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ABSTRACT 
 

 

Exhibition of lanthanide tetrad effect in PAAS-normalized REE patterns, and non-CHARAC
(non-CHArge-RAdius Control) behavior of Y/Ho and Zr/Hf in limestone of the Ruteh
Formation, Kanigorgeh district (NW Iran), were studied in order to understand the reasons of
occurrence of lanthanides tetrad effects. The computed values show that the third and fourth
tetrads can be used as a good and powerful geochemical tool for investigation of physico-
chemical conditions of the depositional environment of the limestones. Here, a new
mathematical-based method using polar coordination system for tetrad effect values (Tp) was
used to evaluate under studying limestone. The correlation between Tp and some geochemical
parameters revealed that the limestone was likely deposited under two different conditions. The
obtained results indicated that paleo-redox conditions, adsorption and scavenging by kaolinite
and metallic oxides, degree of detrital input, diagenesis intensity, and complexation by
polycarbonate ligands are likely the main mechanisms for occurrence of tetrad effect
phenomenon in REE distribution patterns in the limestone. This means that tetrad effect
phenomenon in REE distribution patterns of limestone can be applied as a good geochemical
indicator to evaluate the deposition conditions in limestones. 
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processes (Lottermoser, 1992 and references therein;
Bau, 1996). Despite their similar geochemical and
CHARAC behavior, these elements show many
irregular curves in their normalized distribution
patterns have been reported from various depositional
environments. This is related to non-CHARAC
behaviors of REE such as lanthanides tetrad effect
(Censi et al., 2007; Yasnygina and Rasskazov, 2008;
Peretyazhko and Savina, 2010; Feng et al., 2011;
Nardi et al.,  2012; Cao et al., 2013; Lee et al., 2013;
Abedini  et al., 2017; Rezaei Azizi et al., 2017;
Abedini et al., 2018). This phenomenon for the first
time, labeled as ‘tetrad effect’, ‘zigzag’, ‘kinked’,
and/or ‘double-double’ (Lee et al., 1994; Kawabe,
1995), reflects a unique characteristic of normalized
REE distribution patterns which was reported for the
first time in the aqueous extraction of rare earth
elements studies in natural materials (Fidelis and
Siekierski, 1966; Peppard et al., 1969).  

The tetrad effect in normalized REE distribution
patterns comprise of four groups in the REE which
reflects cusps of one-fourth, half, three-fourth, and
fully filled 4f orbital of rare earth elements (Jahn et
al., 2001). These four groups are labeled as first (La-
Ce-Pr-Nd), second (Pm-Sm-Eu-Gd), third (Gd-Tb-
Dy-Ho), and fourth (Er-Tm-Yb-Lu) tetrads. Gd is

1. INTRODUCTION 

Investigation of rare earth elements (REE)
behavior and their normalized distribution patterns
during geochemical processes provide valuable
information about carbonate sediments and paleo-
conditions of depositional environments (Sherrell et
al., 1999; Madhavaraju and Ramasamy, 1999; Webb
and Kamber, 2000; Armstrong-Altrin et al., 2003;
Madhavaraju et al., 2004; Madhavaraju and Lee,
2009; Nagarajan et al., 2011; Madhavaraju and
Gonzalez-Leon, 2012; Qiu et al., 2013; Abedini and
Calagari, 2015). The REE distribution patterns in
seawaters and marine sediments are generally
controlled by many factors such as terrestrial material
due to weathering, hydrothermal activities,
scavenging, oxygen fugacity, proximity to source
lithologies, deposition due to biogenic conditions, and
diagenesis (Murphy and Dymond, 1984; Liu et al.,
1988; Murray et al., 1991; Greaves et al., 1999;
Madhavaraju et al., 2010, 2016, 2017, 2018).  

Many investigations have been revealed that
normalized REE distribution diagrams present the
smooth curves due to lanthanides contractions,
elimination of the effect of Oddo-Harkins rule
(Cantrell and Byrne, 1987), and CHARAC (CHArge
RAdius Control) behavior of REE in the geochemical
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Fig. 1 The simplified structural zones of Iran (Nabavi, 1976). The location of the
Kanigorgeh district is also shown. 

in Iran (Takahashi et al., 2002; Minuzzi et al., 2008;
Peretyazhko and Savina, 2010; Feng et al., 2011;
Rezaei Azizi et al., 2017; Abedini et al., 2017;
Abedini et al., 2018).       

The Kanigorgeh district as a mining pit for
bauxite deposit is a part of Ruteh Formation, NW
Iran. In this district, a Ti-rich bauxite horizon of upper
Permian age and a Fe-rich bauxite horizon of Permo-
Triassic age crop out. Both horizons are hosted by
a limestone unit of the Ruteh Formation (Abedini and
Calagari, 2015). Mineralogy, petrography, major
oxides, and trace elements behavior during deposition
of the limestone were studied in details by Abedini
and Calagari (2015). In this research, we focus on the
REE behavior and mechanisms controlling the
occurrence of tetrad effect in samples collected from
the limestone of the Ruteh Formation in the
Kanigorgeh district as an environment tool for
investigation of limestone deposition. 

