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ABSTRACT 
 

 

Variations in free core nutation (FCN) are connected with various processes in the Earth’s fluid
core and core-mantle coupling, which are also largely responsible for the geomagnetic field
variations, particularly the geomagnetic jerks (GMJs). A previous study (Malkin, 2013) revealed
that the epochs of the observed extremes in the FCN amplitude and phase variations are close to
the GMJ epochs. In this paper, a new evidence of this connection was found. The large FCN
amplitude and phase disturbance occurred at the epoch close to the newly revealed GMJ 2011.
This event occurred to be the second large change in the FCN amplitude and phase after the 1999
disturbance that is also associated with the GMJ 1999. Moreover, the long-time FCN phase drift
had changed suddenly in 1998–1999, immediately before the GMJ 1999, and seemed to change
again at the epoch immediately preceding the GMJ 2011. The FCN amplitude showed a general
long-time decrease before GMJ 1999, and it subsequently grew until GMJ 2011, and then
seemed to decrease again. A smaller FCN change can be observed at the epoch around 2013,
which is also suspected as the GMJ epoch. The latter confirms the suggestion that a rapid change
in the FCN amplitude and/or phase can be used as an evidence of the GMJ that is not clearly
detected from the geomagnetic observations. 
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It was showed in the previous study (Malkin,
2013) that the observed extremes in the FCN
amplitude and phase variations, as well as their
derivatives, are close to the GMJ epochs. It can tell us
that the FCN can be excited by the same processes
that cause the GMJs. This assumption seems to be
close to reality because the GMFs are mostly
generated by the flows in the core, and the same flows
lead to variations of the core moments of inertia (as
well as, to a lesser extent, the whole Earth), and thus
can cause the FCN variations (Dehant and Mathews,
2003). 

Vondrák and Ron (2014) independently
confirmed the connection between GMJs and FCN.
The authors investigated the excitation of the nutation
motion of the Earth’s spin axis in space, including
FCN, by the atmosphere and ocean. Particularly, they
compared the series of geophysical excitations with
the observed nutation angles by using numerical
integration of the Brzeziński (1994) broadband
Liouville second-order differential equations. The
authors found that applying re-initialization of the
integration at epochs of GMJs substantially improves
the agreement between the integrated and observed
nutation angles. 

This paper is a continuation of (Malkin, 2013),
which was extended in two respects. First, a longer
time span of observations was used, which allowed
confronting the astrometric observations made during

1. INTRODUCTION 

Retrograde free core nutation (FCN) is
a component of the motion of the Earth’s rotational
axis in space. FCN causes variations in the position of
the celestial pole, with period of about 430 solar days
and average amplitude of 0.15–0.2 mas. Investigation
of the FCN is important to improve the theoretical
modeling of the Earth rotation and better understand
the Earth’s interior, as well as for practical
applications related to the coordinates transformation
between terrestrial and celestial reference frames. The
FCN amplitude and phase significantly vary with
time, and its excitation mechanism has not yet been
fully elucidated. It is supposed that the FCN is mainly
excited by the atmosphere with ocean contribution
(Dehant et al., 2003; Brzeziński, 2005; Lambert,
2006; Vondrák and Ron, 2014). However, this
mechanism cannot explain all the details of the FCN
amplitude and especially phase variations. 

Another source of FCN excitation can be
geomagnetic field (GMF) variations, particularly the
geomagnetic jerks (GMJs), which are observed as
rapid changes in the GMF secular variations. They
occur on a time scale of about one year, one–two
times per decade. The GMJs are registered at
geomagnetic observatories, as well as during the
recent years from satellite observations by using the
measurements of the vertical and horizontal
components of the GMF, magnetic declination, etc. 
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Fig. 1 IVS CPO series. Each point corresponds to one VLBI observing session. Red line represents the ZM3
FCN model, and FCN prediction is shown in purple. 

by the IAU 2000/2006 precession-nutation theory
(Petit and Luzum, 2010). 

