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ABSTRACT 
 

 

Precise Point Positioning (PPP), which can achieve high-precision positioning with only a single
Global Navigation Satellite System (GNSS) receiver, is a popular but challenging research topic.
The traditional Robust Kalman Filter (RKF) based on innovation vectors can effectively resist
outliers in certain cases. However, this filter is less effective in treating unequal precision
observations for PPP, such as crowded outliers or small outliers in high-precision carrier phase
observations. In this study, the residual vector is used to construct a robust factor that is sensitive
to outliers. Our strategy is to apply decorrelation to this vector. Firstly, the squared Mahalanobis
distances of carrier phase and pseudorange observations are used to evaluate whether
measurements contain outliers in the current epoch. Secondly, the residual vector is decorrelated
with respect to the residual covariance. Finally, through iteration, the robust factor for the
residual vector and the gain matrix are determined, which theoretically eliminates the residual
vector correlation for different observations. Our proposed modification of the RKF method has
been tested using data from International GNSS Service (IGS) Stations. Results show that our
RKF based on residual vectors can effectively reduce the effects of a single outlier. Given many
outliers, computations must be iterated to reduce the residual vector correlation, especially for
cases where more outliers can effectively be suppressed by filter divergence. 
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shorten the convergence time. Many scholars have
proposed real-time PPP or PPP-RTK technology
based on ambiguity fixing methods, precise orbit and
clock products ( Zhang et al., 2014; Li et al., 2014,
2015a and 2015b; Dawidowicz and Krzan, 2014;
Krzan and Przestrzelski, 2016). 

The Kalman filter has been used extensively to
estimate the state space in positioning and navigation,
because the status parameters can be estimated in real
time (Kalman, 1960). This filter method requires only
the prior value of the status parameters, covariance,
and new observation data. Yang (1997, 2001)
proposed a Robust Kalman Filtering (RKF) algorithm
based on innovation vectors, and an equivalent weight
matrix structure with outliers. An innovation-based
adaptive RKF was developed for dynamic PPP (Guo
and Zhang, 2014), which introduces an equivalent
covariance matrix to resist outliers, and an adaptive
factor to balance the contribution of observational
versus predicted information from the dynamic model
system. Nie (2010) merely used RKF to resist carrier
phase outliers, because their influence on positioning
is stronger than pseudorange observations.  

 

1. INTRODUCTION 

PPP is a popular but difficult topic in GNSS
research. Such positioning uses only a single GNSS
receiver, precise orbit and clock products to achieve
centimeter-decimeter, and even millimeter-level
positioning (Zumberge, 1997). Both carrier phase and
pseudorange measurement values are used. To reduce
the influence of ionospheric delay, such ionosphere-
free combination observations are used by most
scholars (Kouba and Héroux, 2001; Hefty and
Gerhátová, 2012; Zhang et al., 2012, 2014). In
addition, the University of Calgary (UofC) PPP model
has been shown by Gao and Shen (2002) to eliminate
observation noise. The ionosphere-free combination
of carrier phase and pseudorange observations is
selected for study here, because their ionospheric
delays have the same carrier frequency and they are
similar in size, although they comprise positive and
negative numbers, respectively. Three main ambiguity
fixing methods have been widely used to overcome
slow convergence and low precision in traditional PPP
(Ge et al., 2008; Laurichesse et al., 2009; Collins et
al., 2010; Shi and Gao, 2014). Such methods can
significantly improve positioning accuracy and
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rotation, the satellite antenna phase center, the
receiver antenna phase center, relativistic effects, tidal
error, and other factors. Hardware delay error was
taken into account as part of clock error and ignored
the influence. 