 
2. GEOLOGICAL BACKGROUND AND 

PREVIOUS STUDIES  

The Bukan basin comprises mostly of
sedimentary sequences from Paleozoic to Infra-
Cambrian, but there exists a stratigraphic hiatus
between Silurian to Carboniferous. The early
Paleozoic sequence is overlain unconformably by the
Permian limestone characterized by the presence of
karstic erosional features, layers of volcanic lavas, and
bauxitic-lateritic lenses (Kamineni and Efthekhar-
Nezad, 1977; Abedini and Calagari, 2013a, 2013b,
2013c). The studied limestone of the Kanigorgeh
district is located in ~20 km northeast of Bukan city,
West-Azarbaidjan province, NW Iran. Based on
classification of the structural zones of Iran (Nabavi,
1976), this district is a part of the Khoy-Mahabad
zone (Fig. 1), which comprises of various lithologies
from Lower Permian to Quaternary (Fig. 2). The

a common rare earth element which belongs to the
second and third tetrads. Despite the occurrence of
the tetrad effect phenomenon in many different
deposits and lithologies, the presence and reason for
this phenomenon is not accepted by some researchers
(Yurimoto et al., 1990; McLennan, 1994). Recently,
many studies have been conducted to find out
mechanism(s) for tetrad effect in a wide range of
environments. The results indicate that theory of the
variation of the nephelauxetic ratio (Jorgensen, 1970),
the spin energy of coupling (Nugent, 1970), electron
structure (Masuda et al., 1994), and changes in the
GFE (Gibbs free energy) (Kawabe et al., 1999) are
the main factors controlling the occurrence of this
phenomenon.    

Worldwide studies of tetrad effect phenomenon
in various lithologies and environments have revealed
that normalized REE distribution patterns display
convex (M-like), concave (W-like) and/or
combination  of  these  two forms. Convex shapes
(M - like) in the normalized REE patterns are
indicative of igneous and related systems such as
hydrothermal activities, alteration and evolution
processes (Irber, 1999; Monecke et al., 2007; Nardi et
al.,  2012; Cao et al., 2013; Lv et al., 2018; Yang et
al., 2018). In contrast, concave shapes (W-like) are
mostly observed in low-temperature deposits such as
marine sediments, limestones, cherts, phosphatic
shales, and underground waters (Masuda et al., 1987;
Akagi et al., 2004; Rossi et al., 2011; Feng et al.,
2014; Abedini et al., 2017). Another form of tetrad
effect is known as co-existence of both convex and
concave tetrad effect shapes in the same normalized
REE distribution patterns such as Tono uranium
deposit in Japan, volcanic glasses, ferromanganese
nodules and Terra Rossa in China, porphyric rocks in
Transbaikalia, cryolites in Pitinga of Brazil, fluorite
deposit, phosphatic shales, and titanium-rich bauxites
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Fig. 2 Geologic map of the Kanigorgeh district on which the lithologic units and position of the studied
profile within the Ruteh Formation is shown (after Abedini and Calagari, 2014). 

and in the Kanigorgeh district comprises of carbonate
units (Fig. 3) with a thickness of ~450 m, and was
likely deposited during the second sedimentary cycle
(Abedini and Calagari, 2015). It includes massive to
layered limestone and dolomite units with thin
interlayers of marl and outcrops of bauxitic-lateritic
lenses which the latter is indicative of sedimentation
hiatus during the formation of the limestone. This
carbonate unit varies in color from grey to dark grey.
The depositional environment of the Ruteh Formation
is similar to that of modern carbonate sediments
(Aghanabati, 2004). 

lithologies in this district from the oldest to the
youngest are as follow: (1) Sandstone and shale of the
Dorud Formation (Lower Permian). The outcrop of
this Formation is observed in a small part of the
district; (2) limestone and dolomite of the Ruteh
Formation (Upper Permian); (3) dolomite of the Elika
Formation (Triassic); (4) sandstone, shale, and
conglomerate of Cretaceous age; (5) Limestone of
Cretaceous age; (6) limestone of the Qom Formation
(Miocene); and (7) alluvium sediments (Quaternary). 

The Ruteh Formation can be considered as
a wide formation in Iran (north of the Middle East )
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Fig. 3 Lithologic section of the studied profile
within the Ruteh Formation in the
Kanigorgeh district. Location of the collected
samples for geochemical analysis is also
shown.  

The Ruteh Formation comprises of thick-layered
dolomite, medium to thick-layered dolomitic
limestone, medium to thick-layered limestone with
nodules and bands of chert, and finally medium-
layered dolomitic limestone (Fig. 3). Aghanabati
(2004) reported that the limestone of the Ruteh
Formation is generally grey and fossiliferous having
micritic texture. Based upon the type of fossils (corals,
brachiopods, and foraminifera), it was attributed to
upper Permian age (Thuringian). On the basis of field
observation, silicification, brecciation, and intense
shearing, this limestone has characteristically peculiar
geological features. Geologic aspects, mineralogy, and
petrographic features of the limestone and the
enclosed bauxite ores in the Kanigorgeh district were
studied in detail by Abedini and Calagari (2013c,
2014, and 2015). Calcite, quartz, plagioclase,
kaolinite, and Fe-oxides (hematite) are the most
abundant mineral phases in the limestone (Abedini
and Calagari, 2015).      

 
3. METHODS 

A profile across the Ruteh Formation (with
~450 m thickness) was selected to investigate the
geochemical characteristics of the limestone. Fifteen
samples (from 20 to 50 m intervals) were collected
from different parts along the profile for chemical
analyses. All the weathered materials on the surface of
samples were carefully removed. Other conta-
minations in these samples were removed by washing
in distilled water for several times and all samples
were dried at a temperature of 40 °C for 12 hours and

then powdered in an appropriate mortar (tungsten
carbide).  About 0.2 g of each sample was added to
Li-metaborate/lithium tetraborate solution. After
cooling these solutions, they dissolved in 100 ml nitric
acid (4 ml)/hydrochloric acid (2 ml). These solutions
were analyzed for major elements by using
inductively coupled plasma atomic emission
spectrometry (ICP-AES) method. Meanwhile, trace
and rare earth elements were analyzed by using
inductively coupled plasma mass spectrometry (ICP-
MS) method. The loss on ignition (LOI) values of
samples was calculated by weight loss of 1 gr of each
sample before and after heating at 950 °C for 90 min.
All these analyses were carried out in the laboratories
of ALS Chemex, Canada. All the computations and
plots were done by using MATLAB R2016b software.

