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ABSTRACT 
 

 

Surface deformation due to underground exploitation affects the safety of overlying structures.
Forecasting can predict risks to surface structures and facilitates actions designed to improve
their resilience and reduce the potential impact of mining activities. However, forecasting
accuracy is limited. Therefore, in practice, model parameters are determined within a certain
margin to ensure that critical values of deformation indicators for surface objects are not
exceeded. For economic reasons, it is important to minimize these margins while also ensuring
that safety is maintained.  
One important factor influencing forecasting accuracy is the uncertainty in deformation model
parameters used for calculations. Therefore, it is critical to adopt an appropriate methodology for
determining and addressing the uncertainties in deformation model parameters used in
forecasting.  
This study presents methods for estimating the Knothe's model parameters needed to forecast
surface deformation caused by underground mining and defining the uncertainties in those
forecasts. Depending on the parameter uncertainties, one of two methods for propagation is
proposed: the Monte Carlo method or the law of propagation of uncertainty. Using this approach,
it is possible to account for uncertainty and reduce forecast margins. A case study of hard coal
mining in the Upper Silesian Coal Basin region of Poland is presented. 
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determine the parameters. For forecasting in mine
areas with a dearth of sufficient geodetic observations,
simple assumptions are made based on historical
average values for model parameters (Kowalski,
2005). These assumptions can result in large
discrepancies between the forecasts and true
deformation. Therefore, it is critical to adopt an
appropriate methodology for determining and
addressing the uncertainty in deformation model
parameters used in forecasting (Hejmanowski and
Malinowska, 2009).This study focuses on determining
the uncertainties in Knothe's deformation model
parameters, propagating these uncertainties, and
evaluating their effects on forecast results. The results
are illustrated with a case study on hard coal mining in
the Upper Silesian Coal Basin region of Poland. The
purpose of the paper is to show how source of the
Knothe's model parameters affects subsidence
prediction uncertainty. The paper aims to answer
a questions:  
How much uncertainty there is in subsidence
prediction based on Knothe's model parameters from
regional observations from USCB in general or from
region of given mining plant? 
How measurements carried out during earlier longwall
operation affect uncertainty of estimates of Knothe's

1. INTRODUCTION 

Surface deformation resulting from underground
exploitation is a direct hazard to overlying structures.
Basing on forecasts of deformation indicators, one can
predict the at-risk surface structures. Such predictions
can inform and facilitate modifications to increase the
resilience of overlying structures, optimize the
distances between mining sites and structures, and/or
determine whether to use filling materials (Kratzsch,
1983; Kwiatek, 2007; Peng, 1992; Whittaker and
Reddish, 1989).  

Forecasting accuracy is limited. Therefore, in
practice, indicators are determined within certain
margins to ensure that critical deformation values do
not exceed the safety thresholds for surface structures.
For economic reasons, it is extremely important to
minimize these margins while also ensuring that
safety is maintained (Ostrowski, 2006).  

All forecasts in the article were conducted with
use of the Knothe's model (Section 3.1) used in many
countries and in particular in Poland. One important
factor affecting forecasting accuracy in general and
particularly the Knothe's model is the uncertainty in
the deformation model parameters used in calculations
(Hejmanowski and Malinowska, 2016). This
uncertainty depends directly on the method used to

Cite this article as: Gruszczynski W, Niedojadlo Z, Mrochen D: Influence of model parameter uncerainties on forecasted subsidence. Acta
Geodyn. Geomater., 15, No. 3 (191), 211–228, 2018. DOI: 10.13168/AGG.2018.0016 
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Table 1 Exploitation characteristics in the eastern Upper Silesian Coal Basin, Poland. 

Longwall Mining depth [m] Operating height Width  Length  Mining start Mining end 
    [m] [m] [m] date date 

A1 640 4.7 210/250 690 2012/04 2013/01 
A2 595 4.7 250 320 2013/04 2013/09 
B 630 4.6 250 610 2014/06 2015/04 
C1 600 4.5 180 515 2015/01 2016/06 
C2 595 4.3 250 120 2016/07 2016/09 

Fig. 1 Sketch of the mining area with completed
exploitation and locations of observation lines
in the eastern Upper Silesian Coal Basin,
Poland. 

al., 2016; Khan et al., 2014) are often utilized to make
observations of surface deformation. Unmanned aerial
vehicles (UAVs) (Gruszczyński et al., 2017) have also
been employed to conduct studies on surface
deformation. However, in Poland and many other
countries, conventional measurements from points
stabilized on observation lines remain the most
common technique for characterizing land surface
changes. On the example of such observations, the
methodology of determining the uncertainty of model
parameters and deformation indices was illustrated. 

