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ABSTRACT 
 

 

Common Mode Error (CME) means the sum of environmental and technique-dependent
systematic errors in GPS position time series. The CME, which is a kind of the temporally
correlated noise, can be seen in the time series from regional GNSS networks that spans
hundreds of kilometers. This paper concerns the results of studies regarding the necessity of
spatio-temporal filtration of time series to determine highly reliable velocities of permanent
stations for the geophysical (plate motion or earthquakes) studies or to maintain the kinematic
reference frames. In this research the JPL (Jet Propulsion Laboratory) PPP solution processed by
GIPSY-OASIS software were taken. Trend and seasonal signals were removed using least-
squares estimation to form the residual time series. Then, the internal structure (CME) of the set
of residual time series with orthogonal transformations was revealed. We examined the Principal
Component Analysis (PCA) and assumed the existence of a non-uniform spatial response in the
network to the CME. We confirmed our theoretical assumptions about the benefits of the PCA
approach when stations in a network are potentially affected by local effects. We noticed for
height time series, that noise amplitudes decreased from 0.5 to 13.5 mm/year-κ/4 after filtration.
That gave a relative reduction of amplitudes ranging between 4 % and 76 % for all stations,
while the average improvement was 49 %. The average relative increase of spectral index was
equal to 48 %. One of the most important consequences related to spatio-temporal GNSS time
series filtering is improvement (better credibility) of accuracy of the determined velocity. The
accuracy of velocity, after filtration, was lower for Up component of all stations. The average
reduction was 0.2 mm/year, while maximal reached 0.8 mm/year. Above described result mean
that the reduction of accuracy relative to the after-filtration accuracy was on average about 70 %.
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permanent stations located less than 2 000 km from
each other (Wdowinski et al., 1997; Márquez-Azúa
and DeMets, 2003; Amiri-Simkooei, 2013). The
above mentioned network size was determined to be
a maximum, where CME can be observed and
considered as a uniform value. However, this is not
strictly defined. The maximum network size depends
on many factors (Wdowinski et al., 1997). The most
significant factor is the geographic location of
a network and the subsequent impact of various
physical, spatially correlated error sources (Mao et al.,
1999; Nikolaidis, 2002). The potential CME sources
that similarly affect stations’ coordinates are
(Wdowinski et al., 1997; Nikolaidis, 2002; Dong et
al., 2006; He et al., 2015; Tian and Shen, 2016): 
1. reference frame realization, including the

mismodeling of Earth Orientation Parameters
(EOP); 

2. error sources related to satellites, which are
usually visible simultaneously in small networks

INTRODUCTION 

The use of the term “network,” in respect to
geodetic measurements, implies the existence of
relationships between control points by means of
common observations. The term “GPS station
network” is primarily used to describe two different
scenarios. The one scenario refers to a network of
stations, for which data is processed in a specific way
(network solution – NS), in order to achieve
a common purpose, for example to maintain geodetic
datum (e.g. EPN – EUREF Permanent Network). In
this paper, we use an alternative meaning (stations
affected by the same errors) of GPS networks. De-
trending and de-seasonalizing of topocentric GPS time
series resulted in residuals, which we further analyzed.
These residuals are spatially and temporally correlated
(e.g. Santamaría‐Gómez et al., 2011; Shen et al.,
2013; Bogusz et al., 2015). This assumption is the
basic premise of the existence of Common Mode
Errors (CME) in coordinate time series, obtained at
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adjusted” for individual stations. Moreover, the
signals can be separated, which allows to test the
statistical significance, thus preventing insignificant
signals from being included in CME calculations. This
ensures that the CME value is more reliable. These
methods were modified in order to increase the
reliability of CME extraction with gaps in the data
(Shen et al., 2013), as well as to take into account
formal coordinate errors (Li et al., 2015). 

In this paper, we propose to apply PCA on a set
of European stations. We extract the Common-Mode
Error by subtracting the first component, which
accounts for 40 % of data variance. This way we can
obtain a filtered time series, which then can be
analyzed using Maximum Likelihood Estimation
(MLE). We proved that not only the RMS of data is
reduced, as it was previously shown by Shen et al.
(2013) or Li et al. (2015), but also the stochastic part
gets closer to white noise. We present hard numbers
that emphasize the need of spatio-temporal filtration
and reduction of flicker noise. This paper contributes
to previously published analyses with a description of
noise character of filtered residuals. Therefore, one
becomes aware of how significant of an impact spatio-
temporal filtering has on GPS time series in terms of
spectral index and amplitudes of power-law process. 