 
4. RESULTS 

4.1. MAJOR AND TREACE ELEMENTS 
CONCENTRATIONS 
The major and trace elements concentrations of

the limestone are listed in Table 1 and the chemical
variations are presented in Figure 4. The SiO2, Al2O3,
and Fe2O3 contents are within the range of 11.12-
25.82 wt.%, 4.15-9.33 wt.%, and 1.35-2.71 wt.%,
respectively. The concentrations of CaO varies from
40.61 (in sample L-15) to 42.84 wt.% (in sample) L-6.
The concentration of MgO, Na2O, and K2O are low
and are within the range of 0.74-0.84, 0.03-0.27, and
0.28-0.99 wt.%, respectively. The TiO2, MnO, and
P2O5 show low concentration (Table 1). The
calculated values for LOI in the limestone vary from
of 19.91 to 39.98 wt.%.  

V, Cr, and Co in the limestone display variation
within the range of 17-41 ppm, 10-100 ppm, and 2.2-
6.9 ppm, respectively. Ni, Rb, Ba, and Sr show ranges
of 18-35 ppm, 2.4-22.1 ppm, 91.5-231.5, and 225.4-
285.2 ppm, respectively. The variation of Th and U
are in the range of 6.87-14.06 ppm and 0.31-
0.93 ppm, respectively. The concentration of Cu, Ta,
Y, Zr, Pb, Nb, and Hf display ranges of 13-45 ppm,
1.6-4.1 ppm, 3.6-8.6 ppm, 32-56 ppm, 5-7 ppm, 1.8-
7.9 ppm, and 1.1-3.2 ppm, respectively.  

 
4.2. REE+Y DISTRIBUTION AND GEOCHEMICAL 

PARAMETERS 
The concentration of REE and Y for the studied

limestone samples are listed in Table 2. The
concentration of ∑REE in majority of the samples
range from 38.38 ppm to 69.2 ppm but, two samples
(L-12 and L-13) show higher values (282.67 ppm and
124.29 ppm, respectively). The concentration of Y
varies from 32 to 56 ppm. To calculate the Pr, Ce, and
Eu anomalies the following equations were used (Bau
and Dulski, 1996; Webb and Kamber, 2000;
Nothdurft et al., 2004): 

 

Ce/Ce* = 2CeN/(LaN + PrN)                                       (1)
 

Ee/Ee* = EuN/[(LaN + PrN)0.5]                                    (2)
 

In these equations N refers to PAAS (Post-
Archean Australian Shale, Taylor and McLennan,
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Sample  
No. 

L-1 L-2 L-3 L-4 L-5 L-6 L-7 L-8 L-9 L-10 L-11 L-12 L-13 L-14 L-15 

SiO2 15.21 15.51 12.41 14.03 14.64 15.82 11.12 14.99 12.45 13.91 13.81 25.82 17.35 18.85 12.87 
Al2O3 6.08 6.25 4.96 5.51 5.74 5.33 4.15 5.41 4.98 4.98 5.52 9.33 6.62 7.54 5.15 
Fe2O3 1.39 2.03 2.18 1.51 1.84 1.35 1.92 1.51 1.81 2.71 1.69 1.51 1.45 1.58 1.65 
CaO 42.51 42.56 42.57 42.68 42.56 42.84 42.64 42.65 42.25 42.79 42.01 41.52 41.92 41.09 40.61 
MgO 0.79 0.79 0.84 0.78 0.79 0.82 0.79 0.74 0.79 0.82 0.78 0.78 0.77 0.74 0.78 
Na2O 0.03 0.06 0.09 0.04 0.06 0.03 0.04 0.03 0.07 0.07 0.11 0.17 0.14 0.22 0.27 
K2O 0.69 0.82 0.68 0.55 0.81 0.28 0.54 0.71 0.47 0.99 0.76 0.34 0.29 0.35 0.39 
TiO2 0.15 0.11 0.07 0.11 0.12 0.12 0.07 0.13 0.07 0.09 0.12 0.29 0.16 0.18 0.07 
MnO 0.06 0.04 0.03 0.04 0.05 0.06 0.02 0.04 0.02 0.04 0.04 0.04 0.04 0.04 0.02 
P2O5 0.08 0.06 0.04 0.06 0.07 0.09 0.04 0.08 0.04 0.07 0.06 0.18 0.11 0.12 0.03 
LOI 30.44 31.55 37.88 34.11 32.51 32.84 39.98 31.89 38.85 34.62 33.08 19.91 31.14 29.39 37.89 
Sum 99.99 99.81 99.87 99.74 99.81 99.5 99.31 99.95 99.74 99.28 99.68 99.37 99.71 99.71 99.48 
V 18.00 17.00 19.00 20.00 18.00 20.00 18.00 18.00 17.00 17.00 18.00 41.00 24.00 35.00 17.00 
Cr 20.00 20.00 10.00 14.00 20.00 100.00 10.00 20.00 10.00 10.00 20.00 60.00 70.00 40.00 10.00 
Co 4.60 3.90 3.10 2.90 3.90 4.50 2.60 4.30 2.90 3.20 3.20 6.90 4.40 5.00 2.20 
Ni 21.00 19.00 18.00 20.00 20.00 25.00 19.00 24.00 18.00 18.00 22.00 35.00 28.00 27.00 18.00 
Rb 7.90 6.40 6.60 5.40 6.60 10.50 3.10 8.80 2.40 6.20 8.50 22.10 9.70 12.70 3.10 
Ba 231.50 195.80 124.50 161.50 204.10 220.30 109.20 224.10 100.30 160.20 215.40 156.8 170.90 123.50 91.50 
Sr 279.20 249.30 238.70 247.20 255.20 285.20 225.40 246.10 228.20 246.30 242.90 249.5 251.40 247.20 231.50 
Th 6.87 7.82 7.89 7.45 7.98 7.13 6.95 7.54 8.21 7.84 9.67 11.32 9.21 12.74 14.06 
U 0.93 0.74 0.41 0.61 0.78 0.62 0.38 0.84 0.33 0.54 0.81 0.45 0.41 0.33 0.31 
Cu 25.00 20.00 15.00 20.00 21.00 25.00 14.00 22.00 13.00 15.00 22.00 45.00 27.00 30.00 13.00 
Ta 1.80 2.10 1.90 2.10 1.70 1.90 1.80 1.70 1.60 1.80 1.90 4.10 2.40 3.60 1.70 
Y 4.30 4.30 4.60 4.50 4.60 3.60 4.00 4.50 3.90 4.30 7.60 8.00 7.30 8.30 8.60 
Zr 34.00 37.00 35.00 38.00 38.00 32.00 37.00 35.00 38.00 38.00 47.00 51.00 45.00 53.00 56.00 
Pb 6.00 6.00 6.00 6.00 6.00 5.00 6.00 6.00 6.00 7.00 6.00 5.00 6.00 6.00 6.00 
Nb 3.90 3.20 1.80 2.80 3.40 5.10 1.80 3.80 1.90 2.10 3.60 7.90 5.40 5.90 1.80 
Hf 1.40 1.20 1.10 1.20 1.40 1.10 1.20 1.40 1.20 1.20 2.40 2.30 2.40 2.60 3.20 

