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 ABSTRACT 
 

 

Due to the development of GPS technology, nowadays we are able to determine geodynamic
plate motion around the world. Using an appropriate noise technique and understanding all the
stochastic effects we are able to do a proper GPS time series analysis in which the sources of
noise can be classified as: white noise, flicker noise and random walk. 
We study the area from the Caribbean Sea, taking the data from two GPS stations for a period of
7.5 years. We use spectral analysis and Maximum Likelihood Estimation. In the first part of the
analysis we simultaneously estimate the velocity and amplitudes of the noise with integer
spectral index and in the second part we estimate the spectral index. The noise model that
presented the higher values of the log likelihood is a combination between power law and white
noise which best describes the noise characteristics of all three components. In all the cases the
noise amplitudes presented higher values for the vertical component. Also, the rate uncertainties
for the power law plus white were higher by a factor of 10, then by using only white noise
model.
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geophysical sources and systematic modeling errors
(Dong et al., 2002). The research done by (Dong et al.,
2002; van Dam et al., 2001) presented that the
coordinates obtained from continuous GPS
measurements are affected by seasonal variations with
annual and semiannual periods which are present into
global and regional networks. (Blewitt and Lavallée,
2002) came to the conclusion that if it isn’t taken into
account the annual variation signal the results of the
site velocity will be greatly bias. 

By using only a white noise model (Zhang et al.,
1997) concluded that the rate uncertainties were 3-
6 times smaller than by invoking a combination  of
white and flicker noise. Also (Mao et al., 1999)
presented that if the correlated noise was neglected the
rate uncertainties were underestimated by as much as
an order of magnitude. The reduction of the white
noise effect can be done by frequent measurements
and averaging, although this is not the case for colored
noise which is time correlated. This source can be:
mismodeled satellite orbits, mismodeled antenna
phase center, mismodeled atmospheric effects (Mao et
al., 1999). The presence of random walk was detected
in continuous measurements of strainmeters as well as
in very short GPS baseline (Langbein and Johnson,
1997). 

By taking into account the parameters like
spectral index, amplitude of the noise and sampling
interval we can estimate the standard error in rate
(Williams, 2003). From this we can conclude that the
chosen noise model greatly affects the rate uncertainty
and a classification and quantification of noise
components has to be done before using the data in
geodynamic applications.  

INTRODUCTION 

To be able to use the GPS technology in
geodynamics, we need to investigate the velocity
uncertainties from GPS position time series. Several
research groups demonstrated that GPS time series are
affected not only by white noise (no time dependence)
but also by colored noise (time-correlated noise). By
understanding the error spectrum of the Global
Positioning System (GPS) we can obtain more precise
results which can be employed in geodynamic
applications (Nistor and Buda, 2014). 

The GPS techniques, has proven over the years
that it can be an outstanding tool for plate tectonics
studies such as: crustal motions and deformation. By
using the position time series as a result of GPS
measurements, the horizontal and vertical velocities
can be determined. A proper analysis of the position
time series in geodynamic determinations invokes
estimates of velocity and their uncertainties to be
unbiased. The geodetic velocity and their uncertainties
are computed indirectly through repeated position
measurements of given points (Hackl et al., 2011).
These measurements have to be taken for several
years or more to obtain accurate velocity estimates,
thus resulting in a large variety of errors that can
corrupt the data. 

A constant long term signal (interseismic) rate is
not the only contribution to the antenna motion, but
also, offsets due to antenna changes or coseismic
displacement, annual or semiannual seasonal
deformations, or postseismic deformation (Hackl et
al., 2011). 

The noise model have to take into account the
seasonal variation which results from different
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where: 
• det  represents the determinant of the matrix, 

• C  represents the covariance matrix of the
assumed noise in the data 

• N  is the number of epochs and 

• υ̂  is the postfit residuals of the linear function
using weighted least squares with the same
covariance matrix C . 
In terms of stability the logarithm of the

likelihood has to be maximized or minimize the
negative: 
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due to the fact that the maximum is unaffected by the
monotonic transformations.   