 
2. RESEARCH SITE DATA 

Analyses were carried out for influences of
mining operations conducted on the northern slope of
the primary basin in the eastern Upper Silesian Coal
Basin (USCB). The deposits are characterized by beds
with strata deposited monoclinically in individual
tectonic blocks and separated by larger fault-type
dislocations. 

The main notable feature is the presence of
carbon deposits in layers composed primarily of
sandstone layers of relatively high stiffness. This
relates to the characteristic manner in which the
effects of mining are revealed during mining on
subsequent longwalls and seams. Initiating
exploitation where it has not yet been conducted
results in significant movement of the terrain surface
only after a significant exposure of the layer ceiling.
Mining the first longwall in the initial stage often
produces only slight movements of the terrain surface.
Only a significant length of longwall mining or initial
mining of another neighboring longwall results in
a subsidence of the surface close to the expected
value. 

 
2.1. MINING OPERATIONS 

Mining was conducted by collapsing the roof of
five longwalls (Fig. 1). Longwalls A1, B, and A2
form a complex of excavated deposit space situated
under the observation lines. These longwalls were
mined from the second quarter of 2012 to the end of
the first quarter of 2015. 

Longwall C1 was excavated west of the initial
north section of the N–S line. Its exploitation began at
the end of 2015 and was completed in the second
quarter of 2016; it has been extending to the west,
gradually moving away from the observation line. The
most recent mining in the area occurred in the C2

model parameters and what is even more important
uncertainty of subsidence prediction? 

This article deals with forecasting of subsidence
at the final (later) stage of excavation based on earlier
observations (i.e., predicting the development of
deformation based on information known at the time
of forecasting). This article is not concerned with
modeling, which only illustrates the distribution of
deformation for optimal parameter values. Most past
studies (Cui et al., 2013; Hu et al., 2011; Huayang et
al., 2002; Quinta, 2012; Lian et al., 2011; Liao, 1993;
Nicieza et al., 2005; Polanin, 2015; Weifeng and
Xiaohong, 2013) deal with modeling the phenomenon
(i.e., determining how the phenomenon developed
when the optimum parameter values have already
been determined based on observations made after the
end of exploitation). Although the Monte Carlo
method has been used in past studies (Kwinta, 2010;
Hejmanowski and Malinowska, 2016; Niedojadło,
2008; Niedojadło and Gruszczyński, 2015), none of
these studies analyzed subsidence, and no attempt was
made to verify the results of calculations using
measurement data. 

Satellites (e.g., InSAR, DInSAR, and TimeSAR)
(Chaussard et al., 2014; Herrera et al., 2007; Grzovic
and Ghulam, 2015; Perski et al., 2009; Qu et al., 2014;
Zhang et al., 2015) and aerial imagery (LiDAR) (Ao et
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Table 2 Dates at which the measurement series were
performed in the eastern Upper Silesian Coal
Basin, Poland. 

Series Time of measurement 

0 2009/03 
A 2014/04 
B 2015/04 
C 2016/09 

longwall; mining in this longwall began in the third
quarter of 2016 directly at the north end of the N–S
line. The development of this longwall parallel to
longwall C1 (from the north) extends to the west. The
mining of this longwall had not been completed as of
September 2016. The characteristics of each longwall
are presented in Table 1. 

 
2.2. OBSERVATIONS 

In the immediate area of mining operations
height measurements were performed at points along
two observation lines located above the completed
mining operation, as shown in Figure 1. The north-to-
south (N–S) observation line has 72 points that are
spaced almost uniformly every 22.9–28.3 m. The total
length of the line is approximately 1780 m. The west-
to-east (W–E) observation line consists of 83 points
spaced at 12.3 to 30.2 m. The total length of the line is
just over 2055 m. 

The subsidences observed on points from these
lines were used to determine Knothe model
parameters and their uncertainties in section 4.3. 

The measurements were performed between
March 2009 and September 2016. This period covers
the mining operation time of four of the described
longwalls (Table 1); the analyzed observation lines are
located within the range of influence of these
longwalls. The mining of the C2 longwall was only
initiated at the end of the measurement period.
Measurements along the N–S line made in mid-
September 2016 cover the initial development stage of
this longwall. Consequently, the analyzed results for
this longwall do not show the effect of final mining on
the surface. This caveat only applies to the initial
north portion of the N–S line, up to a maximum
distance of 400 m.  

The measurement periods are summarized in
Table 2. These measurements allow the subsidence of
Series A (A1+A2), Series B (A1+A2+B) and Series C
(A1+A2+B+C1+C2) to be determined, as shown in
Figure 1. Only the total subsidence (i.e., the
subsidence calculated against the baseline measured in
March 2009) was analyzed in this study. The
measurement periods were selected so that the
influence of time on the subsidence caused by the
mining of subsequent longwalls could be neglected. 