 

Table 1 Concentration values for major oxides (wt%) and trace elements (ppm) in the studied limestone. 
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Fig. 4 Distribution pattern for values of oxides (wt%) in the limestone
samples of the studied district. 

 
Table 2 Concentration values for rare earth elements (REE) in the studied limestone.
 

Sample  
No. 

L-1 L-2 L-3 L-4 L-5 L-6 L-7 L-8 L-9 L-10 L-11 L-12 L-13 L-14 

La 16.01 14.02 9.88 11.82 14.51 15.41 8.88 15.54 8.27 12.09 15.11 115.11 38.36 9.85 
Ce 27.68 23.94 17.02 20.21 25.44 27.09 16.11 25.51 15.28 20.51 28.69 147.1 64.15 20.87 
Pr 2.92 2.51 1.88 2.22 2.61 2.93 1.74 2.81 1.64 2.18 2.74 2.22 2.38 1.86 
Nd 15.64 14.29 10.89 12.13 14.54 16.43 9.81 15.29 9.24 13.14 14.98 12.51 13.28 10.34 
Sm 1.79 1.65 1.24 1.38 1.65 1.83 1.11 1.74 1.05 1.49 1.71 1.37 1.45 1.16 
Eu 0.46 0.41 0.31 0.35 0.41 0.44 0.26 0.44 0.26 0.34 0.54 0.44 0.46 0.41 
Gd 1.84 1.65 1.18 1.405 1.69 1.88 1.08 1.84 1.02 1.41 1.76 1.42 1.54 1.21 
Tb 0.16 0.13 0.12 0.15 0.13 0.22 0.12 0.15 0.14 0.12 0.16 0.21 0.21 0.18 
Dy 1.16 0.99 0.69 0.88 1.02 1.16 0.64 1.11 0.63 0.81 1.08 0.91 0.98 0.75 
Ho 0.21 0.18 1.16 0.17 0.21 0.24 0.63 0.19 0.39 0.17 0.21 0.21 0.23 0.18 
Er 0.64 0.56 0.41 0.49 0.59 0.67 0.38 0.61 0.34 0.46 0.61 0.52 0.53 0.41 
Tm 0.08 0.09 0.07 0.07 0.07 0.12 0.06 0.07 0.06 0.08 0.08 0.11 0.12 0.08 
Yb 0.55 0.47 0.35 0.43 0.51 0.63 0.32 0.53 0.32 0.38 0.53 0.45 0.51 0.37 
Lu 0.06 0.08 0.08 0.06 0.06 0.12 0.06 0.06 0.05 0.09 0.06 0.09 0.09 0.06 
∑REE 69.2 60.97 45.28 51.765 63.44 69.17 41.2 65.89 38.69 53.27 68.26 282.67 124.29 47.73 

Fig. 5 PAAS-normalized (Taylor and McLennan, 1985) REE
distribution curves of the limestone samples in the
Kanigorgeh district.   
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Fig. 7 Bivariate plot of Y/Ho ratios vs. Ho values of
the limestone samples within the Ruteh
Formation in the Kanigorgeh district.  

Fig. 6 Distribution pattern for values of REE, Ce-Eu
anomalies for the limestone samples of the
Ruteh Formation in the Kanigorgeh district.  

Fig. 8 Distribution pattern for values of (a) Y/Ho
and (b) Zr/Hf ratios for the limestone samples
within the Ruteh Formation in the
Kanigorgeh district. The CHARAC field is
from Bau (1996).  