The typical model is composed by an intercept,
a  linear trend (velocity), sinusoidal terms represented
by annual and semiannual signal, terms for offsets and
in the case of a large coseismic event, a term to
describe the postseismic motion (Nikolaidis, 2002).
The covariance matrix C  can correspond to different
stochastic noise such as white, power law, moving
average, autoregressive, first-order Gauss Markov,
band pass and also combination between these
different types of noise. If it is assumed that we are
dealing with a white noise component and power law
then the matrix is: 
 

2 2
w k kC a I b J= +                                                           (4)

 

where wa  and kb   represents the white respectively

the power law noise amplitudes, I  is the n n×
identity matrix and kJ   is the power law covariance

matrix with spectral index k .   Although the equation
(4) presents only two types of noise, the time series
may contain more than this two types of noise and
sometime may not be power law noise (Williams et
al., 2004). 

By fitting a straight line through a series of n
points ix   taken at time it   which represents the basic

liner regression problem the determination of rate
uncertainties is given by: 

 

( )0i i x ix x rt tε= + +                                                   (5)
 

where ( )x itε   represents the error term. 

Assuming that ( )x itε  is subjected to linear com-

bination of independent random variables and it is
identically distributed, ( )itα , and a sequence of

temporally correlated random variables, ( )itβ  such

as: 

( ) ( ) ( )x i i k it a t b tε α β= +                                          (6)
 

the amplitude of white noise is represented by the

For characterizing the noise in time series
analysis different techniques can be used: the
maximum likelihood estimation (MLE) method,
power spectral method and Least Squares Variance
Component Estimation (LS-VCE). The first one is
used to examine the data from covariance matrix in
the time /space domain, and the second one is used to
examine the data in the frequency domain. To model
the noise effectively it is recommended to use the
MLE method in contrast to the classical power spectra
technique. The MLE method is generally used to
compute the amount of white noise, flicker noise and
random walk noise in the time series (Zhang et al.,
1997; Langbein and Johnson, 1997; Mao et al., 1999;
Williams et al., 2004; Langbein and Bock, 2004). 

Taking the work done by (Zhang et al., 1997),
they analyzed the time series from 10 continuous GPS
sites in Southern California, for a period of 19
months, in which the time series presented significant
colored noise. Flicker noise plus white noise, or
fractional white noise best describes the time series
instead of random walk plus white noise. Due to
shortness of the time series they could not rule out the
existence of random-walk noise as detected by other
geodetic instruments. To be able to estimate the
amount of random walk plus white noise or flicker
plus white noise contained in each time series (Zhang
et al., 1997) used maximum-likelihood technique to
assess the velocity uncertainties. 

 
MATHEMATICAL MODEL 

The form of the power spectrum xP , that

describes many types of geophysical data whose
behavior in the time domain denoted by ( )x t  given

by (Mandelbrot and Van Ness, 1968; Agnew, 1992)
is: 
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where, f  is the spatial or temporal frequency, 0P  and

0f  are normalizing constants and k  is the spectral

index. Typically, the spectral index, k , lies within the
range -3 to 1 (Agnew, 1992). The process within this
range is subdivided into “fractional Brownian motion”
with 13 k− < < −  and “fractional white noise” with

11 k− < <  (Mandelbrot, 1977, 1983). Within this
stochastic model occur special cases at the integer
values. At 0k =  we are dealing with classical white
noise, at 1k = −  we are subject to flicker noise and

2k = −  we have Brownian motion – the so-called
“random walk”. To refer to power law processes that
differ from classical white noise, we will use the term
colored noise.  

Taking the work done by (Williams, 2008) to be
able to estimate the noise components and the
parameters  of the linear function, the likelihood l
from a set of observation x   have to be maximized. If
we are assuming that the distribution is Gaussian the
likelihood is: 
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noise based on the extensive studies done by
(Santamaría-Gómez et al., 2011; Amiri-Simkooei et
al., 2008; Bos et al., 2008; Langbein, 2012; Williams,
2003) and shown that the most present types of noise
in GPS time series analysis is: Power - law plus white
noise, white noise only, a combination between white
noise and random walk and a combination between
white noise and flicker noise. To verify if the chosen
model behaves “good enough” we have computed the
power spectra density from the generated residuals
after subtracting the least squares which estimated the
linear motion. 

The top panel of Figure 1 presents the daily
observation for station Greo and the bottom panel
presents the daily observation for station Bggy. 

First a linear trend using ordinary least-square is
applied to the raw data and the resulted residuals are
ordered by size and then the values that are less than
three times the interquantile range, below or above the
median are considered outliers. This approach was
recommended by (Langbein and Bock, 2004). All
statistical methods contain different types and number
of assumptions (Nistor and Ionascu, 2013). 