Given that the static PPP does not reflect
disturbance, the influence of observation outliers
alone is considered here; hence, adaptive filtering
effects on positioning were not considered. In
Equations (1) and (2), the estimated parameter vectors
include the station coordinates, residual tropospheric
delay, receiver clock error and each satellite’s real
ionosphere-free ambiguity parameters. The estimated
parameters are expressed as: 

 

( )T1
z, , , , , , , j

x yδ δ δ T dt N N= X  
 

where X  represents the estimated parameter vector;
, ,x y zδ δ δ  are the 3D coordinate vectors of the receiver

in the ITRF08 coordinate system; j  is the number of

visible satellites; and T  denotes the matrix
transposition. 

The carrier phase and pseudorange observations
of the k th epoch given by the Taylor series expansion
can be expressed as: 

 

k k k k= +Z H X ε                                                        (3)
 

where kZ  is the observation vector that includes both

carrier phase and pseudorange observations; k
represents the epoch location; kH  is the coefficient

matrix of the observation; and kε  is the observation

noise vector. 
The state and dynamic system equations are written
as: 
 

, 1 1k k k k k− −= +X XΦ ω                                                 (4)
 

where , 1k k −Φ  is the state transition matrix; here, , 1k k −Φ
is a unit matrix because only static PPP is considered
in this study, kω  is the state noise vector. 

Thus, the standard Kalman filtering process
involves: 

Forecast processing: 
 

, 1 1
ˆ

k k k k− −=X XΦ  
 

T
ˆ, 1 , 1k k k k kX X− −= +R R QΦ Φ  

Update processing: 
 

( ) 1T T 1
k k k k kX X

−−= +K R H H R H P  
 

ˆ
k k k k= +X X K V  

 

( )ˆ k k XX
= −R I K H R  

 

where X  is the predicted state parameter vector; Φ
is the state transition matrix; X̂  is the estimated state

Here, we present an RKF method based on
residual vectors for static PPP. To assess its
effectiveness, experiments were conducted with
a single outlier and multiple outliers. We also
compared the results computed with traditional
Kalman filter and our proposed RKF. 

 
2. KALMAN FILTERING MODEL FOR STATIC 

PPP 

Traditional PPP relies on both the carrier phase
and the pseudorange of two unequal precision
measurement values. At present, most processing
strategies adopt the first-order ionosphere-free
elimination of the carrier phase and pseudorange
observations for such positioning, because the
ionospheric delay model is more difficult to employ
for estimation and introduces complexity. The
combination of ionosphere-free carrier phase and
pseudorange observations can be represented as (Hu et
al., 2014; Xu et al., 2012): 

 

2 2
1 2

IF 1 22 2 2 2
1 2 1 2

f f
P P P cdt T e

f f f f
ρ= − = + + +

− −
       (1)

 

1 2
IF 1 2 IF2 2 2 2

1 2 1 2

cf cf
cdt T N

f f f f
ϕ ϕ ϕ ρ λ ε= − = + + − +

− −
(2)

where IFϕ  and IFP  denote the ionosphere-free

combination of carrier phase and pseudorange obser-
vations in meters, respectively. 1f  and 2f  are the

frequencies of L1 and L2 GPS carrier phase signals,
where 1f =1 575.42 MHz and 2f =1 227.60  MHz. iϕ
and iP  ( 1, 2i = ) are the carrier phase and

pseudorange measurements, respectively. ρ  is the

geometrical distance from the GPS receiver to the
satellite in meters. Constant c  is the speed of light in
vacuum. Parameter dt  represents the clock errors in
seconds; the errors in the receiver and the satellite
clock errors are collectively considered. Parameter T
is the residual tropospheric delay after correction
using the Saatamoinen model. ε  and e  are the noise
in the ionosphere-free combination of carrier phase
and pseudorange observations, respectively; the
carrier phase and pseudorange observation noise occur
within 0.05 and 0.5 m, respectively. Parameter IFλ  is

the coefficient of the ionosphere-free ambiguity
solution, where IF 10.7λ =  cm. Parameter N  is the

ionosphere-free ambiguity of the carrier phase
observations. In general, satellite orbit and clock
errors have decreased considerably with the use of the
interpolated IGS precise orbit and clock products. In
addition, the pseudorange biases are corrected using
the Differential Code Biases (DCB) product from
IGS. Other error source have been corrected and
reduced by appropriate model or IGS products, and
are not listed in the Equation (1) and (2) for
simplification, such as those caused by the Earth’s
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T T min
kk k k k kX+ =V P V V P V                                         (7)