 
 

3. CALCULATION METHODS 

3.1. KNOTHE'S MODEL 

Many methods have been developed to predict
surface deformation (Kratzsch, 1983; Peng, 1992;
Whittaker and Reddish, 1989). Generally, these
methods can be divided into two groups: numerical
and empirical methods. Numerical methods digitize
the medium as a continuous material, including the
finite element method (Tajduś, 2009; Unlu et al.,
2013) and finite difference method (Alejano et al.,
1999; Nengxiong et al., 2013; Shahriar et al., 2009) or
a non-continuous material, such as the discrete
element method (Barbato et al., 2016; Salmi et al.,
2017). Another noteworthy method is cellular
automata theory (Lian et al., 2011; Saavedra-Rosas
and Drage, 2014; Sikora, 2016).  

The second group includes the profile function
(Asadi et al., 2004; Díez and Álvarez, 2000; Torano et
al., 2000; Waddington and Kay, 1995), graphical
method (NCB, 1975), application of artificial neural
networks (Ambrožič and Turk, 2003; Gruszczyński,
2007; Weifeng and Xiaohong, 2013) and influence
function (Álvarez-Fernandez et al., 2005; Cui et al.,
2013, 2000; Ghabraie et al., 2017; Huayan et al.,
2002; Liao, 1993; Nicieza et al., 2005; Ren et al.,
1987, 2014; Sheorey et al., 2000; Singh and Singh,
1998). Based on large collections of observations, the
relationships between measurement results and
geometric conditions from a mining operation are
determined. Generally, geologic conditions are not
directly taken into account. 

In the research all calculations were made using
the Knothe model (Knothe, 1957), which belongs to
influence function method group. Knothe's model and
its modified versions (Ruhrkohle methods or SDPS;
Ehrhardt and Sauer, 1961; Karmis et al., 1987) have
been widely used to predict surface deformation in
many countries, including Australia, Czech Republic,
Germany, USA, Poland and China (Byrnes, 2003;
Doležalová et al., 2009; Ehrhardt and Sauer, 1961;
Karmis et al., 1990; Knothe, 1957; Luo and Cheng,
2009). This method is based on the assumption of
a normal distribution of influence. For the spatial
problem, the surface of the influence is given by
Equation (1): 

 

( ) ( )2 2

2 2
, exp

x ya g
G x y

r r

 +⋅  = −
  

π
,             (1)

 

where: 
a  is the exploitation coefficient, 
g  is the operating height, 

r  is the radius of main influences, and, ,x y  are the

coordinates of the influenced point. 
 

Assuming that the exploitation surface is a semi-
plane (practically, a field with a minimum
size of 2r   ͯ  2r ), the subsidence reaches a maximum
value of maxs  as in Equation (2): 
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maxT  occurs. maxT  is the inclination of the profile

at the inflection point, as described by Equation
(5): 

 

max
max

s
T

r
= ,               (5)

Taking into account Equations (5) and (3), we
obtain: 
 

max

max

H T
tan

s

⋅
=β                 (6)

 

3. The operating rim  is the result of analyzing the

subsidence basins while addressing the systematic
divergences between theoretical subsidence and
results of geodetic measurements. Knothe's model
assumes the occurrence of a subsidence of
0 5 max. s  (i.e., the inflection point of the

subsidence basin profile) over the rim of the
exploitation (Fig. 2). The displacement of
the inflection point by a certain value p  in the

direction of the exploited space is observed. In
forecasting calculations, the operating rim p  can

be defined as a function of the depth of
exploitation (Kowalski, 2007): 

 

p k H= ⋅ ,                  (7)
 

where k  is the factor of the operating rim
parameter. 
Introducing the operating rim reduces the
dimensions of the effective mining field, which is
assumed for calculation, by parallel moving the
mining edges in the working direction by p  . 

 

The values of the parameters a , tan β , and p

are constant over time for a mining operation at
a given site. However, with multiple exploitation
events, these parameters can change due to the
changes in the geo-mechanical properties of the rocks

maxs a g= ⋅ .                (2)
 

The parameter determining the dispersion of
influences r (Fig. 2) can be calculated from the
relationship in Equation (3): 

 

tan

H
r

β
= ,                (3)

 

where: 
H    is the exploitation depth, and 
β

  is the angle of main influences. 
 

There are two methods for determining the
values of Knothe's model parameters. Average values
from a mining region or mine are assumed when data
from earlier surveys are lacking (Kowalski, 2005).
Alternatively, surveys along observation lines are
used (Kwinta, 2012b). The least-squares method can
be used to determine optimal parameter values
(Białek, 2003; Kwinta, 2011) to provide a fit between
the theoretical and true subsidence.  