Taking into account the work done by (van Dam
et al., 2001), GPS time series analyses have
significant annual signals. The effects of these annual
and semiannual effects can significantly bias the
velocity estimates. If we are talking about global
reference frames, then the dominant cause of annual
signals, is the surface loading, due to hydrology and
atmospheric pressure.  Over short data spans the
seasonal variations, which is best described by
a deterministic model, contributes to velocity error.
Due to the fact that the spectral index was 1 2k< <
the power spectrum confirms the presence of
significant annual harmonic frequencies, from which
we can conclude that we are dealing with repeating
signals. For the determination of site velocity and
initial position it is strongly recommended to estimate
them simultaneously with annual and semiannual
sinusoidal signal, because they bias the estimation of
site velocity for high accuracy purposes. Assuming
that there isn’t an annual signal in the estimation
process, the results tend to be more than optimistic
and  (Dong et al., 2002) demonstrated that the time
series exhibit an annual variation with an amplitude of
a few millimeters. So, to remove a seasonal variations
we can fit a sinusoid with a period of one year during
the detrend operation, which was also the case for our
experiment - Figure 2.  

In Figure 2 the sinusoidal red lines represent the
±1 standard deviation of the computed model –
estimated trend, and the green lines represent ±3
time’s standard deviation. 

We have computed the log likelihood values
using the maximum likelihood estimator – MLE - for
both sites and for each component: North, East and
Up. Each of these components was treated separately
obtaining in the first step six values to compare. To
evaluate the time series and the amplitude of the noise
we used white noise k = 0, colored noise with integer
spectral index k = -1 for flicker noise, k = -2 for
random walk and colored noise with fractional

scalar factor a   and 0kb ≠   is the scale factor of colored

noise of spectral index k . 
By assuming that the covariance matrix presents

time-dependent positions and the station monuments
are subject to a random walk process, then the formal
uncertainty of the estimated velocities is approximated
by (Zhang et al., 1997; Williams, 2003; Bos et al.,
2008): 

 

( )
2 2

2

1r

b b

T T N
σ

Δ
≈ =

−
                                              (7)

 

where, b  represents the random walk noise
amplitude,  N  the number of measurements and T   is
the total time span. Equation (7) expresses that in the
presence of heavily correlated time series, velocity
uncertainties are significantly influenced with respect
to those from uncorrelated time series. Increasing the
observation span by adding more (correlated) position
barely reduced the formal rate uncertainty. Also, if the
observation span is kept constant then changing the
sampling interval, does not affect at all the estimated
formal uncertainties.  

Another method to assess the presence of the
noise in GPS time series analysis is to use the least
squares variance component estimation described by
(Amiri-Simkooei et al., 2007). Considering the linear
model of observation as: 
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where the design matrix A  has the dimension m n×
is assumed to be a full column rank, the m m×
covariance matrix yQ   of the m −   observable vector

y
 
 is assumed to be positive definite, y  the n −

vector of parameters has to be estimated and E  and
D  are the expectation and dispersion operators where
the underscore represents a random variable. The
m m×  cofactor matrix kQ  is assumed to be symmetric

such that the sum 
1

p

k k
k

Qσ
=
  is positive definite. In this

case the cofactor matrix kQ  should be imposed to

fulfill the stochastic condition of being linearly
independent to have a regular solution. There are
several advantages for this method but this is outside
the articles scope. For more information refer to
(Amiri-Simkooei, 2007; Xu et al., 2006).    
 

PROCESSING AND RESULTS 

The experiment was conducted by using the data
from the GPS station in Caribbean Sea – Bggy and
Greo. The data were downloaded from UNAVCO in
*.pos format. For the time series analysis we used the
Hector software (Bos et al., 2012). 

The data from the GPS station are for a period of
7.5 years from 2007.5 until 2015. For estimating the
rate uncertainties and the parameters of the noise
model we have used the Maximum Likelihood
Estimation (MLE). We have tried different type of
noise to see which is more appropriate for our
experiment. The authors had chosen different types of
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Fig. 1 The top panel presents the daily observation for station Greo and the bottom panel the
daily observation for station Bggy. 

Fig. 2 Detrending daily observation taking into account seasonal variation – top panel 
represents the data for station Greo and the bottom panel the data for station Bggy. 



