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ABSTRACT 
 

 

We estimated the common seasonal signal (annual oscillation) included in the Global Positioning
System (GPS) vertical position time series by using Multichannel Singular Spectrum Analysis
(MSSA). We employed time series from 24 International GNSS Service (IGS) stations located in
Europe which contributed to the newest ITRF2014 (International Terrestrial Reference Frame).
The MSSA method has an advantage over the traditional modelling of seasonal signals by the
Least-Squares Estimation (LSE) and Singular Spectrum Analysis (SSA) approaches because it
can extract time-varying and common seasonal oscillations for stations located in the considered
area. Having estimated the annual curve with LSE, we may make a misfit of 3 mm when a peak-
to-peak variations of seasonal signals are to be estimated due to the time-variability of seasonal
signal. A variance of data modelled as annual signal with SSA and MSSA differs of 3 % at
average what proves that the MSSA-curves contain only time-varying and common seasonal
signal and leave the station-specific part, local phenomena and power-law noise intact. In
contrast to MSSA, these effects are modelled by SSA. The differences in spectral indices of
power-law noise between MSSA and LSE estimated with Maximum Likelihood Estimation
(MLE) are closer to zero than the ones between SSA and LSE, which means that MSSA curves
do not contain site-specific noise as much as the SSA curves do.  
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Blewitt et al., 2001; van Dam et al., 2001; Dong et al.,
2002; van Dam et al., 2007; Tregoning et al., 2009;
Davis et al., 2012; Jiang et al., 2013). Dong et al.
(2002) showed that approximately 40 % of the
observed annual oscillations in the Up component
may be explained by the joint contribution of pole tide
effects and various loadings (ocean tidal and non-
tidal, atmospheric or ground water). Klos et al. (2017)
proved that environmental loading models
(atmospheric, hydrological and ocean non-tidal) are
characterized by annual signal of amplitudes of up to
12 mm in vertical direction. 

In general approach, seasonal oscillations are
represented by the sum of sinusoids with annual and
semi-annual cycles which are usually modeled by
using Least Squares Estimation (LSE) (Blewitt et al.,
2001; Collilieux et al., 2007; van Dam et al., 2007;
Bogusz and Figurski, 2014; Bogusz and Klos, 2016),
which means that obtained seasonal signals are
characterized by the constant amplitudes and phases in
time. In fact, real seasonal signals observed by GPS
are modulated over time. Bennett (2008) proved that
seasonal oscillations are characterized by time-
variable amplitude and that neglecting the decadal

1. INTRODUCTION AND MOTIVATION 

Mathematical model of Global Navigation
Satellite System (GNSS) position time series is
composed of the initial value, linear trend, seasonal
signals and stochastic part. Seasonal changes stem
from real geophysical effects and artefacts (e.g. Dong
et al., 2002; Wu et al., 2003; Ray et al., 2008;
Collilieux et al., 2012). Dong et al. (2002) grouped the
main contributors to seasonal signals in Global
Positioning System (GPS) time series into three
categories. The first one arises from gravitational
excitation. The second category includes the
phenomena associated with thermal expansion of
bedrock and wind shear. Also, part of this category are
atmospheric pressure, non-tidal oceanic changes and
continental water storage. The last is related to various
system errors that cause noticeable variations in
estimated station’s positions. Penna and Stewart
(2003), Stewart et al. (2005) and Penna et al. (2007)
proved that each un- or mismodelled sub-daily
variability can propagate to several spurious long-
period features in GPS time series. Nowadays, it is
widely acknowledged, that part of seasonal
oscillations results from surface mass loading (e.g.
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MSSA approach to determine common seasonal
signals and microdeformations at the Akutan active
volcano from GPS data. They proved that MSSA is an
appropriate tool to extract common oscillations from
GPS position time series and to separate seasonal
signals from noise. Against this background, the main
question that motivates our research is whether MSSA
is the optimal method to investigate the common
seasonal oscillation in GPS time series and also, to
deliver only those frequencies which are significant
for a set of analysed stations, separating them from
site-specific and local effects.  