 

where k
P  is the robust weight matrix of the

observation vector given by: 
 

( )
21 / sin 10 30

1/ sin 30

el el
el

el el

 ≤ <
= 

≥

 


P  

 

where el denotes the elevation angle of the satellites. 
Upon substituting the extreme values from

Equations (3)–(6) into Equation (7), the state vector
and the gain matrix can be estimated using 

 

( )ˆ
k k k k k k= + −X X K H X Z                                     (8)

 

( ) 1T T 1
k k k k kX X

−−= + K R H H R H P                              (9)
 

As per Equation (6), kV  is affected by the

observation vector kZ , which may contain outliers.

To reduce the influence of any outliers, we must
construct a reasonable gain matrix kK . This matrix is

mainly affected by k
P  and XR . Because XR  is

solved by processing noise covariance and posteriori
parameters obtained from the previous epoch solution,
which is unrelated to the current epoch of information.

Meanwhile, the equivalent weight matrix k
P  is

determined by satellite altitude angle or noise. A gain
matrix can be calculated from the equivalent weight
matrix. Some studies construct a robust factor directly
by the gain matrix (Wang et al., 2008); thus, the size
and location of any outliers is difficult to evaluate, and
the gain matrix has a more complex structure. Instead,
we construct the corresponding weight matrix, so that
the gain matrix is not directly based on the robust
factor. 

 
3.2. CALCULATION OF THE ROBUST FACTOR 

BASED ON RESIDUAL VECTORS 

The innovation vector is often used to construct
a robust factor in traditional RKF. Here, we analyze
the sensitivity of this vector and of the residual vector
to outliers. 

The innovation vector from Equation (6) can be
expanded for carrier phase and pseudorange
observations, as follows: 

 

phapha
unamb

psepse

( )

( )

n

n

    
= = + −    
      

ZV zero
V H C N

ZV eye
      (10)

 

pha pha pha= −V H X Z  
 

pse pse pse= −V H X Z  
 

T

x y z T dtδ δ δ =  C  
 

where C  is the non-ambiguity component of the

parameter and N  is the ambiguity component of the
parameter. 

parameter vector; XR is the predicted state covariance

matrix; 
X̂

R  is the posteriori covariance matrix of the

state parameters; Q  is the covariance matrix of the

processing noise; K  is the gain matrix of the Kalman
filter; H  is the coefficient matrix of the observation
equation; P  is the observation weight matrix; R  is
the observation noise variance matrix, such that

1−=R P ; and V  is the predicted parameter vector,
also called the innovation vector. 

 
3. RKF MODEL OF UNEQUAL PRECISION 

OBSERVATIONS 

Two methods are often used to eliminate or
reduce the impact of outliers; they involve either
outliers’ detection using a test statistic or robust
estimation (Třasák and Štroner, 2014). The standard
Kalman filter can be used only for random errors that
follow a normal distribution model. If we still apply
such filtering, and ignore the effect of outliers on
observations, then the resultant estimated parameter
will be incorrect and may lead to filter divergence. An
RKF model is highly useful in this regard. At present,
the RKF model includes a model for both
observational and dynamic anomalies (Yang, 1997
and 2001). Here, we evaluate a new RKF model for
original observation data with outliers, because the
static PPP problem is considered in this study. 