The meaning of the parameters in the model can
be classically conceptualized over a large mining
field, as shown in Figure 2: 
1. The exploitation coefficient a  characterizes the

mechanism for closing post-mining voids for
a given mining method (e.g., collapse of roof
mining, backfill mining, room and pillar mining).
It describes the ratio of the maximum subsidence
smax to the average mining thickness g and is
a dimensionless value that ranges from 0 to 1: 

 

maxs
a

g
= .                (4)

 

2. The tangent of the angle of main influences,
tan β , is a parameter characterizing the rock

mass and its geo-mechanical properties. Its value
is determined based on the profile of the edge of
the subsidence basin, where the maximum slope

Fig. 2 Parameterization of the Knothe's model. 
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( )´ if x///  is the derivative value, 

( )if x  and ( )1if x + are function values appropriate for

argument values of 1i ix and x +  , respectively, and

( )1i iO x x+ − is the error order for the numerically

determined derivative value. 
If the values of the partial derivatives are

collected in matrix A, the unknowns in matrix X, and
the absolute terms (i.e., those on the right side of the
equation) in the one-column matrix L, we can present
this system as a matrix script in the following form: 

 

AX L=  .                           (10)
 

This system is called a system of observation
equations. We solve it as follows. 

First, we juxtapose the Gauss normal equation
system: 

 

( )T TA A X A L=  .              (11)
 

This equation system is then solved using the
smallest squares condition: 

 

( ) 1T TX A A A L
−

= .              (12)
 

Due to the linearization of equations, the final
solution is obtained iteratively, and the corresponding
function values (subsidence) and derivatives are
determined for the values of actual parameters in the
given iteration. If the distances between the optimal
values of the unknowns and those determined in
a given step are sufficiently small, the solution errors
due to equation linearization become negligible. In
this iteration, the parameter-setting process is
concluded. The advantage of using this method is the
potential for a relatively simple estimation of solution
uncertainty (i.e., model parameter values). The
variance–covariance matrix of unknowns (parameters)
can be determined according to Equation (13): 

 

( ) 12 T
sX

A A
−

= σ ,              (13)
 

where:, 
2
sσ  is the variance of the random factor of subsidence

computed from Equation (14) as 
 

( )20

12

n

i ii
s

s s

n u
σ =

−
=

−
               (14)

 

where: 
n   is the number of observations (equations), and 
u  is the nuber of unknowns (parameters). 

The ability to estimate the uncertainty in the
unknowns and the correlation between their values is
important for assessing the forecast accuracy based on
the parameter values. It should be stressed that this
assessment is based on differences between the
modeled and observed subsidence values. The

or the possibility of residual effects from earlier
exploitation.  

The Knothe's model itself doesn't take into
account the prior mining history of the site, which is
somewhat limiting. The mining history can be
incorporated into model by gradual change in model
parameters for subsequent predictions. One of the
solutions to this problem can be an introduction of
additional parameter to the Knothe model accountable
for influence of activation of the old gobs on
deformation process (Białek, 2003). 

In addition, the effect of rock-mass dehydration
is taken into account in the model; rock-mass
dehydration is assumed to increase subsidence by
a constant value for a given mining operation. The
subsidence after removing the effects of dehydration
was analyzed. 

 
3.2. METHOD FOR ESTIMATING MODEL 

PARAMETER VALUES 

When estimating Knothe's model parameters,
currently, the most frequently used criterion
minimizes the sum of the squared differences between
observable and modeled subsidence values. Many
different algorithms are used to effectively minimize
this error function. Some algorithms do not use the
gradient of this function, whereas others require the
gradient to be determined. From a practical point of
view, these methods differ from each other in terms of
stability and speed.  

In this study, a Gauss-Newton method based on
the solution to the supernumerary system of equations
linearized using the Taylor series was used in
determination of Knothe's model parameters and their
uncertainties based on current geodetic observation
(section 3.3). The unknowns in such a system of
equations are the changes in model parameters, and
individual equations correspond to the observation of
subsidence at one point, as in Equation (8): 

 

0tan
tan

i i i
i i

s s s
a p s s

a p
β

β
∂ ∂ ∂

Δ + Δ + Δ = −
∂ ∂ ∂

,             (8)

 

where:  
, , tana p and βΔ Δ Δ  are the changes in a parameter

value in a given algorithm step, 

, ,
tan

i i is s s
and

a p β
∂ ∂ ∂
∂ ∂ ∂

 are the partial derivatives of

modeled subsidence values for model parameters of
the ith point, 

is  is the modeled subsidence of the ith point, and 
0
is  is the observed subsidence of the ith point. 

The first forward difference was used to
calculate the derivative values: 

 

( ) ( ) ( ) ( )1
1

1

´ i i
i i i

i i

f x f x
f x O x x

x x
+

+
+

−
= + −///

−
,             (9)

where: 
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 simulation results can then be analyzed using
statistical methods. 

