERIMENT DESIGN 

The proposed approach was tested using the real 
GPS data of three baselines. The data come from 
campaign performed in order to monitor local 
deformation in open-pit mine „Adamów” in Central 
Poland (Baryła et al., 2011). Figure 2 depicts the 
location of the measurement area and the layout of 
baselines. One GPS station of ASG-EUPOS, Polish 
part of European Positioning System active geodetic 
network, was used in test surveys (“KUTN”). The 
surveys were performed on December 9th, 2008, on 
49.4 km, 10.3 km and 0.5 km baselines, with a 30-
second sampling rate. Data sets of each baseline 
consisted of 100 epochs. The data were processed 
independently for each epoch. The approximate 
position was computed using code-observations in 
DGPS mode basing on single reference station KK17. 
A carrier phase data set was processed according to 
the algorithm of the MAFA method. The “true” 
coordinates were derived using Bernese software 
based on an 8-hour data set. Validation was performed 
using three methods described in previous section. 

 

PROCEDURE 3 (AMBIGUITY-TEST) 

Third test is based on idea presented by Chen 
and Wu (Chen and Wu, 2013).  

Matrix Qaz (7) is decomposed: 
 

Qaz=GTG                                                                  (20)
 

It was shown in (Chen and Wu, 2013) that fully 
decorrelated matrix can be presented as: 

 

Qazf=TQazT
T,                                                           (21)

 

with determinant preserving transformation matrix T: 
 

  Tn= det T G G                                                     (22)

 
where n is a number of ambiguities. 

Hence, taking into account (20)-(22): 
 

 2n
azf n n

= det


Q G I                                                 (23)
 

Diagonal matrix Qazf preserves determinant of 
matrix Qaz and has all elements equal. 

An ambiguity vector of the float solution a0 and 
an ambiguity vector of the final solution afix are 
transformed using T matrix: 

 

a0t=Ta0                                                                                                         (24)
 
afixt=Tafix                                                                                 (25)
 

where a0t and afixt are: transformed ambiguity vector 
of the float solution and  transformed ambiguity 
vector of the final solution, respectively. 

The difference: 
 

da= afixt -a0t                                                               (26)
 

is used for forming the statistic: 
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  baseline KK17-KK16 (0.5 km) 

F-test 

 

missed 
detection 

0/5 (0%) 

 

false alert 

29/95 (31%) 

2-test 

 

missed 
detection 

0/5 0%) 

 

false alert 

17/95 (18%) 

ambiguity-test 

 

missed 
detection 

0/5 (0%) 

 

false alert 

8/95 (8%) 

 
 
 
 

 

Fig. 2 Residuals of position referenced to the true position. Baseline 0.5 km. 
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  baseline KK17-RR01 (10.3 km) 

F-test 

 

missed 
detection 

0/7 (0%) 

 

false alert 

5/93 (5%) 

2-test 

 

missed 
detection 

1/7 (14%) 

 

false alert 

0/93 (0%) 

ambiguity-test 

 

missed 
detection 

0/7 (0%) 

 

false alert 

5/93 (5%) 

 

 
 
 

Fig. 3 Residuals of position referenced to the true position. Baseline 10.3 km. 
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  baseline KK17-KUTN (49.4 km) 

F-test 

 

missed 
detection 

15/48 (31%) 

 

false alert 

0/52 (0%) 

2-test 

 

missed 
detection 

9/48 (19%) 

 

false alert 

0/52 (0%) 

ambiguity-test 

 

missed 
detection 

1/48 (2%) 

 

false alert 

3/52 (6%) 

 

 
 

Fig. 4 Residuals of position referenced to the true position. Baseline 49.4 km. 
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more information is utilized than in the second. These 
are: the weight matrix (Pc), and residuals vector (vc) of 
the observations used for obtaining the float solution. 
The third procedure, unlike both previous procedures, 
relies on the confidence region formed in the 
ambiguity domain. The reason for the difference in the 
results could be that the confidence region formed in 
the ambiguity domain (in third procedure) and the 
region formed in the coordinates domain (in the first 
and the second procedures) are not equivalent. 
Nevertheless, those guesses are only hypotheses and 
require verification. This problem will be the subject 
of further research. 

 
CONCLUSIONS 

Most of incorrect solutions computed using 
MAFA method are far away from a priori position 
(float solution). This allows to develop validation 
techniques based on forming confidence region 
around float position and then testing if final solution 
fall into it or not. Three validation techniques were 
proposed in the paper. In the case of the first two 
techniques, the confidence region is determined in the 
coordinate domain whereas in the third technique it is 
formed in the ambiguity domain. All validation 
techniques were tested in single-epoch, precise, 
positioning mode. Three baselines with different 
length were processed. All of them gave good results. 
The percentage of identification incorrect solutions 
varied from 69 % (F-test in 49.4 km baseline) to 
100 % in most of the rest cases. The best results gave 
ambiguity-test. This test identified all incorrect 
solutions in the cases of 0.5 and 10.3 km baselines and 
98 % incorrect solutions in the case of 49.4 km 
baseline. 
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