 
3.1. RKF OF ORIGINAL OBSERVATION DATA WITH 

OUTLIERS 

The residual and innovation vectors of a standard
Kalman filter can be respectively expressed as: 

 

ˆ
k k k k= −V H X Z                                                        (5)

 

k k k k= −V H X Z                                                        (6)
 

where kV  is the posteriori residual vector of

observation, which reflects posteriori residuals; kV  is

the predicted state residual vector of an observation,
which reflects priori residuals; kX  is the predicted

state vector; ˆ
kX  is a parameter vector that is

estimated based on the original observations; and kZ

is the observation vector.  
We assume that the k−1 th epoch observation

vector kZ  has no outliers, and that the k th epoch

state parameter vector kX  has a Gaussian

distribution. Conversely, if the k th epoch of the
original observation data contains outliers, then the
observation vector has a Gaussian distribution of
noise. In this case, the unknown observation
parameter vector should be estimated robustly,
whereas the state parameter vector is estimated using
a least squares method. The extreme conditions are as
follows (Yang, 2001): 
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 The residual vector from Equations (5) and (8) is
estimated using a posteriori observation value; this
value is used to solve the posteriori state parameters
from unequal precise observations, which is
determined using reasonable weights. Hence, this
residual vector is more sensitive than the innovation
vector to outliers in unequal precision observation
data. The relationship between the residual and the
innovation vectors, as well as the covariance matrix,
can be expressed as (Yang, 2001): 

 

( )k k k k= −V I H K V                                                 (11)
 

( ) ( )1

k kV k k k kV
−= − − T TQ I H K Q I K H                        (12)

 

where 
kVQ  is the covariance matrix of kV ; and 

kVQ  is

the covariance matrix of kV . The innovation vector

can be derived from the state vector, which has not
been corrected by the observation vector. Therefore,
the innovation vector reflects dynamic disturbance. In
contrast, the residual vector is solved using the actual
parameter vector, modified by the observation vector.
Equation (12) indicates that 

kVQ  must be less than

kVQ ; therefore, the residual vector is more sensitive

than the innovation vector to outliers. 
In summary, the innovation vector can reflect the

location and size of outliers, given highly accurate
observation values. However, correct observation
values cannot be distinguished from values containing
abnormal outliers, as the number of outliers increases.
The residual vector is a posteriori state parameter that
is estimated using reasonable observation weights in
the current epoch; it effectively reflects both the size
and location of outliers. Finally, the covariance
estimation must have an adequate redundant
observation value. Because this research does not
have enough redundant observations to ensure
statistical quality, we have constructed a robust factor
based on residual vectors for comparative purposes
only. 

Since the residual vector is subject to a Gaussian
distribution, we need to construct a density function
that is similar to this distribution. The common weight
functions of the robust factor are the Huber, IGG
(Institute of Geodesy and Geophysics) II, and IGG III
(Huber, 1981; Yang, 2002). We selected the IGG III
as the Gaussian distribution function to construct the
equivalent weight matrix, as follows (Yang, 2002): 

 

ii iik ii kγ=P P                                                               (13)
 

where 
iik
P  represents the equivalent weight matrix of

the ( ),i i  element, and 
iikP  is the weight matrix of the

original observation noise. iiγ  is given by: 
 

0

2

0 1
0 1

1 0

10
1

1 k

k k
k k

k k

10 k

ii

ii
ii ii

ii

ii

s

s
γ s

s

s−

≤


 −= < ≤  − 
 >

                  (14)

Moreover,  
 

1 1 1 1 1
IF IF IF IF IF

2 2 2 2 2
IF IF IF IF IF

unamb

IF IF IF IF IF

x y z

x y z

n n n n n

x y z

T dt

T dt

T dt

ϕ ϕ ϕ ϕ ϕ
δ δ δ

ϕ ϕ ϕ ϕ ϕ
δ δ δ

ϕ ϕ ϕ ϕ ϕ
δ δ δ

 ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂=  
 
 
 ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂  

    
H  

 

where phaV  and pseV  are the innovation vectors of the

carrier phase and pseudorange observations,
respectively; phaH  and pseH  are the coefficient