Model runs using the Monte Carlo method were
performed for 10,000 iterations, which is considered
sufficient for accurately determining the distribution
of subsidence values at individual points and all
related statistics. 

 
3.3.2. LAW OF PROPAGATION OF UNCERTAINTY 

The assessment of function uncertainty was also
conducted using the law of propagation of uncertainty.
Versions of this law differ based on the inclusion of
the covariances of function argument values
(independent variables) and the degree of function
expansion in the Taylor series when approximating
function values.  

The law of propagation of uncertainty used in the
study was based on the Taylor series expansion of
a function using only first-degree terms and omitting
higher-degree derivatives. In calculations, the
covariances between the set parameter values were
taken into account. In this case, Equation (15)
describes the law as follows: 

 
T

S X
J J= × ×  ,                                        (15)

 

where: 

S  and 
X are the variance–covariance matrices

of predicted subsidence (or other indicators) and
parameters, respectively, and 
J  is the Jacobian of the function.  

In the specific case of propagation of
uncertainties in Knothe's model parameters right hand
side terms in Equation (15) take the following form: 

 

1 1 1

tan
. . .
. . .
. . .

tan
n n n

s s s

a p

J

s s s

a p

β

β

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 =  
 ∂ ∂ ∂ 
 ∂ ∂ ∂ 

,                          (16)
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β

σ β
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(17)
 

where: 
2
aσ , 2

tan βσ , 2
pσ  are a , tan β ,  and p   variances

respectively, and  

( ), tanCOV a β , ( ),COV a p , ( )tan ,COV pβ  are

covariances between parameters. 
Here, only subsidence uncertainties (square roots

of 
S  matrix diagonal elements) were estimated;

the covariances between them were not calculated.  
This form of the uncertainty propagation law can

provide a relatively accurate determination of the
uncertainty in deformation indicators only for

modeled values are the calculated subsidence values
for the optimal Knothe's model parameter values
based on observed subsidence values in a given
exploitation state. Any discrepancy is treated as an
additive noise of zero mean; that is, the errors are
assumed to be completely random. This means that
any systematic discrepancies between the model and
observations will also be treated as random values,
which will lead to erroneous evaluations of both the
parameter values and their uncertainties. Therefore, it
is important to include all the systematic factors in the
model and to remove them from the differences
between observed and modeled values. The
uncertainty assessment for the parameters determined
using this method is more accurate for smaller noise
values. In addition, better accuracy is obtained for
more linear relationships between parameter values
and modeled function values (subsidence). Reliable
estimates of the noise level are required to obtain
high-quality evaluations. Meeting this requirement is
directly related to the number of observations and thus
to the number of supernumerary equations of the
system to be solved. 

 
3.3. METHODS OF PROPAGATION OF MODEL 

PARAMETER UNCERTAINTIES  

There are many ways to propagate the
uncertainty in model parameters. In this study, we use
the Monte Carlo method (Metropolis and Ulam, 1949;
Ulam, 1950) and law of propagation of uncertainty
(JCGM, 2008). These two methods provide different
possibilities and generate significantly different
computing loads. Using both methods, the uncertainty
in the model parameters and model accuracy are
assumed. Model accuracy means that the model has
parameter values with no systematic discrepancy
between the determined and observed deformation
indicators. Therefore, any discrepancy between the
model and the observations is treated as noise with
a zero mean and mutually non-correlated values. 

Based on these assumptions, it is possible to
estimate the uncertainty in the predicted deformation
indicators using the aforementioned methods and to
attribute a probabilistic interpretation to them. 

 
3.3.1. MONTE CARLO METHOD 

The Monte Carlo method generally requires
considerably more computational effort than law of
propagation of uncertainty (LPU) and provides
a mechanism for generating arbitrary deformation
indicator statistics. In addition, this method can easily
operate with a large number of uncertainty parameters
and strongly nonlinear functions. 

One use of the Monte Carlo method is estimating
the probability distribution (density function), where
the arguments of the function (model) are randomly
selected, and the function values are calculated based
on sampled parameter values. The distributions from
which these parameters are drawn should be
predetermined based on previous observations. The
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 exploited panels, and geologic conditions. All
analyzed basins were formed from the collapse of
roof-mining hard coal deposits. An analysis of the
determined parameter values indicates a lack of
correlation between parameters, as well as the lack
of correlation between the parameters and depth of
exploitation. Shapiro-Wilk's test showed that for each
parameter, there is no basis for rejecting the normal-
distribution hypothesis. 