This research paper is organized as follows.
Initially, in Section 2, we describe the detailed
methodology of the MSSA. Section 3 is a short
description of data we used in our research. In Section
4, we apply MSSA for GPS vertical position time
series and present the results. We discuss the lag
window size which is a key problem before
implementing the MSSA approach. We investigate the
possibility of extracting time-varying signals and
common variations from a set of time series and
underline the main properties of MSSA. Then,
MSSA-derived signals are compared to the signals
obtained by using LSE and SSA.  

 
2. MULTICHANNEL SINGULAR SPECTRUM 

ANALYSIS 

Multichannel (or Multivariate) Singular
Spectrum Analysis (MSSA) is a non-parametric tool
for simultaneous analysis of a set of time series
characterized by common structures. This approach is
based on the classical Karhunen-Loève expansion and
it is an extension of the SSA method (Ghil et al.,
2002; Broomhead and King, 1986a, 1986b; Allen and
Robertson, 1996; Raynaud et al., 2005). Broomhead
and King (1986b) were the first who proposed to
make use of MSSA in the context of nonlinear
dynamics. Over the last two decades, this approach
has become a widely used tool in different fields e.g.
climatology, oceanography, economics, biomedical
sciences (Ghil et al., 2002; Allen and Robertson,
1996; Hassini and Zhigljavsky, 2009; Golyandina and
Zhigljavsky, 2013; Zhang et al., 2014). As a uni-
variate method, MSSA allows to decompose the time
series into its spectral components. 

The main advantage of this method over other
methods (e.g. SSA and LSE) is the ability to extract
common seasonal signals, common trends and
common noises from multivariate time series. The
method is based on the determination of the
eigenvalues and the eigenvectors of the covariance
matrix, and on the reconstruction of the time series. 

As a natural extension of SSA, MSSA includes
two complementary stages: decomposition and
reconstruction. The starting point of MSSA is the
embedding procedure. We have L  time series with N
data points. The window of length M  can be moved
by each single observation for individual time series: 

variation may cause the bias of velocity estimates.
Freymueller (2009), Tesmer et al. (2009) and Bogusz
et al. (2016) proposed to use non-parametric methods
as stacking and clustering to determine time-varying
annual oscillations from GPS time series. Davis et al.
(2012) applied a Kalman filter approach to extract
seasonal variability. They explored implications for
modelling and noise analysis of stochastic seasonal
processes by studying the form of Power Spectral
Density (PSD). Recently, Xu (2016) used Cross
Wavelet Transform (XWT) to examine the
relationship between GPS height residuals and mass
loadings. The XWT-based semblance analysis
confirmed that the annual oscillations result from a
combination of the geophysical signals and systematic
errors. 