THE INFLUENCE OF DIFFERENT TYPES OF NOISE ON THE VELOCITY … 
. 
 

 

391

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

estimate an extra parameter and thus resulting in
a higher value of log likelihood. By taking the work
from (Langbein, 2004) when we have to compare two
noise models with different number of parameters, as
in our case, a threshold of a difference of 2.6 points
can be imposed. Although we take into account this
recommendation, the log likelihood in the case of
power law plus white presented the highest value
which confirms that this model is the preferred model.

The removed seasonal amplitude of the station
Greo in the North component was 1.26 mm, for the
East component it was 0.79 mm and for the Up
component was 2.19 mm. The phase –lag for Greo
station was 1.53 rad for the North component,
0.61 rad for the East component -0.57 rad and for the
Up component. In the case of Bggy station the
removed seasonal amplitude in the North component
was 1.35 mm, for the East component it was 0.93 mm
and for the Up component 1.92 mm.  The phase –lag
for Bggy station was 1.16 rad, for the East component
0.69 rad and 1.55 rad for the Up component. 

In the next part of the computation we have used
the power spectra analysis – this represents the
difference between observations minus the estimated
linear trend and additional signals. This is done after
fitting and removing the linear trends expected for
purely tectonic motion. The results are presented in
Figure 3. 

In the plot the red points marked with “x”
represents the computed spectrum for the observation
and the solid green line represents the fitted power-
law plus white noise. The frequency is given in cpy –
cycles per year. From the plot it can be observed that
at high frequencies the noise is flat which represents
a property of the white noise and for the lower
frequencies the spectrum obeys a power-law. In the
case of both stations the slope of the power – law
noise is around one, which indicated the presence of
the flicker noise. The chosen noise model – power-law
plus white noise was chosen due to the fact that by
analyzing the quality of the noise model in terms of
log likelihood, it presented the highest values.
Although the preferred noise model was power law
plus white noise, we cannot exclude first-order Gauss
Markov noise model (Nistor and Buda, 2016). 

 
DISCUSSION  

By using GPS technology in geophysical
application - for example in plate tectonics studies, as
crustal motion, deformation – we need to introduce in
the estimation process of determining the site velocity
and initial position, the annual and semiannual
sinusoidal signal. Because of the effect created by the
presence of colored noise in time series analysis,
which has significant effect on the uncertainty of rate
estimation, we need to use the proper noise method
and combination to estimate the noise. 

There are many reasons for understanding the
noise that it is contained in GPS time series which is
important for geodetic and geophysical applications.
One of the most important features is that by
understanding the type of noise we can estimate
realistic site velocity and uncertainties. In our case the

spectral index. In the first part of the analysis
a combination between white noise plus flicker noise
was computed, white noise plus random walk and
then only white noise. In this case, the spectral index
was imposed – for flicker noise k = -1 and for random
walk k = -2. A higher value of the log likelihood
indicates the preferred noise model. In our experiment
the highest value was when we used a combination of
white noise plus flicker noise.  

The values for log likelihood values are
presented in Table1.  

Because the combination of white noise plus
flicker noise is the recommended noise model in terms
of log likelihood values, only the noise amplitude and
the formal uncertainties of the estimated parameters
are presented in Table 2. 

From these values we can see that the horizontal
component is less noisy for white noise amplitudes in
comparison with the vertical component by a factor
~ 4  and the flicker noise amplitudes in comparison
with the vertical component by a factor ~ 3

 

. Also, as
expected the East component is noisier than the North
component on all noise models except the white noise
on Greo station because of the incomplete integer-
cycles phase ambiguity resolution on global solutions.
Also the uncertainties of the flicker noise are about 4
to 6 times larger than the uncertainties of the white
noise. Prior to estimating the noise components the
annual signal was removed. 

In the second part of the analysis we estimated
the spectral index for the power law noise plus white
noise.  The results of the amplitudes are presented in
Table 3. The only notable difference is in the case of
Bggy station for the East component for white noise
amplitude.  