Figure 1 shows the combined CPO series
provided by the International VLBI Service for
Geodesy and Astrometry (IVS), (Böckmann et al.,
2010; Schuh and Behrend, 2012). The CPO data
comprise two principal components, namely, the
(quasi)periodic FCN term with a period of
approximately 430 solar days and an average
amplitude of about 0.2 mas, as well as low-frequency
changes, including trend and long-period harmonics
of similar amplitude caused mainly by the inaccuracy
of the precession-nutation model. One can see in the
figure that the VLBI data obtained before the 1990s
are very noisy and have relatively large uncertainties.
However, in this paper, the FCN amplitude and phase
variations during the years after 2007 are mainly
considered. Earlier data were analyzed in detail in
Malkin (2013). 

Three FCN models are currently available for
scientific and practical users: two models of the
author, namely ZM1 (Malkin, 2004) and ZM3
(Malkin, 2013) that are available at the Pulkovo
Observatory website1, and the Lambert model (Petit
and Luzum, 2010) that is available at the Paris
Observatory website2. They are regularly updated,

the recent years with newly revealed GMJs. Second,
an in-depth analysis was performed including the first
and second derivatives of both FCN amplitude and
phase variations. In result, a new sudden change in the
FCN amplitude and phase was revealed. This sudden
change is the second large change after a similar event
in 1999 that is associated with the GMJ 1999. A
smaller change in the FCN amplitude and phase was
detected at the epoch around 2013, which is also
suspected as a GMJ epoch. 

The paper is organized as follows. In Section 2,
the FCN model is described which was used in this
study, and the FCN amplitude and phase variations
are computed and confronted with the GMJs. In the
concluding Section 3, the results obtained in the
previous section are discussed. 

 
2. FCN MODEL AND GMJS 

All FCN models are constructed based on the
analysis of the celestial pole offset (CPO) time series
obtained from very long baseline interferometry
(VLBI) observations of extragalactic radio sources.
CPOs are the differences dX and dY between the
observed celestial pole position X and Y and the
International Astronomical Union (IAU) official
celestial intermediate pole, which is currently modeled

1 http://www.gao.spb.ru/english/as/persac/ 2 http://syrte.obspm.fr/∼lambert/fcn/ 
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Fig. 2 Variations of the FCN amplitude (left) and phase (with the linear trend removed, right), as well as their
first and second derivatives. Prediction is shown by a dashed line. GMJs are shown with vertical lines;
jerks that are not finally confirmed are shown with a dashed vertical line. 

parameters were adjusted according to the following
equations: 

 

dX = Ac cos φ − As sin φ + X0 ,                                   (1)

dY = Ac sin φ + As cos φ + Y0 , 
 

where φ = 2π/PFCN (t − t0), PFCN is the FCN period
equal to –430.21 solar days recommended by the
IERS Conventions (2010) (Petit and Luzum, 2010),
t0=J2000.0, and t is the epoch at which the dX and dY
values are given. Each pair in Eq. (1) corresponds to
one CPO epoch given with one-day step. The model
parameters Ac, As, X0, and Y0 were computed at the
middle epoch of each 431-day interval. Thus, the

thus they always contain the most recent data. These
three models are compared in Malkin (2007, 2011,
2013). Large differences were not observed between
them for the investigation of FCN and GMJ
interconnection. The FCN amplitude and phase
variation of the three FCN models are similar. All
three FCN series show the same epochs of the
extreme FCN amplitude and phase, as well as their
derivatives. 

The most recent FCN model ZM3 (Malkin,
2013) was used for this study. The parameters of this
model were computed by running 431-day intervals
(the nearest odd number of days to the FCN period)
with one-day shift. At each interval, the four
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change again at the epoch immediately preceding the
GMJ 2011. A similar FCN amplitude behavior can be
observed. The FCN amplitude showed a general long-
time decrease between 1990 and about GMJ 1999,
and it subsequently grew with small variations until
GMJ 2011 and then seemed to decrease again. 

A smaller FCN change can be observed at the
epoch around 2013, which is also suspected as the
GMJ epoch. The latter confirms the suggestion made
by Malkin (2013) that a rapid change in the FCN
amplitude and/or phase can be used as a supplement
evidence of the GMJ that is not clearly detected from
the geomagnetic observations. 

ADDENDUM 

After this paper was accepted for publication, the
paper of Torta et al. (2015) appeared, in which the
GMJ in yearly 2014 was detected from a analysis of
the GMF variations. Thus, a GMJ around 2013
supposed from the FCN variations analysis performed
in this paper is reaffirmed. 
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