The purpose of this research is to investigate the
capability of Multichannel Singular Spectrum
Analysis (MSSA) to determine common seasonal
signal  for a set of time series. The method we use is
a  natural extension of the classical Karhunen-Loève
method (Karhunen, 1946; Loève, 1945) and it is based
on the orthogonal transformation which is a popular
choice for geoscience analysis to reduce data
dimensionality. MSSA is also a special case of
Singular Spectrum Analysis (SSA) accessible for
multivariate time series. Up till now, methods based
on the orthogonal transformation were used to deliver
the time-varying curves. Zerbini et al. (2013) applied
Empirical Orthogonal Functions (EOFs) and Singular
Value Decomposition (SVD) to analyze data collected
at the stations located in Europe. They investigated
the inter-annual variability of GPS coordinates,
atmospheric pressure, terrestrial water storage and
gravity time series obtained with GRACE gravity
mission. The SSA approach was applied to investigate
the non-linear station motions from DORIS-derived
time series (Khelifa et al., 2012) or to determine
modulated seasonal variations within weekly GPS
time series (Chen et al., 2013). In the latter, the
authors proved that SSA has the ability to extract
time-variable seasonal signals (annual and semi-
annual) and non-linear trend from GPS time series.
More recently, Xu and Yue (2015) used Monte Carlo
SSA (MCSSA) to extract the time-variable seasonal
signal from daily GPS position time series and
conducted statistical analysis on the colored noise.
MSSA, which we employ in this research, has been
only recently used in geodesy field. Rangelova et al.
(2010) used MSSA to study the water mass changes
for GRACE monthly data, and to model the glacial
isostatic adjustment (GIA) signal. Thereafter,
Rangelova et al. (2012) analyzed a 6-year, weekly
GRACE time series and hydrological models, using
MSSA  to  extract non-periodic mass variations. Zhu
et al. (2016) applied MSSA to find the significant
inter-annual oscillations in glacier mass by using
GRACE data from Central Asia. They determined the
inter-annual oscillations with period of 6.1 years and
2.3 years. Finally, Walwer et al. (2016) used the
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Principal Components represent the projection of
the original time series onto the eigenvectors. 

The MSSA approach is an extension of classical
Principal Component Analysis (PCA), but both of
them differ in their character. In the PCA method
( 1M = ), a covariance matrix is simply a spatial
covariance function of data. However, in MSSA,
a covariance matrix is augmented by time-lagged
covariance functions (Kim and Wu, 1999). The main
advantage of MSSA eigenvectors over PCA
eigenvectors is the ability to identify oscillatory
behaviour in time because of oscillatory pairs (two
eigenvectors of a pair correspond to the same period)
(Groth and Ghil, 2011).  

According to Plaut and Vautard (1994),
harmonic oscillations in time series can be identified
by the following three properties of MSSA: (a) two
consecutive eigenvalues explain almost the equal
amount of variance, (b) two EOFs of a pair of modes
correspond to almost the exact frequency and are in
quadrature (sine and cosine), and (c) associated
Principal Components are in quadrature. 

The last step of the MSSA algorithm is
a reconstruction procedure in order to compute
Reconstructed Components (RCs) using previously
calculated Principal Components and Empirical
Orthogonal Functions. The k-th Reconstructed
Components (RCs) at time t  for channel l  is defined
by the following formulas (Plaut and Vautard, 1994): 
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(8)

In the MSSA process, if we sum up all the
individual RCs, information is not lost. Nevertheless,
the MSSA method is a special type of filtration if we
choose particular RCs. In our study, these selected
RCs were associated with annual signals. 

 
3. DATA 

We used daily GPS height time series from
24 stations located in Europe (Fig. 1). They were
derived from Network Solution produced by the
International GNSS Service (IGS) and contributed
(Rebischung et al., 2016) to the newest realization of
the International Terrestrial Reference System
(namely ITRF2014, Altamimi et al., 2016). Employed
position time series were not shorter than 10 years
with the maximum length of 23 years. Initially, we
conducted the pre-analysis to remove offsets, outliers
and gaps. Offsets were removed using epochs defined
by IGS. In order to detect and remove outliers we

( ){ }: 1, , , 1lX t t N l L= ≤ ≤                                   (1)
 

In this process, we receive a trajectory matrix for
individual time series (Broomhead and King, 1986a,
1986b; Allen and Robertson, 1996; Ghil et al., 2002): 
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The dimension of the trajectory matrix of each
time series is 'N M× , where ' 1N N M= − + . The

multichannel trajectory matrix D  can be defined as: 
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This full augmented trajectory matrix has L M⋅
columns of length 1N M− +  (Groth and Ghil, 2011).
Using obtained trajectory matrix, the grand lag-

covariance matrix CD
  can be computed: 
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The dimension of the grand lag-covariance
matrix is ( ) ( )L M L M⋅ × ⋅ . Each of the element of the

lag-covariance matrix is given by (Ghil et al., 2002):  
 

, ' '

1
C X Xt

l l l lN
=

′
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The method we applied to compute the grand
lag-covariance matrix was proposed by Broomhead
and King (1986a) and is known as the BK algorithm. 