1985). The Ce anomalies in the limestone samples are
within the range of 0.88-1.27. The Eu anomalies vary
from 1.10 to 1.69. The Y/Ho and Zr/Hf ratios of the
limestone samples display a wide range from 3.97 to
61.43 and 17.5 to 31.81, respectively.  

 
5. DISCUSSION 

5.1. REE DISTRIBUTION AND GEOCHEMICAL 
PARAMETERS  
The REE signatures in limestones can be

affected by some mechanisms such as input of
terrigenous particles, Mn- and/or Fe- oxides,

hydrothermal activities, diagenetic processes, and
mineral phases such as phosphates (Elderfield et al.,
1990; Bau et al., 1996; Byrne et al., 1996; Bolhar et
al., 2004; Tang et al., 2013; Madhavaraju et al., 2016,
2017). The PAAS-normalized (Taylor and McLennan,
1985) REE distribution patterns and chemical
variations (∑REE, Ce, and Eu anomalies) of the
limestone samples of the Ruteh Formation are
illustrated in Figure 5 and Figure 6, respectively.   

As shown in Figure 5, the PAAS-normalized
REE distribution pattern of the studied limestones is
characterized by remarkable tetrad effect phenomenon
(zigzag pattern). Meanwhile, the Ce and Eu anomalies
and ∑REE of the limestone display a wide variation
from depths of 290 m (sample L-11) to 370 m (sample
L-15) in the Ruteh Formation (Fig. 6).  

Geochemically trivalent pairs such as Y and Ho
represent similar behavior during geochemical
processes in various geological environments such as
seawater column and magmatic/hydrothermal systems
(Shannon, 1976; Gadd et al., 2016). Moreover,
fraction between these isovalent pairs due to different
surface complex stabilities and rapid scavenging of
Ho by Fe- and/or Mn- (hydro-) oxides lead seawaters
to have Y/Ho atios of 50-60 (Koschinsky et al., 1997;
Minami et al., 1998; Madhavaraju et al., 2010).
Previous studies shown that the Y/Ho ratio rapidly
decreases in marine deposits due to input of
terrigenous source particles (i.e., felsic and basaltic
composition) into sedimentary environment (Bau et
al., 1996; Webb and Kamber, 2000; Bolhar et al.,
2004). Based upon the analytical data (Table 3), the
Y/Ho ratios of the limestone samples in this district
vary from 3.97 to 61.43 (Fig. 7).  

As Figure 8a displays, the Y/Ho ratios remain
relatively low in samples from (L-1) to (L-10) and
show sudden increase in samples from (L-10) to (L-
15). Therefore, it can be deduced that input of
terrigenous source materials in the lower part of Ruteh
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Table 3 The calculated geochemical parameters of the limestone samples.
 

 
 

L-1 L-2 L-3 L-4 L-5 L-6 L-7 L-8 L-9 L-10 L-11 L-12 L-13 L-14 L-15 

Eu/Eu* 1.19 1.17 1.20 1.18 1.15 1.11 1.12 1.15 1.18 1.10 1.46 1.48 1.44 1.62 1.69 

Ce/Ce* 0.93 0.92 0.91 0.91 0.95 0.93 0.94 0.88 0.95 0.91 1.02 1.13 1.27 1.12 1.12 

Y/Ho 20.48 23.89 3.97 26.47 21.9 15 6.35 23.68 10 25.29 36.19 38.1 31.74 46.11 61.43 

Zr/Hf 24.29 30.83 31.82 31.67 27.14 29.09 30.83 25.00 31.67 31.67 19.58 22.17 18.75 20.38 17.50 

T1 0.23 0.27 0.27 0.25 0.24 0.24 0.23 0.26 0.22 0.28 0.21 0.50 0.36 0.20 0.19 

T3 0.24 0.28 0.71 0.17 0.32 0.15 0.61 0.27 0.48 0.28 0.24 0.14 0.15 0.15 0.13 

T4 0.17 0.12 0.21 0.05 0.10 0.18 0.16 0.14 0.19 0.25 0.15 0.33 0.38 0.31 0.27 

Fig. 9 Bivariate plot of Zr/Hf vs. Y/Ho ratios of the
limestone samples within the Ruteh
Formation in the Kanigorgeh district. The
CHARAC field is from Bau (1996). 

Formation at Kanigorgeh district were probably
played an important role in decreasing Y/Ho ratios,
whereas the upper part of the stratigraphic column
was likely affected much less by terrigenous source
materials and hence shows a remarkable increase in
Y/Ho values.          

The tetravalent elements such as Zr and Hf also
show similar behavior which is due to their analogous
ionic charge and radius in various geological
environments (Bau, 1996). Non-CHARAC ratios of
such geochemically isovalent pairs can be caused by
tetrad effect phenomenon and could be used as
geochemical indicator for environmental conditions
and source identification (Bau, 1996). The Zr/Hf
ratios of the limestone samples in this district vary
from 17.5 to 31.82 (Table 3) which is characterized by
two populations (Fig. 8b). The first population
belongs to samples from L-1 to L-10 (in lower part of
the Ruteh Formation) which has Zr/Hf ratios within
the CHARAC field. The second population represents
samples from L-11 to L-15 (in upper part of the Ruteh
Formation) with higher Zr/Hf ratios, and display non-
CHARAC behavior. As illustrated in Figure 9, the
samples represent non-CHARAC behavior except for
samples L-2, L-4, and L-10. This indicates that the
limestone was precipitated in a non-CHARAC
depositional environment.  