The uncertainty of forecast based on mean
parameters from the USCB region was obtained using
the Monte Carlo method. Estimates of operating rim
parameter p  was calculated according to Equation

(7). Adopted for calculations mining depth of all
longwalls (based on exploitation characteristics in
Table 1) was equal to 600 m.  

Figure 3 shows the observed and modeled
subsidences based on mean parameters and the
subsidence values for selected percentiles. The results
are presented in percentiles instead of standard
deviations because of the potential for strongly
skewed non-normal distributions of subsidence
values. In these cases, the percentile values are more
illustrative and easier to interpret than the standard
deviations. Percentile values were chosen so that 68 %
(16 %–84 %) and 95 % (2.5 %–97.5 %) of cases are
included within the intervals; these two intervals
roughly correspond to the probabilities of finding the
value of the random variable within the intervals

ss σ±  and 2 ss σ± , respectively, for the normal

distribution of the random variable. However, when
using the Monte Carlo method, the percentile values
can be selected almost arbitrarily provided that the
values of percentiles in the tail of the variable
distribution are determined less accurately than those
close to the center of the distribution. Exemplary
histograms and approximations of the distributions of
modeled subsidence values at selected points are
shown in Figure 4. 

The width of the intervals between percentiles
and discrepancy between the subsidence modeled for
the average value and observed parameter value
should be noted. The root mean square error (RMSE)
of the subsidence for mean parameter values is
±436 mm. More importantly, the widths between the
percentile intervals clearly indicate a low confidence
in the forecast. When analyzing the distributions
shown in Figure 4, in the event of skewed
distributions of random variables, the mean, median,
and mode of the value do not overlap. Therefore,
making any point estimate requires choosing the
statistics it should reflect. The forecast should provide
a mechanism for assessing the risk to the surface and

relatively small uncertainties in model parameters.
The advantage of this method is its low computational
complexity; for each parameter and point, it is only
necessary to determine the partial derivative value
once, and there is no difficulty when considering
covariances between model parameters.  

The disadvantage of this approach is the increase
in error in indicator uncertainty estimates with
increasing parameter uncertainty for nonlinear
functions. 

Equation (15) requires knowing the values of the
partial derivatives of the function with respect to its
arguments (model parameters). For simple theoretical
mining operation shapes, it is possible to analytically
determine the exact derivative values. However, in
practice (for realistic panel shapes), the analytical
formulation of the necessary equations becomes too
complex. In this case, the values of the partial
derivatives can be determined numerically. In this
study, the first forward difference is used for this
purpose 

 
4. RESULTS 

All the forecasts described in this section were
made for the surface state after all mining of the
longwalls shown in Figure 1 had finished (i.e., for
longwall conditions categorized up to the C
observation series in September 2016). The
uncertainty of a subsidence forecasts based on mean
parameters from the USCB region (section 4.1) and
general mine parameters (section 4.2) was obtained
using the Monte Carlo method. The uncertainty of the
subsidence forecast based on current geodetic
observation  (section 4.3) was obtained using law of
propagation of uncertainty. 

 
4.1. FORECASTING BASED ON REGIONAL 

PARAMETERS 

When there is a lack of sufficient geodetic
observations from the mine area of interest, forecasts
are based on mean parameters for the USCB region.
In this case, the uncertainty in the parameter values is
very high, which clearly results in very high
uncertainty in the values of the deformation
indicators. 

The mean parameter values of Knothe's model
and their uncertainties are shown in Table 3. These
values are based on values from Kowalski (2007),
who analyzed and determined Knothe's model
parameters independently for 29 subsidence basins
from many different mines in the USCB region. These
basins were formed in a number of deposits with
different depths, relative and absolute dimensions,

Table 3 Subsidence model parameters for the Upper Silesian Coal Basin region. 
 

Parameter a   tan β k   
Mean 0.80 1.92 0.10 
Standard deviation 0.12 0.28 0.05 
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Fig. 3 Observed and predicted subsidence based on parameters from the USCB region
along (a) the N–S and (b) the W–E observation lines shown in Figure 1. 

 

Fig. 4 Subsidence histograms at selected points along the observation lines obtained for parameters from USCB
region using the Monte Carlo method: points located about (a) 400 m from the beginning of the N–S line
and (b) 700 m from the beginning of the N–S line. 
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Table 4 Subsidence model parameters for the eastern Upper Silesian Coal Basin mine. 