In the second step, we conducted the
diagonalization of the grand lag-covariance matrix
applying the Singular Value Decomposition (SVD)

obtaining eigenvectors Ek  (also called Empirical

Orthogonal Functions – EOFs) and eigenvalues kλ  by

formula: 
 

Λ E C ET=                                                  (6)
 

where:  

Λ  – matrix which contains eigenvalues kλ , 

E  – matrix which contains particular eigenvectors Ek . 

It is important that eigenpairs ( kλ , Ek ) have to be

sorted in descending order of eigenvalues. Using the
obtained eigenvectors, we calculated the k-th Principal
Components (PCs) which are a single-channel time
series (Ghil et al., 2002): 
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Fig. 1 Layout of the GPS permanent stations which
position time series were employed to the
analysis. 

used the Interquartile Range rule (IQR). One of the
requirements of either SSA or MSSA is that time
series are continuous. Following that, the gaps in GPS
time series were interpolated assuming a combination
of white noise and mathematical model of series
estimated with LSE. The scatter of time series
(standard deviation) was iteratively determined in
order to ensure that the variance of data was the same
to that before interpolation. Adding the mathematical
model caused that we did not introduce any artificial
modulation in amplitude. MSSA also requires
a common range of observations, thus a data time
span ranging from 2003.08 to 2013.98 was chosen. In
this research, we only focus on vertical changes of
GPS position series as the time-variability of those
data is the greatest. Naturally enough, presented
methodology can be also successfully applied to
horizontal changes.  

 
4. RESULTS 

4.1. MSSA  
The MSSA approach has to be preceded by

a choice of lag-window size M  that defines the ability
to distinguish between two spectral peaks (Ragelova
et al., 2012). If M  is too small, the coarse resolution
may cause several neighbouring peaks in the spectrum
of the signal (Vautard et al., 1992). However, too
large M  values will split the peak into several
components with neighbouring frequencies.
Golyandiana and Zhigljavsky (2013) proposed to
select a lag-window size M  that is an integer multiple
of the period of interest, if it is recognized. In the case
of SSA, Chen et al. (2013) proved that two or three
years lag-window is suitable for most of GPS time
series. In our previous research (Gruszczynska et al.,
2016), we applied Akaike Information Criterion (AIC,
Akaike, 1974) to choose the optimal lag-window size
when the SSA technique was implemented. A 3-year
length lag-window was optimal to determine time-
varying annual oscillations. In the case of MSSA,

Fig. 2 The 1st and 2nd EOFs of the Up topocentric
changes for the VIL0 station. 

Rangelova et al. (2012) also chose a 3-year lag-
window (156 weeks) to extract annual and semi-
annual signals from the GRACE gravity field
solutions. Walwer et al. (2015) chose a  400-day lag-
windows to extract the annual signal from GPS time
series.  

In this research, we chose a 3-year lag-window
size M  to determine the common seasonal oscillation
(annual) for a set of employed stations. Figure 2
shows the 1st and 2nd EOFs which correspond to
annual period for VIL0 (Vilhelmina, Sweden) station.
These curves of Empirical Orthogonal Functions are
in quadrature. Whereas, the 3rd and 4th EOFs have the
frequency of 0.12 and 0.18 cpy (cycle per year),
respectively. This means they contain the long-term
changes or the non-linear long-term variability. They
are located prior to semi-annual signal (5th and 6th

EOFs) with a frequency of 2 cpy what means that
their contribution to the common signal is higher than
the one arising from semi-annual curve. This in turn
means that the semi-annual signal may not be as
evident for a set of employed stations as the annual
curve is. In this study, we focus on annual signal (1st

and 2nd EOFs), that is why we left out the 3rd, 4th and
higher EOFs with similar variance. Their modelling
falls outside the scopes of this paper.  