Bau (1996) suggested that non-smooth or
irregular curves of normalized REE distribution
patterns and non-CHARAC behavior of
geochemically isovalent pairs, despite their coherency,
in geological environments can be related to
geochemical processes such as tetrad effect
phenomenon.  

 
5.2. THE SIZE OF TETRAD EFFCET PHENOMENON 

Various mathematically-based methods have
been used to compute the size of tetrad effect
phenomenon in normalized REE distribution patterns
(Irber, 1999; Monecke et al., 2002). Based on these
methods, the size of each tetrad effect is computed
and symbolized as T1, T2, T3, and T4 representing for
the first (La-Ce-Pr-Nd), second (Pm-Sm-Eu-Gd), third
(Gd-Tb-Dy-Ho), and fourth (Er-Tm-Yb-Lu) tetrad
group, respectively. By applying the concentration
values of four lanthanide elements in each tetrad
group, The size of Ti (i=1, 2, 3, and 4) is computed by
the following equation (4) proposed by Monecke et al.
(2002):   
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In this equation, the concentration values of 1st,
2nd and 3rd, and 4th elements in each tetrad group are
shown as CAi, CBi, CCi,, and CDi, respectively. If all
lanthanide elements of each group are on a straight
line, the Ti value will be zero indicating that no tetrad
effect occurred. But, if the Ti value is not zero, it
means that the second and the third lanthanide
elements depart from the straight line between the first
and fourth lanthanide elements of an individual tetrad
group and can be interpreted as tetrad effect
phenomenon. Since Pm does not occur in natural
geological environments, it is customary that the size
of Ti is calculated for three lanthanide tetrad groups,
and the T2 for the second tetrad is not computed
(McLennan, 1994). If a striking Ce anomaly exists in
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Fig. 10 PAAS-normalized REE distribution pattern of the limestone samples within the Ruteh Formation
showing the computed size of the first, third, and fourth tetrads by following method of Monecke et al.
(2002). (a) L-1 to L-3, (b) L-4 to L-6, (c) L-7 to L-9, (d) L-0 to L-11, and (e) L-12 to L-15.  

Fig. 11 Variations of (a) T1, (b) T3, and (c) T4 tetrad effect values of the studied limestone samples within the
Ruteh Formation in the Kanigorgeh district. Horizontal lines indicate zone of variation in tetrad effect
trend as an indicative of changing in depositional conditions.  
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Table 4 The calculated size and shape of tetrad in each tetrad segments of the limestone samples.  

  First tetrad Third tetrad Fourth tetrad 
Sample No. Size Shape Size Shape Size Shape 
L-1 0.23 Concave 0.24 Concave 0.17 Convex 
L-2 0.27 Concave 0.28 Concave 0.12 Convex 
L-3 0.27 Concave 0.71 Concave 0.21 Concave 
L-4 0.25 Concave 0.17 Concave 0.05 Convex 
L-5 0.24 Concave 0.32 Concave 0.10 Convex 
L-6 0.24 Concave 0.15 Concave 0.18 Concave 
L-7 0.23 Concave 0.61 Concave 0.16 Concave 
L-8 0.26 Concave 0.27 Concave 0.14 Convex 
L-9 0.22 Concave 0.48 Concave 0.19 Concave 
L-10 0.28 Concave 0.28 Concave 0.25 Concave 
L-11 0.21 Concave 0.24 Concave 0.15 Convex 
L-12 0.50 Concave 0.14 Concave 0.33 Concave 
L-13 0.36 Concave 0.15 Concave 0.38 Concave 
L-14 0.20 Concave 0.15 Concave 0.31 Concave 
L-15 0.19 Concave 0.13 Concave 0.27 Concave 

 

Fig. 12 Scatter plots of the size of T3 vs. T4 tetrad
effect in the limestone samples of the Ruteh
Formation. Zone A includes samples with
remarkably higher values of T4 and very low
T3 tetrad effect. Zone B comprises the
samples with lesser values of T4 and a wide
variation in T3 tetrad effect.   

the first group of lanthanide elements, the size of T1

must be ignored in calculation processes (Monecke et
al., 2002).  

The computed size of T1, T3, and T4 for
limestone samples of the Ruteh Formation are listed in
Table 3. The size of tetrad effect and form of curves in
each tetrad segment are represented in Table 4. The
first tetrad values vary from 0.19 to 0.50 (Fig. 11a),
and all the data points have concave tetrad effect
form. The third tetrad values have a range of 0.13-
0.71 (Fig. 11b), and the data points display concave
shape. The size of fourth tetrad varies from 0.05 to
0.38 (Fig. 11c), and the data points show both concave
and convex tetrad effect forms. As shown in
Figs. 10a-e, the first tetrad of all limestone samples of
the Ruteh  Formation  represents  typical concave (W-
 shape) curve in PAAS-normalized REE distribution

patterns which is indicative of low-temperature
depositional conditions. Based on the results of
computed tetrad effect values (Table 4), it is clear that
the size of tetrad effect in the limestone has different
variation trends.  