matrices of the carrier phase and pseudorange
observations, respectively; phaZ  and pseZ  are the

carrier phase and pseudorange observations,
respectively; unambH  is the coefficient matrix of the

non-ambiguity component; and n denotes the number
of visible satellites. The carrier phase and
pseudorange observations of unequal precision have
the same unambH  matrix. In addition, we use ( )neye  to

denote an n-dimensional unit matrix, and ( )nzero  to

denote an n-dimensional zero matrix. 
As shown in Equation (10), coefficient matrices

unambH  of the carrier phase and the pseudorange

observations are equal, with the exception of the
ambiguity coefficient; only the observation values and
the ambiguity coefficient matrix differ. The value of
the innovation vector can be determined using the
predicted state parameter vector of the previous and
current epoch observations. If the estimated state
parameters in the previous epoch are accurate, then
the innovation vector responds directly to outliers in
the current epoch. The observational accuracy of the
carrier phase is much higher than the pseudorange
observations; hence, the innovation values of all
satellite carrier phase vectors are approximately equal.
Thus, the innovation vector can effectively identify
carrier phase and pseudorange observations in the
current epoch. Moreover, pseudorange observations
can be used to distinguish the size and location of
outliers as well. However, the innovation value of the
carrier phase containing outliers will deviate
significantly from the rest of the observations from
other satellites, because of their more accurate in
nature. Although an abnormal value is easy to detect
manually, such values cannot be distinguished
automatically from correct observations, because the
noise error is often greater than the effect of outliers
on the innovation vector. Many outliers cannot be
recognized either manually or automatically because
abnormal outliers severely pollute the quality of
normal observation data, making these outliers
indistinct. As a result, innovation-based traditional
Kalman filtering is ineffective on carrier phase
observations with outliers, particularly when small
outlier values are present. 
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3.3. DECORRELATION FOR RESIDUAL VECTORS 

When Equation (5) is transformed, the residual
vector can be expressed as: 

 

( )( )k k k k k k k k= + − −V H X K H X Z Z  
 

Here, the residual vector reflects the size and
location of small errors. Nonetheless, the residual
vectors of other satellites are affected, whenever the
observations of any one satellite contain outliers. This
becomes relevant, when many satellite datasets
contain outliers. In such cases, constructing a robust
factor and an equivalent weight matrix directly from
such data is unreasonable. 

Given less accurate pseudorange observations,

the effect on posterior values X̂  is negligible.
Therefore, the residual vector of the carrier phase
measurements alone is considered in our decorrelation
approach. 

First, we constructed L matrix to decorrelate the
residual vector, with respect to its covariance matrix.
The residual gain matrix is now equivalent to the
weight matrix used to decorrelate the residual vector. 

The covariance matrix of a residual vector can be
computed according to Equation (12) as follows: 

 
1 T

V v
−=Q RQ R                                                          (16)

 

The residual vector is decorrelated using its
covariance matrix, because correlation among residual
vectors will be significant, when datasets contain
many outliers. The covariance matrix of a residual
vector can be determined from the observation weight
matrix and the covariance matrix of the innovation
vectors; therefore, the residual vector of covariance is
relevant. Conversely, we can determine the correlation
of the residual vectors based on the residual
covariance correlation. First, we constructed a matrix
L to meet the condition det (L) = 1, and then
decorrelated the covariance matrix of the residual
vector, as follows:  

 

decorrelation

T
V V=Q LQ L                                                    (17)

 

where 
decorrelationVQ  is a diagonal matrix. This equation

can also be solved by adopting the Cholesky
decomposition.  