Parameter a   tan β p [m] 

Mean 0.49 1.81 52 
Standard deviation 0.10 0.28 12 

Fig. 5 Observed and predicted subsidence based on parameters from the mine area, along (a) the N–S and (b)
the W–E observation lines shown in Figure 1. 

distributions is only an assumption and has not been
verified. Parameters from the analyzed mining
locations were independently calculated based on the
least-squares method of differences in subsidence
determined between observations and modeled values.
Individual parameters determined from one line can
be strongly correlated, while the parameter triplets (a,
tan β, and p) determined on independent lines located
in the mine are uncorrelated. Therefore, we can
assume that there is no correlation between parameter
values determined from different lines. An appropriate
statistical evaluation of Knothe's model parameters
estimated from observations in the mine area (other
than from observation lines described in Section 2.2)
is summarized in Table 4. The value of the operating
rim and its uncertainty independent of the depth of
exploitation was used because measurements from the
mine area did not confirm any dependence.  

Geodetic observations from the mine area
confirm a relatively atypical geologic structure and its
influence on surface behavior. This is best illustrated
by the difference between the average value of
parameter a, responsible for modeling the scale of the
phenomenon and estimated for the whole USCB
region (0.8), and that of the mine area (0.49). Figure 5
compares the observed subsidence with that modeled

objects related to the influences of the underground
operation. Typically, average values are used with
some margin. The subsidence values for selected
percentiles reflect this margin and facilitate estimating
the probability of a given deformation indicator being
exceeded. In practice, it is important that this margin
is minimized while ensuring that the values of the
deformation indicators are not underestimated.
Geodetic observations of the terrain in the mine area
or conducted directly over the considered exploitation
are extremely helpful for forecasting and the
associated calibration of model parameters.  

 
4.2. FORECASTING BASED ON MINE 

PARAMETERS  

A forecast using Knothe's model parameters
derived from observations from the mine area
provides narrower confidence intervals. However,
observation analysis is required from at least a couple
of the observation lines.  

In this case, observations from 11 different
excavations (and observation lines over longwall
blocks) carried out before the excavation for which
the subsidence forecast is made in other regions of the
same mine were used. The number of observations is
so small that the normality of the parameter
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Table 5 Parameters estimated using observations from the analyzed lines for successive operating stages A, B,
and C. 

Parameters A (2014/04) B (2015/04) C (2016/09) 
a  00.74 00.60 00.61 
tan β  01.35 01.76 01.72 

p  [m] 86 84 82 

Table 6 Uncertainties and correlations between parameter values estimated for mining operation stage A
(2014/04). 

Parameter a  tan β p [m] 

a  0.11 −0.46 0.98 
tan β  −0.46 0.04 −0.30 

p  [m] 0.98 −0.30 3.70 

Table 7 Uncertainties and correlations between parameter values estimated for mining operation stage B
(2015/04). 

Parameter a  tan β  p [m] 

a  0.02 −0.90 0.96 
tan β  −0.90 0.04 −0.78 

p  [m] 0.96 −0.78 2.40 

Table 8 Uncertainties and correlations between parameter values estimated for mining operation stage C
(2016/09). 

Parameter a  tan β p [m] 

a  0.02 −0.89 0.98 
tan β  −0.89 0.03 −0.82 

p  [m] 0.98 −0.82 2.50 

The uncertainty in the determined deformation
indicators was determined basing on parameter
uncertainties determined using the law method
described in Section 3.3.2. In this case, no
distributions were modeled; only the uncertainty in
the deformation indicator was estimated. The
expanded forecast uncertainty for the deformation
indicator was assumed to be three times the standard
uncertainty. Assuming a normal distribution, these
intervals correspond to approximately 68 % and 99 %
of the probability that the observed values of the
indicators will be within the intervals ss σ±  and

3 ss σ± , respectively. The distribution of this "noise"

around the predicted values will not show a normal
distribution; however, for small values of uncertainty,
the normal distribution approximation should not
introduce significant errors. 

Table 5 provides estimates of parameter values
for subsequent operating stages. Tables 6, 7, and 8
show the estimated uncertainty values for the
determined parameters (table diagonals) and Pearson's
linear correlation coefficients (apart from diagonals). 

using the Monte Carlo method and estimates of mean
parameter values and their standard deviations based
on observations from the mine area. 

Compared to the model based on USCB regional
parameters (Fig. 3), the modeled subsidence values
based on the average mine parameters approach the
observed values, and the ranges between the
percentiles clearly narrow. Therefore, using geodetic
observations for forecasting is significant and reduces
the necessary margin around the forecasted
deformation indicator values. In many cases, this type
of prepared forecast will be optimal given the
available observations. 

 
4.3. FORECASTING BASED ON CURRENT 

GEODETIC OBSERVATION 

The measured data from the N–S and W–E
observation lines (Section 2.2) were used to complete
the short-term forecasts described in this section. The
Knothe's model parameters and their uncertainties
were determined based on observations from
subsequent stages of operation according to the
method described in Section 3.2.  
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Fig. 6 Observed and forecasted subsidence for stage C (2016/09) based on parameters calculated from the same
observation line for operational stage A (2014/04) along the (a) N–S and (b) W–E observation lines
shown in Figure 1. 