 
DATA AND METHOD 

In this research, we used time series expressed in
the IGS08 (Rebischung et al., 2012), provided by JPL
(Jet Propulsion Laboratory). GPS processing was
performed using the GIPSY-OASIS software in PPP
(Precise Point Positioning) mode. It has already been
recognized that the PPP processing is a contributing
factor on final results being less spatially correlated
(Witchayangkoon, 2000). In contrast, the network
solution is more susceptible to these kind of errors. In
order to form a GPS station network that meets the
demands of a significant common spatial response to
the CME, we chose 87 stations located in Central
Europe (Fig. 1). The distance between any two
stations is less than 1900 km. Daily sampled
coordinate time series do not start and stop at the same
time and they have few data gaps. In the lower part of
the Figure 1 we can see how many stations provided
coordinates in a corresponding epoch. In other words,
we can see on the vertical axis how many station’s
coordinates we can take into account at a given epoch
from set of 87 time series taken to analysis. In spatio-
temporal filtering approaches, a large number of
observations need to be carried out at the same time,
in order to achieve reliable results (Shen et al., 2013).
In order to perform spatio-temporal filtering, we
limited data timespan to a range between 2002.65 and
2011.83, while the shortest time series are more than
4  years long.  

In order to detect and remove outliers, we
adopted the 1D signal Hampel filter, which is
a moving window implementation of the Hampel
identifier (Liu et al., 2004). Sequential T-test Analysis

– mismodeling of satellite: orbits, clocks, or
antenna phase center corrections; 

3. the unmodeling of large-scale atmospheric and
hydrologic effects, as well as small scale crust
deformations; 

4. systematic errors caused by algorithms, software,
and data processing strategies. 

 

The necessity of CME filtration on continuous
GPS time series was first identified in literature by
Wdowinski et al. (1997). It is generally recognized,
that GNSS residuals are a combination of types of
noise, such as white, flicker, and random walk (e.g.
Mao et al., 1999; Williams, 2003; Williams et al.,
2004; Kenyeres and Bruyninx, 2009). The use of the
“stacking” method for CME extraction resulted in the
reduction of noise amplitudes for different kinds of
noises. The stacking approach assumes a uniform
spatial response to CME sources, and therefore the
value of CME is the same for all stations in a network
over a corresponding epoch. This approach was
extended by Nikolaidis (2002), who demonstrated that
CME calculations will be incorrect when station
coordinates are not of the same accuracy. This method
called “weighted stacking” takes into account standard
errors of each coordinate, as weights (Teferle et al.,
2002; Li et al., 2015). The above mentioned method
gives reliable results for networks with stations spaced
up to 500 km apart (Wdowinski et al., 1997).  

Another method for CME substraction is spatial
filtering, also commonly labeled as “stacking”. This
method is distinguished by the fact, that spatial filters
give “better fitted” CME values for individual
stations, but unequal values over the entire network.
As a result, spatial filters can reveal some weak local
effects, treating them as common signals. Spatial
filters were previously used i.e. by Márquez-Azúa and
DeMets (2003), with weights depending on two
factors: the length of the time series and distance
between stations being considered. Another case was
presented by Tian and Shen (2011), with correlation
coefficients taken into consideration. More complex
methods are KLE (Karhunen-Loève Expansion) and
PCA (Principal Component Analysis), which
implement Empirical Orthogonal Functions (EOF) to
reveal common signals in residual time series (Dong
et al., 2006) or to uncover signals related to regional
tectonic movements (Savage, 1995; Tiampo et al.,
2004). PCA is a statistical procedure that uses
orthogonal transformation to reveal the internal
structure of data, which is CME (Jackson, 1991;
Williams et al., 2004). The proper application of this
method, allows to identify CME, as a first principal
component (PC) or the linear combination of the
leading principal components. Another instance where
PCA can be applied, is when determining the
deformation (vector) field on the crustal surface, when
the density of stations on a network is high (Chang
and Chao, 2014). The advantage of decomposition
into EOFs, is that these methods are applicable to
larger networks, because CME is “regionally



ORTHOGONAL TRANSFORMATION IN EXTRACTING OF COMMON MODE  … 
. 
 