Similarly, we applied the L decorrelated matrix
of the residual vector to obtain the decorrelated
residual vector decorrelationV , as follows: 

 

decorrelation =V LV                                                       (18)
 

Finally, an iterative algorithm was used to reduce
the residual correlation of the residual vector,
according to the following steps: 
1. Using Equation (17) and the covariance matrix of

the residual vector, the decorrelated matrix L is
solved; 

where 0k  and 1k  correspond to a sub-

parameter(ranging from 1.5 to 2 ) and an elimination
value(ranging from 3 to 8 ), respectively. iis  is the

robust factor. 
Moreover (Xu et al., 2012), 
 

( ) ( )1

i i
ii

V iiii iiV ii

−
= =

V V
s

Q R R RQ R
                        (15)

 

where iV  represents the i th element of the residual

vector, and 
kVQ  denotes the covariance matrix of the

residual vector. 
When RKF is used on unequal precision

measurements, the unequal precision of the original
observation noise may result in a mismatch between
the two observations in terms of k0 and k1. The
residuals of the carrier phase and the pseudorange
observations are not completely consistent with the
residual; thus, the corresponding robust factors k0 and
k1 are discretely defined. In this study, we considered
the carrier phase and the pseudorange observations to
be uncorrelated; hence, the IGG III weight function
was used to generate the robust factor. 

Given that it is cumbersome to determine the
residuals of every observation, we modified the
traditional method. The Mahalanobis distance of the
carrier phase and pseudorange observations for every
epoch was calculated. The Mahalanobis distances
reflect overall abnormalities (Chang, 2014a, 2014b
and 2015) and can be used to determine whether there
are outliers in the current epoch by comparing the
Mahalanobis distance with a threshold value. Finally,
our proposed RKF algorithm was employed. Using
this procedure, processing efficiency was greatly
enhanced.  

The squared Mahalanobis distance of the carrier
phase and pseudorange observations is expressed as: 

 

2 T 2M ~ χ= V PV  
 

where 2M  represents the squared Mahalanobis
distance, which follows a chi-square distribution 2χ .

According to the hypothesis testing theory, the
probability of a squared Mahalanobis distance less
than the quantile of the distribution 2

αχ  can be

expressed as: 
 

( )2 2P M 1αχ α≤ = −  
 

where P(·) represents the probability. The probability
that M2 is larger than 2

αχ  should be very small, i.e.,

less than α . Because this strategy greatly improved
the efficiency of data processing, the squared
Mahalanobis distance and the quantile of the carrier
phase and pseudorange observations were constructed
for all unequal precision measurements, respectively. 
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2. Using the L matrix and the residual vector, the
decorrelated residual vector (Equation (18)) is
calculated; 

3. Using the decorrelated residual vector (Equation
(15)), robust classification factors is used to
calculate a robust factor. Subsequently, the
equivalent weight matrix is computed (Equations
(13) and (14)); 

4. The gain matrix is calculated by the equivalent
weight matrix (Equation (9)); 

5. The residual vector based on this gain matrix is
solved (Equation (11)); 

6. Steps (3) to (5) are repeated, until the residual
vector correction value is less than a given
threshold value. 

 

This process is illustrated as a schematic in
Figure 1. 

 
4. EXPERIMENTAL ANALYSIS 

The observational data and precision products
provided by IGS station BJFS in China were used to
evaluate the proposed method in this study.
Specifically, the observations of 1,000 epochs on
August 29, 2010 during the period of 00:00–08:20
comprised our sample dataset. The sampling interval
was 30 s. The MW/TECR method (Liu, 2011) was
used to detect and repair the cycle slip in these
original observations. Pre-processing of these data
indicated that few inherent outliers occurred before
300 epochs; hence, these data were used as simulation
data to verify our proposed algorithm. The data in the
range of 300 to 1000 epochs contained many
divergent outliers, which were identified using the
traditional Kalman filter algorithm. 

To test the validity of our algorithm, the
coordinates  of   this  IGS  station  at  the  SOPAC
site was taken as the true values
(http://sopac.ucsd.edu/sector.shtml). Moreover, the
true value was compared with the coordinates
determined using different algorithms. The Minimally
Detectable Bias(MDB) (Kouba and Héroux, 2001)
used by many scholars to determine outlier size gave
values of 3 cm and 4 m for the carrier phase and
pseudorange observations in this dataset, respectively.