Using the obtained eigenvectors, we calculated
the k-th Principal Components (PCs) which are
a single-channel time series. We applied the Welch’s
periodogram (Welch, 1967) to determine the
frequency of particular eigenvalues. Figure 3 shows
the 1st and 2nd PCs which are related to annual signal
for all stations. Each of the Principal Components
contains common characteristics of all employed time
series. This property allows computing common
seasonal signals for all stations. In fact, the curves of
our interest have the frequency around 1 cpy
(365.25 days). Due to insufficient length of data, the
annual signal we modelled is a comb of all changes
around one year. For example, to reliably resolve one
tropical and one draconitic years in spectral domain,
we would need 25.6 years of data. Consequently, in
this research, whenever we mention annual signal, we
mean all changes around one year.  
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Fig. 3 The 1st and 2nd PCs of the Up topocentric
changes  for  a  set   of   employed  stations.
A slight modulation in annual changes can be
noticed. 

Fig. 4 The 1st and 2nd RCs of the Up topocentric
changes for VIL0 station. 

For each of the estimated Principal Component
(representing the pattern of the common signal) we
assigned the corresponding eigenvalue which
represents the variance explained by this mode.
Analysis of the particular eigenvalue increases the
possibility to investigate and interpret the seasonal
signals. 

The Reconstructed Component (RC) can be
created using Principal Components and Empirical
Orthogonal Functions estimated previously. If we sum
up all of the individual RCs, we will obtain the
original time series. Each station’s annual signal
occurs in the 1st and 2nd Reconstructed Component
due to the highest contribution into analysed signal.
Figure 4 shows the first and the second Reconstructed
Components (annual signal) for the Up component of
VIL0 station. For all stations, common seasonal
oscillations were estimated by summing up the 1st and
2nd Reconstructed Components.  

Figure 5 represents the original time series and
the reconstructed time series (annual oscillation) for
VIL0 and BUCU (Bucuresti, Romania) stations. For

VIL0 station the estimated annual signal fits the
original data very good for entire data. A slight
modulation in amplitude of VIL0 series which was not
covered by MSSA curve can be noticed between 2006
and 2010. This modulation may arise from local
phenomena which is not reflected in a common
seasonal signal modelled with MSSA. The filtered
signal fits well the original time series of BUCU
between 2009 and 2014. However, few discrepancies
between model and original data can be noticed.
Period of 2003-2007 is slightly overestimated by
MSSA-curve, while period of 2007-2009 is a little bit
underestimated. This might mean that BUCU is
affected by local phenomena in the period of 2003-
2009 which are in fact not reflected in other time
series employed in this analysis. On the other hand,
this lack of fit may likewise arise from a long-term
non-linearity explained by 3rd and 4th RCs. Due to
above, the MSSA-curve which contains common
seasonal signals may not exactly match all changes
within individual data, but is mainly created basing on
common changes of employed data.  

Fig. 5 Original time series (grey line) and MSSA-reconstructed seasonal signal (black line) for VIL0 (left) and
BUCU (right) stations. 
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linearity is followed by semi-annual signal and then,
consecutively by noise. The difference in explained
variance between by the 3rd, 4th, 5th, 6th and the
consequtive modes is very small, therefore, we only
determine the annual signal in this study. The SSA-
modelled curves may contain real seasonal changes
that are common for entire set of data we employed,
but may also be affected by station-dependent or local
oscillations which were not distinguished between
certain modes. As can be easily noticed from Figure 7,
we are not able to sufficiently resolve between semi-
annual signal and noise, which is following 5th and 6th

modes. Or, the variance of noise is as high as the
variance of semi-annual signal and therefore, some
power may be filtered through consecutive modes.
Summing up, the SSA-modelled curve will match all
time-varying changes in individual series, but also
may contain some part of noise. The MSSA-modelled
curves due to the character of MSSA will contain only
time-varying common signals that arise from real
large-scale geophysical changes or artefacts related to
the mismodelling of Earth Orientation Parameters
(EOP) or satellite antenna phase centre (APC) and
will leave the station-specific or local part intact. The
investigation of the origin is out of the scope of this
paper.  