 

293

 
 

( ) ( )
( )
( )
( )

( )
( )
( ) ( ) ( )

13.66 13.66 13.66
0

14.6 14.6 14.6

14.19 14.19 14.19

14.76 14.76 14.76

9

1
9

1
9

1

sin

sin

sin

sin

sin

sin

sin

x

CH CH CH
i i i

i

T T T
i i i

i

D D D
i i i

i

x t x v t A t

A t

A t

A t

A t

A t

A t t t

ω ϕ
ω ϕ
ω ϕ
ω ϕ

ω ϕ

ω ϕ

ω ϕ

=

=

=

= + ⋅ + ⋅ ⋅ +
+ ⋅ ⋅ +
+ ⋅ ⋅ +
+ ⋅ ⋅ +

 + ⋅ ⋅ + 

 + ⋅ ⋅ + 

 + ⋅ ⋅ + + + 





 CME ε

( )t

  
r



    (1)

 

where the superscripts CH, T and D denote Chandler,
tropical and draconitic oscillations, respectively.
Residuals ( )tr that are marked as a sum of Common

Mode Errors ( )tCME and noise ( )tε , are subject of

further analysis. This equation was modified
following Bogusz and Klos (2015) findings, who
emphasized the significance of above mentioned
periodic signals, when one performs noise analysis.  

In this research we adopted a general spatio-
temporal filtering approach that uses an orthogonal
transformation named Principal Component Analysis
(PCA). This statistical procedure is based on a full
observation matrix. In our case, the observation
matrix is constructed from residual time series ( )tr .

Initially, we assumed that our time series are regular
and continuous. We formed an observation matrix

( ),i jt rR  (i = 1, 2, . . .,m and j = 1, 2, . . ., n), using

a GNSS station network formed by n stations, with
time series spanning m days. We created this matrix
for each topocentric component (North, East and Up)
separately. Each row refers to a specified, subsequent,
equally sampled observation epoch, while each of the
randomly arranged columns is equivalent to the j-th
station residual time series. In consequence, based on
the elements of the observation matrix, each element

of the covariance ( )n n×  symmetric matrix ( ),i jt rB  is

defined as (Dong et al., 2006): 
 

( ) ( )
1

1
, ,

1

m

ij k i k j
k

b t r t r
m =

=
− R R               (2)

 

PCA is performed by eigenvalue decomposition
of a data covariance matrix B into the eigenvector
matrix TV  that is a ( )n n× matrix with orthonormal

rows, and the Λ  matrix, which has k nonzero diagonal
eigenvalues{ }kλ ( )k n≥  (Jolliffe, 2002): 

 
T=B VΛ V                 (3)

 

A decreasing order of eigenvalues and
corresponding columns in eigenvector matrix is
needed to define principal components (Jolliffe,
2002): 

Fig. 1 Location of the 87 GPS stations that form
a network potentially affected by CME (top)
and number of stations coordinates available
at a corresponding epoch – data timespan
(bottom). 

of Regime Shifts (STARS) algorithm (Rodionov and
Overland, 2005) was applied to detect epochs of
offsets. 

Time series taken from stations located on the
same tectonic plate, and similarly affected by
geophysical processes, are highly correlated due to
comparable linear trends and periodicities. Trend and
seasonal signals represent the deterministic part of
a time series, while residuals are the remainder of the
modeling process. Residuals should reflect the
stochastic process, but instead of noise, we have to
assume a uniform temporal function across the
network (as it was assumed at the beginning). In our
research, the deterministic part was modeled using the
Least Squares method, where the initial value 0x ,

linear trend xv t⋅ and periodicities ( )sinA tω ϕ⋅ ⋅ +  were

included in the equation. Periodicities are composed
of: fortnightly and 1st through 9th harmonic of
Chandler, tropical, and draconitic oscillations. The
equation describing each of the components (North,
East and Up) of topocentric time series is: 
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(Jolliffe, 2002). We can see, that first principal
component computed for North explains nearly 40 %
of the variation, while the first PC for East and Up
accounts for more than half of the variation (Fig. 2). 