As the first step, we added outliers of a certain
size to the PRN14 satellite data during the 100th
epoch to determine the influence of outliers on the
final positioning result. Figure 2 shows both the
innovation and the residual values for the raw data of
the carrier phase and the pseudorange with added
outliers of 0.1 and 10 m for the signal satellite in the
100th epoch, respectively. The innovation and the
residuals vectors are subject to Gaussian distributions.
In addition, the innovation vector of the carrier phase
is defined at the decimeter to meter-level, whereas the
residual is defined at the centimeter-level. In contrast,
the innovation vectors of pseudorange and its
residuals are defined at the meter-level. The
innovation values of all satellites in the carrier phase

Fig. 1 The proposed RKF flow chart. 

are similar within the same epoch; however, the
innovation vectors and residuals of satellites with
outliers are abnormal, when the carrier phase contains
0.1 m-outliers. We can determine the location and size
of these outliers based on the innovation value of the
carrier phase containing these outliers. However, this
innovation vector cannot be derived accurately when
many outliers are detected. Unlike the innovation
vector, residuals can be clearly detected, even when
the observation data of a satellite contains outliers, as
shown in Figure 2a (2). Finally, the residual vectors of
all satellites show marked changes (Fig. 2a (2)), when
0.1 m small outliers occur in the carrier phase
observation values of a single satellite. This result
suggests that all satellite residuals are correlated to
a certain extent.  

Figure 3 depicts the robust factor of the
innovation and the residual vectors. The innovation
values of all satellite carriers are similar within the
same epoch, when the carrier phase observation value
is very precise. In this case, we cannot separate
outliers from correct observations effectively when
there are many outliers present; hence, the robust
factor of the innovation vector cannot resist the effects
of outliers. Given the low-accuracy of pseudorange
observations, both innovation vectors and residual
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a) Value of the carrier phase observation with 0.1 m-outliers. 
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b) Value of the pseudorange observation with 10 m-outliers. 

Fig. 2 Comparison of the innovation vectors and the residuals for observations with outliers. 

To demonstrate the effectiveness of our
algorithm, different schemes were used to explore
outliers of a specific size in the 100th epoch; we
carried out the following modifications to the original
dataset: 
1. The carrier phase had 0.1 m-outliers added to its

values;  
2. The pseudorange had 10 m-outliers added to its

values; 
3. The carrier phase observations had additional

0.5 m-outliers, and the pseudorange had 50 m-
outliers added to their values. 

 

The following algorithms were used to compare
and analyze the original and modified datasets that
with or without outliers: 
Scheme 1: Data were processed using a standard
Kalman filter. 
Scheme 2: Data were processed using the RKF based
on innovation vectors. 
Scheme 3: Data were processed using the RKF based
on residuals, involving decorrelation and iteration for
the residual vector and its robust factor. 

vectors can still be detected effectively, and the
number of satellites with outliers can be readily
identified. The process of determining correlations
among the robust factors of the residual vector is
relatively simple (Fig. 3a (2)); therefore, we are able
to eliminate the influence of this vector and its robust
factor. 

Figsures 4a and 4b display the residual vector
and its robust factor after decorrelation using
Equations (17) and (18). The correlation between the
residual vector and its robust factor is greatly reduced
using the L transformation, showing that the
decorrelation between the L matrix and the residual
vector is more effective than other correlations. In
contrast, the L matrix based on the covariance of the
residual vector is not very accurate. Thus, the method
shown in Figure 1 will greatly weaken the residual
vector and its robust factor. 

Figsures 5a and 5b exhibit the residual vector
and its robust factor, after the decorrelation and
iteration proposed in this study. The correlation
between the residuals of each satellite in the carrier
phase and its robust factor is eliminated. 
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b) Value of the pseudorange observation with 10 m-outliers. 
 