It can be noticed from Figure 7 that a percentage
of variance modelled as annual signal with SSA and
MSSA differs of 3 %. It means, that 3 % of variance
modelled as annual signal using SSA for VIL0 is
a station-specific or a local annual variation due to
local hydrology or any other local phenomena. In its
turn, this percentage is not included and not explained
by the joint annual signal estimated for a set of
employed stations. Finally, the MSSA-modelled
curves will not be affected by station-specific or local
changes or station-specific character of power-law
noise and therefore will only contain the joint seasonal
changes. 

In order to depict the main advantages of the
MSSA method over SSA, we compared the computed
signals for GPS height time series using the first ten
Reconstructed Components. Original detrended GPS
position time series are shown in Figure 8 in grey for
VIL0 and VIS0 (Visby, Sweden) stations. The MSSA-
and SSA-modelled curves are plotted in black. Clearly
noticeable is the fact that SSA-modelled curve
contains both station individual signal and noise.
Especially, VIS0 station is affected by clear noise
when the Reconstructed Components from 1st to 10th

are summed up. It is important to emphasize that the
first Reconstructed Components reflect the highest
variance regarding to the complete variability of each
time series. MSSA-curves are much smoother than
SSA since they focus only on common signal that can
be observed for a set of series. In contrast to signals
determined by using SSA, the first ten Reconstructed
Components reflect the highest variance for selected
set of time series. 

4.2. MSSA VS LSE 
To demonstrate the main properties of the MSSA

method, we compared the seasonal signals for all
analysed stations derived using MSSA and LSE. For
the employed stations, the implementation of the
MSSA approach allows to estimate common seasonal
oscillation which is varying over time, whereas the
LSE approach estimates seasonal curves individually
for each station with no changes in their amplitude
over time.  

Figure 6a presents the stacked original detrended
GPS height time series for all of employed stations,
while Figure 6b shows annual signal derived using
LSE for all stations. The last one (Fig. 6c) presents the
annual time-modulated signals determined using
MSSA. 

Due to the parametric character of the LSE
approach, we can extract seasonal signals which are
characterised by constant amplitudes and phases
(Fig. 6b) which is the obvious disadvantage of this
method. In reality, seasonal oscillations in geodetic
time series are not constant over time (e.g. Chen et al.,
2013). The results (Fig. 6c) reveal that MSSA can
extract common time-varying seasonal pattern from
time series. We observed that the time-changeable
oscillations derived with MSSA are characterised by
higher amplitude at the beginning and at the end of
common data span. The positive peak value is equal to
7.7 mm in 2003.6 while, in 2003.1, the negative peak
value is equal to -8.3 mm. If we estimated time-
constant oscillations, we may make a misfit of 3 mm
when a peak-to-peak variations of seasonal signals are
to be estimated. 

 
4.3. MSSA VS SSA 

As it was previously stated, MSSA is an
extension of the SSA to the case of multivariate time
series. The majority of the MSSA algorithm steps are
similar to the steps of univariate approach. It is
notable that this method differs in terms of the
structures of the trajectory matrix and its
approximation (Zhang et al., 2014). In the case of
SSA, the trajectory matrix is a straightforward Hankel
matrix, as for MSSA – a block Hankel matrix
(Hassani and Mahmoudvand, 2013). 