 
5.3. CORRELATION BETWEEN THE SIZE OF 

TETRAD EFFECT WITH GEOCHEMICAL 
PARAMETERS   
Figure 12 illustrates the correlation between the

size of T3 and T4 in the studied samples. The samples
are categorized in two different populations with
various T3 and T4 values. The first population includes
samples from L-12 to L-15 with a very narrow T3 and
remarkably higher T4 (see Zone A in Fig. 12). In
contrast, the second population (see Zone B in Fig.
12) includes samples from L-1 to L-11 with a wide
variation in T3 and lower T4. In fact, Figure 12
represents Cartesian coordinate system in which each
point within the system has a unique x (T3) and y (T4).
The third (T3) and fourth (T4) tetrad effects were
combined to quantify a new parameter so-called polar
values by using the polar coordinate system. In the
polar coordinate system at each point on a plan is
determined by r (distance from the point of origin)
and θ (an angle from reference direction). In this
research, the relation between T3 and T4 tetrad effect
in Cartesian coordinate system and their polar values
can be calculated by using the following equations: 
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Tp = r × tg θ                                                               (7)
 

The Tp is a combination of both T3 and T4 tetrad
effect values in polar system which affects the
distribution of REE in geochemical systems. In polar
coordinate  system  each  point on a plan has a unique
r × tg θ. To quantify correlation between third and
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Table 5 The calculated values for r, tg θ, and Tp for
the limestone samples of the Ruteh
Formation. 

Sample No. tg θ r Tp =  r × tgθ 
L-1 0.71 0.29 0.21 
L-2 0.43 0.30 0.13 
L-3 0.30 0.74 0.22 
L-4 0.29 0.18 0.05 
L-5 0.31 0.34 0.10 
L-6 1.20 0.23 0.28 
L-7 0.26 0.63 0.17 
L-8 0.52 0.30 0.16 
L-9 0.40 0.52 0.20 
L-10 0.89 0.38 0.34 
L-11 0.63 0.28 0.18 
L-12 2.36 0.36 0.84 
L-13 2.53 0.41 1.03 
L-14 2.07 0.34 0.71 
L-15 2.08 0.30 0.62 

fourth tetrad effect values with other geochemical
parameters, the Tp of each sample was computed
(Table 5).        

Correlation between the size of Tp versus Ce
anomaly, Eu anomaly, Y/Ho ratio, and Zr/Hf ratio of
the studied samples are illustrated in Figures 13a-d.
As shown in these figures, the samples can be divided
into two separate groups reflecting different
depositional conditions for each group. This
hypothesis is consistent with non-CHARAC behavior
of geochemically similar Y, Ho, Zr, and Hf elements
(Fig. 9) which can be related to tetrad effect
occurrence.  As shown in Figure 13a, the samples are
divided into two zones. The differentiation of Ce
anomalies on the basis of Tp is indicative of variation

in physico-chemical conditions during precipitation of
the limestones. Ce as a redox sensitive sensitive
element can be used as an indicator for evaluation of
oxygen fugacity of depositional environment
(Klinkhammer et al., 1983; Hannigan et al., 2010;
Kraemer et al., 2016; Dill et al., 2011, 2014, 2016).
The oxidation of soluble Ce3+ (reduced) into less
soluble Ce4+ (oxidized) under oxic seawaters causes
negative Ce anomalies, whereas alkalic waters rich in
carbonates likely cause the stabilization of
polycarbonate-Ce complexes in seawaters (Bau and
Dulski, 1996; Madhavaraju and González-León,
2012) and hence remarkably positive Ce anomaly in
sediments such as the Lake Van in Turkey (Möller
and Bau, 1993). This means that the limestone of the
Zone A (L-12 to L-15) was precipitated likely under
higher oxygen fugacity conditions from
polycarbonate-rich alkalic waters. Meanwhile, the
constant concave (W-form) tetrad effects in PAAS-
normalized REE distribution patterns of the Zone A
(L-12 to L-15 samples) and pronounced tetrad effect
in the computed Tp values can be attributed to more
stable depositional conditions. Therefore, it can be
concluded that the Zone A (L-12 to L-15) was
precipitated likely under relatively oxic shallow
polycarbonate-rich alkalic seawaters. In contrast, the
Zone B (L-1 to L-11 samples) displays coexisting
concave (W-form) and convex (M-form) shapes of the
tetrad effects and lesser Tp values with negative Ce
anomaly values (except in sample L-11). This
complicated history is indicative of deeper
depositional environment with suboxic conditions
during the development of this part of the Ruteh
Formation.             

Fig. 13 Scatter plots the size of Tp vs. (a) Ce anomaly, (b) Eu anomaly, (c) Y/Ho ratios, and (d) Zr/Hf ratios of
the limestone samples. See text for details of Zone A and Zone B.    
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effect phenomenon are not very clear (Censi et al.,
2007; Monecke et al., 2007; Inoue et al., 2009). But,
based on recent investigations, some geochemically-
based models such as mineral phases during fractional
mineralization, complexes in solutions, fluid-rock
interaction, weathering, and hydrothermal alteration
have been proposed by many researchers (Pan, 1997;
Monecke et al., 2007; Badanina et al., 2010; Feng et
al., 2011; Wu et al., 2011; Nardi et al., 2012; Abedini
et al., 2017; Rezaei Azizi et al., 2017). 

Generally, during igneous activities such as
fractional mineralization and interaction of rising
hydrothermal fluids with rocks along the channelways
(faults and/or fractures), and complexing with ligands
in hydrothermal systems are distinguished by convex
(M-shape) tetrad effect curves in normalized REE
distribution patterns (McLennan, 1994; Irber, 1999;
Monecke et al., 2007). These authors suggested that
anomalous behavior of Eu and occurrence of tetrad
effect phenomenon are attributed to solution-rock
interactions. Moreover, REE sorption on clay minerals
can generate convex (M-shape) tetrad effect in the
products of deposition (Feng et al., 2014). The XRD
results carried out by Abedini and Calagari (2015) in
some of the studied samples revealed that besides
carbonates, quartz, plagioclase, and kaolinite were
also abundant as rock forming mineral phases in the
limestone samples of the Ruteh Formation. Existence
of pronounced convex (M-shape) curves in PAAS-
normalized REE distribution patterns of these samples
indicate that mineral phases and solution-rock
interaction during deposition of the limestone were
likely the main factors for the occurrence of tetrad
effect phenomenon.   