Fig. 3 Comparison of the robust factor determined from the innovation vectors and the residuals of
observations with outliers 

Fig. 4 The residual vector and its robust factor for the carrier phase after the decorrelation process. 
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outliers. The innovation vector was insensitive to the
carrier phase outliers, suggesting that scheme 2 is
ineffective against small outliers occurring in highly
accurate observations. The coordinate deviations in
the scheme 3 were generally small (Fig. 5), suggesting
that the correlation among the carrier phase
observation values of various satellites is greatly
reduced by this scheme. In theory, the accuracy of
scheme 3 is higher than scheme 2, although scheme 2
is better at addressing outliers. 

Table 1 presents the results of these three
schemes, showing the deviation of the estimated
coordinate, given outliers to the 100th epoch of the
raw data. The standard Kalman filter was clearly
ineffective against outliers, and the effect of the
0.1 m-outliers in the carrier phase observations on
the position parameters was much stronger than the
10  m-outliers in the pseudorange observations.
Scheme 2 dealt robustly for the pseudorange
observations with outliers, but showed large
deviations for the carrier phase observations with
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Fig. 5 The residual vectorand its robust factor for the carrier phase after decorrelation and iteration. 

Table 1 Coordinate deviations resulting from different schemes on observations having outliers. 

Schemes The size of added outliers 
The coordinate deviation 

X/mm Y/mm Z/mm 

Schemes 1 

Carrier phase 0.1m; 0 37 46 

Pseudorange 10m; 3 2 2 
Carrier phase 1m, pseudorange 
100m; 

29 395 484 

Schemes 2 

Carrier phase 0.1m; 0 19 24 

Pseudorange 10m; 0 0 0 
Carrier phase 1m, pseudorange 
100m; 

0 -1 -1 

Schemes 3 

Carrier phase 0.1m; 0 0 -1 

Pseudorange 10m; 0 -1 0 
Carrier phase 1m, pseudorange 
100m; 

0 -1 -1 

 

satellites may also contain outliers of various sizes.
The following three schemes were used to investigate
the PPP problem, with the solution to the coordinate
time series shown in Figure 7. Figures 7a, 7b, and 7c
show X, Y, and Z directions, respectively. 
Scheme 4: Data processed using the standard Kalman
filter. 
Scheme 5: Data processed using the RKF based on
residual, with decorrelation for the residual and its
robust factor. 
Scheme 6: Data processed using the RKF based on
residuals, with decorrelation, and iterations for its
residual and robust factor. 

Scheme 5 can effectively resist the few outliers
in observation values occurring before 300 epochs,
because this scheme reduces the weight of most of the
observed values. In contrast, the coordinate solution
has little effect after 300 epochs. The RKF does not

Our results show that the coordinate deviations
resulting from introduced outliers are mainly
influenced by carrier phase observations. Figure 6
shows the residual time series of 3D coordinates
obtained from the three schemes described above in
the 100th epoch, when 0.1 m-outliers were introduced
in the original carrier phase observation data. The 3D
coordinate residuals of schemes 1 and 2 show
a marked change in the 100th epoch. In contrast,
scheme 3 did not undergo such a large change at this
point, showing that it can effectively resist the effect
of such outliers. Thus, scheme 3 can effectively resist
the influence of a single outlier in a single satellite
observation. 

Above content, we analyzed and compared the
different schemes applied to a single satellite
observation set. The actual measured data contained
many outliers within the same epoch; different
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Table 2 Comparison of the precision and accuracy of schemes 4, 5 and 6. 
 

scheme STD RMS 

 X/mm Y/mm Z/mm X/mm Y/mm Z/mm 

scheme 4 81  112  93  121  111  82  
scheme 5 7  20  16  6  91  93  
scheme 6 10  15  16  12  26  62  

 

effectively and accurately than any other traditional
RKF method with unequal precision observations. 
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