Figure 7 shows the variance of data explained by
certain modes of SSA and MSSA for VIL0 (SSA) and
all employed stations (MSSA). In case of VIL0, the
modes of SSA present annual signal (1st and
2nd modes, period of 365.25 days), non-linear long-
term trend (3rd and 4th modes, period of 3043.7 and
2029.2 days, respectively) and semi-annual signal
(5th and 6th modes, period of 182.62 days). The
periods of modes were estimated with Welch
periodogram. The highest variance was found for
annual signal, which contributes into the total variance
of data in almost 23 %. Then, the non-linearity
exceeds the semi-annual signal and contributes in
almost 2 % into the total variance of data. The non-
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Fig. 7 Variance of data explained by certain modes of SSA for VIL0 station and MSSA for a set of employed
stations.  

Fig. 8 Original detrended GPS time series are represented in grey for VIL0 and VIS0 station in the Up
component. Then, reconstructions of the signals using the first 10 components for SSA (a, c) and MSSA
(b, d) are presented. 

one year. However, both curves are estimated as being
constant over time. Both SSA and MSSA provide
time changeable curves. SSA removes more power
from the seasonal frequency band than MSSA. This
arises from the fact that the SSA approach models
each of time series separately. Therefore, all local
effects which leaked through consecutive modes are
included in the reconstruction. 

Figure 9 presents the PSD estimated with Welch
algorithm for BUCU and VIL0 station. Power of
original data is plotted in black, powers estimated
after LSE- (blue), SSA- (brown) and MSSA-modelled
(red) curves were removed are also plotted on the top
of original data. Original data shows evident
oscillations of 1 and 2 cpy. Power of residuals after
LSE was implemented shows a reduction of peaks of
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Fig. 10 Differences in spectral indices (left) and amplitude (right) of power-law character between SSA and
MSSA in comparison to LSE. The closer the difference is to zero, the smaller is the difference between
employed method and LSE. 

contain lots of noise which is filtered out from
neighbouring modes. When MSSA is applied, the
only seasonal changes that are being modelled are the
ones arising from large-scale phenomena. No station
individual noise or local signal are being modelled. 

As was already shown in previous papers, the
stochastic part of GPS position time series is close to
flicker noise (e.g. Klos et al., 2016). The main aim of
this study is to model the common seasonal
oscillations with no influence on the stochastic part of
data. We should focus on modelling of real changes
and remain the noise intact. We estimated the
differences in spectral indices and amplitudes of
power-law character estimated for residuals of LSE,
SSA and MSSA using Hector software (Bos et al.,
2013) (Fig. 10). The differences in spectral indices
between MSSA and LSE are closer to zero than the
ones between SSA and LSE. It means that MSSA
curves are not affected by noise as much as the SSA
curves are. SSA RCs contain some of the power
which leaked through neighbouring modes. MSSA is
not suffering from this problem. Estimates of common
seasonal signal provide that we only model the time-
varying large-scale phenomena and not local effects
including noise and site-dependent variations. The
differences in amplitudes of power-law behaviour
between methods we employed and LSE were smaller
after SSA was applied. It means that the standard
deviation of data decreases when SSA-modelled curve
was removed. So, we modelled and removed more
variations with SSA method than with MSSA
approach.  

Finally, we estimated the uncertainties of
velocities when seasonal oscillations were removed by
using LSE, SSA and MSSA (Table 1). According to
Bos et al. (2008) the velocity uncertainty has to be
calculated using the values of spectral indices (κ) and
amplitudes (APL) of coloured noise: 
 

5. DISCUSSION AND CONCLUSIONS 

In this research, we delivered an approach to
compare the Multichannel Singular Spectrum
Analysis (MSSA) to Singular Spectrum Analysis
(SSA) and to the widely used Least-Squares
Estimation (LSE). Both LSE and SSA provide models
estimated individually for each station, i.e. models
estimated on station-by-station basis. Although LSE
allows to model oscillations that are constant over
time, SSA takes a step further and is an appropriate
tool to estimate the oscillations that change over time.
However, seasonal signals in GPS position time series
may arise from common large-scale phenomena as
e.g. hydrology. Due to above, in the following study,
we discussed seasonal signals estimated with MSSA
and compared them with methods used so far to
determine the amplitudes of seasonal oscillations.
This signal estimated with MSSA is a common
seasonal oscillation that affects all GPS position time
series employed to this analysis. 