( ) ( ) ( )
1

,
n

k i i j k j
j

t t r r
=

= a R v               (4)

 

where ( )k ia t  [in the left side symbol ak should be bold

text but no italic (like it is in above formula)] is k-th

principal component of matrix R and kv is

corresponding eigenvector. The resulting orthogonal
components (Principal Components) are ordered by
the magnitude of variation, from most to least. First
few components are a product of a uniform temporal
function (CME) (Jolliffe, 2002). 

In order to express eigenvector elements more
transparently (as a station’s spatial response to a CME
source) we divided each element in an eigenvector by
maximal value from this eigenvector. In all cases, one
of the elements of eigenvector will have a 100 %
response, while a percentage of remaining elements
will refer to this largest value. Each element of
eigenvector, and eigenvector itself, is calculated this
way, expressed as a percentage, and is labeled as
a “normalized response” and “normalized
eigenvector,” respectively (Dong et al., 2006). 

The method of deriving CME from PCs is not
clearly defined. There are approaches that use
statistical tests to determine, which PCs are significant
in terms of variance accounted for by each component
(Tiampo et al., 2004; Shen et al., 2013). We adopted
the CME definition proposed in the paper by Dong et
al. (2006), which is the most conventional and
intuitive. This allows us to avoid consequences of
incorrectly identified, statistically significant principal
components. The basis of these assumptions is to
select a principal component, for which more than half
corresponding normalized responses have a value
larger than 25 %. An eigenvalue corresponding to this
PC, has to be larger than 1 % of the sum of all
eigenvalues. Using this method, we found p first
numbers of significant PCs, and we then computed
CME as follows (Dong et al., 2006): 

 

( ) ( ) ( )
1

p

j i k i k j
k

CME t t r
=

=a v               (5)

 

The computed CME is removed from the
unfiltered residuals ( )tr using simple subtraction, thus

obtaining so-called “filtered residuals.” This approach
is equivalent to the reconstruction of the filtered
residual using all PCs, except for the p first significant
PCs. 

 
ANALYSIS AND RESULTS 

In order to give a better visual representation of
common signal strength in the residual time series, we
show in Figure 2 eigenvalues referring to each
consecutive principal component. We express the
eigenvalues as a percentage of the total variance in the
dataset. These are related to the amount of variation in
the entire data set, explained by the corresponding PC

Fig. 2 Eigenvalue expressed as proportion of the
variance that each eigenvector represents.
Only 10 first PCs are presented. 

Then, we selected components that may be
identified as CME, using previously described
criterion. For each topocentric components, all
normalized spatial responses corresponding to the 1st

PC are larger than 25 %. This satisfies PC
requirements in respect to its inclusion into CME
determination. The number of significant eigenvector
elements is much lower when 2nd PC is considered.
From the 87 element sized eigenvector, there were 9,
3 and 31 normalized responses to the 2nd PC greater
than 25 % for North, East and Up, respectively. The
2nd and each following PC are not sufficient to
calculate CME. The 2nd PC computed for Up, was the
closest to being classified as significant, but was
rejected due to the fact that it had only around 50 %
significant responses. Spatial distribution of
normalized eigenvector elements corresponding to the
1st and 2nd PC computed for Up component is
presented in Figure 3. On the left side map, we can see
that all stations have a positive response to the 1st PC
larger than 30 %. It is confirmed that in our case the
1st PC reflects Common Mode Error that is the effect
of a uniform temporal function. 

In Figure 3 on the right side map we can see
normalized spatial responses for the 2nd PC computed
for Up component. The largest, 100 % response to this
PC’s variation has VLUC (Vallodella Lucania, Italy)
station. We can see that in this case, the response to
the 2nd PC is getting smaller when a station is located
farther from this station, when with a specified
distance response changes to negative. Such an effect
refers to smaller spatial scale common signals in
network that can be seen in higher-order PCs and is
difficult to be interpreted. 
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In order to identify the filtration benefits, we
computed power-law noise amplitudes and spectral
indices of noise for residuals before and after filtering.
If we hypothetically assume a lack of CME, and if
residuals would only be a realization of stochastic
processes, the spectral index should be close to 0
(white noise). In reality, the spectral indices computed
for residual GNSS time series are fractional numbers
lower than zero, which indicates that some kind of
colored noise should be considered during spectral
analysis (e.g. Mao et al., 1999; Agnew, 1992;
Williams, 2003; Beavan, 2005; Amiri-Simkooei et al.,
2007; Bos et al., 2008; Langbein, 2008; Teferle et al.,
2008; Kenyeres and Bruyninx, 2009; Santamaría-
Gómez et al., 2011 or Klos et al., 2016). In order to
perform this analysis, we used Hector software (Bos
et al., 2008). The values of spectral indices computed
before filtration for 87 stations are presented in
Table 1. 