The concave or W-shape tetrad effect
phenomenon is indicative of low temperature deposits
such as marine carbonates, underground waters,
phosphorites, phosphatic shales, cherts, low
temperature hydrothermal deposits (Kawabe, 1996;
Akagi et al., 2004; Feng et al., 2011; Feng et al., 2014;
Abedini et al., 2017). In addition, recent studies
indicate that concave form of the tetrad effect
phenomenon can be attributed to distribution of REE
in seawaters, diagenetic processes, and REE-
complexation (Minami et al., 1998; Cunha et al.,
2012). Based on the current and previous data in this
district, it can be deduced that the shallow marine
depositional environment, diagenetic processes, and
redistribution of REE by complexing ligand such as
polycarbonates are likely some other mechanisms for
deposition and distribution of REE and tetrad effect in
the limestone.  

Based on bivariate diagrams of Tp values versus
Fe2O3 (Fig. 14a), Al2O3 (Fig. 14b), V (Fig. 14c), and
Rb (Fig. 14d), all the studied samples are divided into
two separate populations (1) Zone A and (2) Zone B.
The Zone A represents samples from L-12 to L-15
and the Zone B from L-1 to L-11 (see Fig. 14a). This
separation can be related to the scavenging of rare
earth elements by Fe-oxides which in turn as
a controlling parameter played a significant role for
generation of the tetrad effect in marine sedimentary

The scatter pattern of the size of Tp versus Eu
anomaly in the samples indicates that there are two
distinct zones in the Ruteh Formation, (1) zone A
representing samples with high Tp and Eu anomalies
and (2) Zone B with lesser Tp and Eu anomalies. Eu as
an oxidation sensitive element among REE, and is
strongly dependent on temperature of depositional
conditions (Möller et al., 1998; Mondillo et al., 2015;
Dill, 2016, 2017). In fact, at temperatures > 200°C
Eu3+ is reduced to mobile Eu2+. Therefore, reduced Eu
(Eu2+) preferentially remains in solutions and causes
negative anomaly in chemical/biochemical preci-
pitates. In contrast, in low-temperature environments
the immobile Eu3+ prevails and concentrates in
chemical/biochemical carbonate precipitates, hence
displaying  positive  Eu anomalies. As shown in
Figure 6, Eu anomaly values of the samples increase
from L-11 to L-15. Abedini and Calagari (2015)
suggested that, both diagenetic processes and the
presence of plagioclase in the limestone of the Ruteh
Formation were two important factors for generation
of the positive Eu anomaly. Furthermore, according to
Figure 13b, the samples of the Zone A (L-12 to L-15)
are characterized by high Tp values and Eu anomalies,
whereas the samples of the Zone B (L-1 to L-11)
display a contrasting trend. Thus, it can be deduced
that the existence of plagioclase as a mineral phase
were probably played more pronounced role for
generation of Eu anomalies in the Zone A than the
diagenetic processes during development of the
limestone under very low-temperature sedimentary
conditions.   

The bivariate plots of Tp versus Y/Ho (Fig. 13c)
and Zr/Hf (Fig. 13d) ratios of the samples demonstrate
two discrete groups of Tp tetrad effect values within
the  limestone.  The  samples  in  the Zone B (L-1 to
L-11) are characterized by low Y/Ho, high Zr/Hf
ratios and high Tp tetrad effect values but in the Zone
A, they exhibit contrasting trend, high Tp tetrad effect
and Y/Ho ratios and low Zr/Hf ratios. Both
populations of the samples support the idea that
depositional conditions of the Ruteh Formation had
different characteristics. The Y/Ho ratios of the
samples are relatively low (Fig. 8a) in samples from
L-1 to L-10 which may be due to adsorption of Ho on
Fe- and/or Mn- oxides in the depositional environ-
ment. This ratio remains relatively constant in samples
from L-11 to L-15 which may be pertained to relative
predominance of Y over Ho. This inference is
supported by the results of tetrad effect values (Tp) of
the samples which reflect two depositional conditions
for the Ruteh Formation (Fig. 13c). Moreover, similar
groups of samples can also be observed in scatter
diagram of Zr/Hf ratios versus Tp tetrad effect values
(Fig. 13d). According to the aforementioned results, it
can be deduced that the limestone of the Ruteh
Formation in the Kanigorgeh district was likely
deposited under two different conditions. 

 
6. MECHANISMS FOR TETRAD EFFECT  

Many studies have shown that the main
mechanisms and processes for occurrence of tetrad
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Fig. 14 Scatter plots the size of Tp vs. (a) Fe2O3, (b) Al2O3, (c) V, and (d) Rb concentrations of the limestone
samples. See text for details of Zone A and Zone B.   

Fig. 15 Scatter plots of the Tp tetrad effect values versus (a) CaO (wt.%) and (b) U (ppm) in the studied
limestone samples within the Ruteh Formation. See text for details of Zone A and Zone B.  
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5. The separation of two zones (Zone A and Zone
B) in the bivariate plots of Tp tetrad effect values
versus Fe2O3, Al2O3, CaO, V, U, and Rb can be
due to the scavenging of REE by Fe-oxides and
input of varying amounts of detrital materials as
a possible mechanism for the tetrad effect
occurrence.  
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