Although we have used different types of noise
model, by analyzing the data from Table 4, we can
draw the conclusion that the noise model does not
noticeably affect the velocity estimates. Taking into
account the work done by (Zhang et al., 1997) they
observed, that in the case of white plus flicker noise
model, the rate uncertainties were 3-6 times larger
than in the case of only with noise model. In our case
the difference in rate uncertainties is almost 10 times
higher. In the case of white noise model, the velocity
uncertainty are inversely proportional to the total
interval time and the square root of the number of
measurements, but we have to take into account that
the white noise model fits poorly the data and in time
series we are dealing with colored noise. 

The estimated spectral index in the case of Bggy
station was -0.7998, -0.7766, -1.0948 for the North,
East and Up component. For Greo station we have
obtained -1.1033, -1.2521, -1.0335 for the North, East
and Up component. Comparing the results of the noise
model – white plus flicker noise and power law plus
white noise in terms of log likelihood the power law
plus white presented the higher value in 100 %
although the differences between them are very small.
A higher value of the log likelihood is more
significant and thus giving us the most probably
candidate for the best noise model. The problem is
that by using the power law plus white noise we
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Table 1 Log likelihood values  - The higher value indicates the recommended noise model.  

Table 2 White noise and flicker noise amplitude estimated for the North, East,Up component and the related uncertainties 
 
 Models 

Stations White noise – mm Flicker noise - mm/yr1/4 

 North 
wσ   East 

wσ  Up 
wσ  North 

fσ  East 
fσ  Up 

fσ  

Greo 1.4383 0.0475 1.6234 0.0593 6.0689 0.1703 5.0895 0.2468 6.2987 0.2942 17.7528 0.9617 

Bggy 1.4719 0.0493 1.2562 0.0751 5.5564 0.1542 4.8287 0.2682 6.6236 0.3095 15.9907 0.8770 

 

Table 3 White noise and flicker noise amplitude estimated for the North, East,Up component and the related uncertainties with estimated spectral. 

 Models 
Stations White noise – mm Flicker noise - mm/yr1/4 

 North 
wσ  East 

wσ  Up 
wσ  North 

fσ  East 
fσ  Up 

fσ  

Greo 1.5159 0.0417 1.8447 0.0434 6.0689 0.1703 5.2646 0.2694 6.7051 0.3606 17.9244 0.9879 

Bggy 1.2398 0.0726 0.6224 0.1980 5.5564 0.1542 4.5618 0.2255 6.0678 0.2470 16.3994 0.9414 

 

 
 Models 
Stations White White + flicker White +random walk Power law +white 

North East Up North East Up North East Up North East Up 

Greo 12660.748 11966.703 8988.956 13053.658 12597.207 9328.575 13028.361 12588.149 9306.945 13080.904 12612.380 9336.972 

Bggy 11991.796 11664.321 8816.046 12321.876 12159.205 9043.155 12290.772 12106.093 9027.789 12374.236 12190.936 9070.840 
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Table 4 Velocity and their uncertainties with integer spectral index. 

 Models 
Stations White noise only 
 North 

mm/year 
Uncertainties 
mm/year 

East 
mm/year 

Uncertainties 
mm/year 

Up 
mm/year 

Uncertainties 
mm/year 

Greo 15.5108 0.0233 12.6824 0.0284 -0.9651 0.0851 
Bggy 15.4326 0.0216 09.1461 0.0253 -0.2338 0.0764 
Stations White + Flicker noise  
 North 

mm/year 
Uncertainties 
mm/year 

East 
mm/year 

Uncertainties 
mm/year 

Up 
mm/year 

Uncertainties 
mm/year 

Greo 15.3284 0.2290 12.6542 0.2829 -1.1192 0.8030 
Bggy 15.4973 0.2177 09.5247 0.2959 -0.7453 0.7242 

 

 

 

Fig. 3 On the left side it is the PSD – power spectra density - for North, East and Up component for station
Greo; on the right side it is the PSD for North, East and Up component for station Bggy. 

is present in the GPS time series helps us to locate or
understand the sources of noise and thus indicating
how to reduce or to eliminate their effects in the
future. Also time series analysis for identifying the

recommended combination for determining the noise,
is power law plus white noise. In the case of a white
noise model the total velocity was underestimated by
a factor of 10. The identification of what type of noise
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noise can be done on points determined by using very
long baseline interferometry - VLBI - (Nistor and
Buda, 2015b) or precise point positioning (Nistor and
Buda, 2015a). Because the four major space geodetic
techniques are combined to obtain an accurate
terrestrial reference system, there is the need to
understand the noise and their possible biases.   
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