 

Table 1 Spectral indices computed for 87 residual
time series before filtration. 

 North East Up

median -0.60 -0.48 -0.66

min -0.96 -0.67 -1.00

max -0.15 -0.23 -0.19

Spatial filtration of residuals with an assumption
of a uniform temporal function across the network,
should shift spectral indices toward white noise, and
reduce amplitudes. Previous applications of PCA to
GNSS time series (Dong et al., 2006; Shen et al.,
2013) assumed models consisting of only annual and
semi-annual oscillations. It should confirm that most
common time-dependent signals affecting residuals,
and lead to spatial correlation in horizontal
components, had been modeled by us earlier with
a higher efficiency model (Bogusz and Klos, 2015).
Mean, median, maximal and minimal value of power-
law noise amplitudes computed for Up component are
equal to 12.0, 11.7, 6.2 and 21.2 mm/year-κ/4,
respectively. Figure 4 presents power-law noise
amplitudes and spectral indices changes after filtration
computed for residuals of Up component. A reduction
of these parameters for horizontal components is not
evident probably due to lesser correlation. 

From  top  histogram  in  Figure  4 we can
notice, that for all residual time series of Up
component, noise amplitudes decreased from 0.5 to
13.5 mm/year -κ/4 after filtration. That gives a relative
reduction of amplitudes ranging between 4 % and
76 % for all stations, while the average improvement
is 49 %. A smaller amplitude of noise after filtration
means smaller scatter of residuals, and consequently,
a  more stable solution for the determination of station
velocity. The bottom histogram refers to spectral

Fig. 4 Histograms of noise amplitudes (top) and
spectral indices (bottom) changes after
filtration of Up component residual time
series for 87 stations. 

indices changes after filtration. We can see positive
changes (increase), which are equivalent to a shift of
stochastic part towards white noise. Furthermore, the
positive result of filtering means that correlated
signals were superimposed on the stochastic process
realization. The average relative increase of the
spectral index is 48 %. 

One of the most important consequences related
to spatio-temporal GNSS time series filtering is the
improvement of accuracy of the determined velocity.
Assuming that the station velocity can be determined
using linear regression (trend is strictly linear), we can
compute the accuracy of velocity using the formula
presented in the paper by Bos et al. (2008), which is
based on values of noise characteristics: 

 

( ) ( ) ( ) 32

2
2

2

3 4 1

2
2

PL
v

NA
m

T

κ

κ

Γ κ Γ κ

κΔ Γ

−

−

− ⋅ − ⋅ −
≈ ± ⋅

  −    
  (5)

where: N is the data length, κ  means the estimated
spectral index, TΔ is the sampling rate, PLA  represents

the amplitude of noise, and Γ  is the gamma function. 
The improvement of the velocity accuracy,

resulting from the filtration computed for Up
component, for the 87 stations being analyzed, is
presented in Figure 5. 

For Up component of all stations, the accuracy
of velocity is lower after filtration. The average
reduction is 0.2 mm/year, with maximal reduction is
0.8 mm/year determined for BUDP (Kobenhavn,
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Fig. 5 Reduction of determined velocity accuracy resulting from the PCA-based method  filtration. Bars refer
to the left side axis and show the accuracy of the velocity computed before the subtraction of CME
(gray) and after filtration (black). The line refers to the right side axis and explains the relative reduction
of accuracy resulting from spatio-temporal filtering. 

JPL repro2011b time series accessed from
ftp://sideshow.jpl.nasa.gov/pub/JPL_GPS_Timeseries/
repro2011b/raw/ on 2014-11-10.  

Map was drawn in the GMT (Generic Mapping
Tool) (Wessel et al., 2013).  
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Fig. 3 Spatial distribution of the normalized responses (normalized eigenvector elements) to the 1st (left) and 2nd (right) PC for
Up component. Normalized response can be identified with station contribution (positive-blue or negative-red) into the
amount of variation in particular PC. 
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