We proved that SSA affects the stochastic part of
GPS data and artificially removes some part of power.
Having estimated the percentage of variance
explained by consecutive modes, we showed that
some part of noise may be filtered out to neighbouring
modes. The variance explained by annual signal
estimated by SSA for individual station is
approximately 3 % lower than the one explained by
MSSA curve. In the following research, we focused
on  estimates of common seasonal changes that affect
a set of 24 IGS stations from Europe. When a joint
seasonal signal is compared to the individual
oscillations estimated separately for each of stations,
we may be misled by the value of 3 mm when peak-
to-peak values are considered.  

Time-varying curves estimated using MSSA
were also compared to the ones estimated by SSA
individually for each station. Although SSA curves
match the time series better than MSSA curves, they
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Table 1 Vertical velocities and their uncertainties determined using different approaches. 

Station 
LSE SSA MSSA 

Velocity 
[mm/y] 

Uncertainty 
[mm/y] 

Velocity 
[mm/y] 

Uncertainty 
[mm/y] 

Velocity 
[mm/y] 

Uncertainty 
[mm/y] 

ACOR -2.1 0.24 -2.2 0.20 -2.2 0.22 
ALAC -0.5 0.21 -0.5 0.20 -0.5 0.21 
VIL0 2.3 0.70 2.4 0.69 2.5 0.69 
CASC -0.4 0.29 -0.4 0.27 -0.4 0.28 
GLSV 0.0 0.84 0.0 0.83 0.0 0.82 
GOPE 0.6 1.20 0.6 1.19 0.6 1.20 
GRAZ -0.2 0.69 -0.3 0.67 -0.2 0.68 
HERS -0.1 0.43 -0.1 0.42 -0.1 0.43 
JOZE 0.2 1.07 0.2 1.07 0.2 1.06 
KIRU 6.7 1.40 6.7 1.35 7.0 1.37 
MARS -1.0 0.22 -1.0 0.22 -1.0 0.22 
MATE 0.4 0.25 0.4 0.24 0.4 0.25 
NOT1 -1.1 0.21 -1.1 0.20 -1.1 0.20 
ONSA 2.9 1.11 2.9 1.09 3.0 1.10 
POLV 0.1 1.10 0.1 1.17 0.1 1.11 
RIGA 1.0 1.68 1.0 1.68 1.1 1.68 
SASS 0.2 0.95 0.2 0.94 0.2 0.95 
SOFI -0.1 0.20 -0.1 0.19 -0.1 0.19 
TRO1 3.2 0.52 3.3 0.50 3.3 0.51 
VIL0 8.5 2.41 8.7 2.27 8.9 2.30 
VILL -2.1 0.23 -2.1 0.21 -2.1 0.22 
VIS0 2.8 2.46 2.9 2.44 3.0 2.45 
WROC -0.3 1.40 -0.3 1.39 -0.3 1.39 
ZIMM 0.4 0.54 0.4 0.52 0.4 0.53 
 

We modified Matlab-based algorithms written
by Eric Breitenberger and downloaded from
https://pantherfile.uwm.edu/kravtsov/www/downloads
/KWCT2014/SSAMATLAB/mssa/. 

This research was supported by the Military
University of Technology, Faculty of Civil
Engineering and Geodesy Young Scientists
Development funds (798/2016). 
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Fig. 6 Detrended GPS height time series (a) for all stations. Seasonal signals obtained using LSE (b) and MSSA (c) for individual stations are also presented. Same scales in
(b) and (c) are used for a better comparison. 

Fig. 9 Power Spectral Density estimated with Welch periodogram for BUCU and VIL0
station. Power of original data is plotted in black. Power of residuals after
seasonal curves were removed with LSE, SSA and MSSA are plotted in blue,
brown and red, respectively. 
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