Fig. 7 Observed and forecasted subsidence for stage C (2016/09) based on parameters calculated from the same
observation line for operating stage B (2015/04) along the (a) N–S and (b) W–E observation lines shown
in Figure 1. 
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Table 9 Predicted RMSE for subsidence in the mining area. 

Parameter sources Predicted subsidence RMSE [mm] 
USCB region (mean parameters) 436 
Mine region (mean parameters) 88 
Observations 2014/04 (stage A) 65 
Observations 2015/04 (stage B) 40 
Observations 2016/09 (stage C) 35 

When both estimating parameters and
forecasting future values, it is extremely important to
use a model that will not systematically deviate from
observed deformation indicator values. Forecasting
models assume an immutable set of parameters, both
spatial and temporal, from which the indicators can be
calculated as mining operations progress. In general,
this assumption is fulfilled, at least to a good
approximation. Possible deviations may result from
unknown geologic differences in the area of operation.
Such deviations may, to some extent, unpredictably
distort the forecast based on the applied model. 

Confidence intervals for deformation parameters
determined using the Monte Carlo method (i.e., based
on parameters from the USCB region or mine area)
account for variability in model parameter values.
They are based on measurements from many mines or
from different sites at a given mine; thus, the range in
model parameter values includes their variability. 

Determining parameters or making predictions
for temporary states of deformation requires
addressing the influence of time on land displacement
values. Due to the correlation between determined
parameters, the error in determining this parameter
will influence the estimated values of all other
parameters; it will also bias the forecast. For these
reasons, it is advisable to estimate parameter values
based on deformation indicator values after the ground
has settled post-mining. Nonetheless, in this case, the
problems described for the analyzed operation were
not critical, and the uncertainties in the deformation
indicators based on series B were correct.  

A broader perspective for evaluating the
estimated parameter values and uncertainty with
which they were determined uses the distribution of
RMSE changes (i.e., subsidence fitting), as presented
in Figure 9. These graphs were generated according to
Equation (18): 

 

( )2 2
minE E EΔ = − ,              (18)

 

where: 
EΔ  is the change in the RMSE value due to a change

in the model parameter values relative to the
optimum values for observations from a given
operating stage, 

E    is the RMSE value for a modeled subsidence with
respect to values determined based on
observations from a given mining stage and
model parameter values, and 

Figure 6 shows the predicted subsidence values
for stage C based on parameters and their estimated
uncertainties from stage A. Notably, there are wide
ranges in predicted subsidence. These ranges arise
directly from the early stage of the mining operation
from which the parameters were estimated and the
relatively high proportion of random factors with
respect to the systematic (modeled) subsidence
factors. During the operation stage used for
forecasting, the maximum observed subsidence was
−415 mm with an RMSE of ±29 mm. 

Figure 7 shows the predicted subsidence for
operation stage C based on the parameters and their
uncertainties determined from operation stage B.
There is a clear narrowing of the predicted subsidence
intervals compared to the forecast based on
parameters from operating stage A. This difference
has two explanations. First, the parameters in stage B
were closer to the conditions at the forecasted time.
Second, there was a large increase in the value of the
systematic subsidence factor compared to the random
noise in the observed subsidence. The RMSE for
fitting the model to observations at operating stage B
was ±36 mm with a maximum observed subsidence of
−1484 mm. 

Table 9 shows the RMSE values for the
subsidence forecasts calculated using the parameters
determined at a given stage of development. Notably,
there is a decrease in RMSE as the mining stage
approaches the target condition (i.e., the time at which
the forecast was made).  

 
5. DISCUSSION 

The results of this study show the significant
effect of geodetic observations on forecasting
accuracy. The proposed methods for estimating
forecasted indicator values can provide reliable
forecasts at any stage of exploitation. Decreasing the
forecasting margin depends on the available
observation data (i.e., resources). The forecast should
be interval-based rather than point-based; for an
interval-based forecast, certain confidence intervals
for forecasted indicators are determined, including the
uncertainty in estimated model parameter values. With
such an approach, the forecast will be safe (i.e., it will
be made with the necessary margin). This will ensure
that the values observed by the forecaster at the
chosen probability level do not exceed the forecasted
deformation indicators. 
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 Fig. 8 Distribution of increasing RMSE values for fitting the model to observation data from individual mining

operation stages A, B, and C. 

model parameters on the RMSE of the forecasted
result. 

The noise level ( minE ) had similar values for all

operating states: ±29 mm for stage A, ±36 mm for
stage B, and ±35 mm for stage C. An examination of
Figure 8 illustrates several important facts. First,
"surfaces" within the contours of constant EΔ  values
for the assumed value (e.g., 0.03 cm) decrease as
operations progress, which reflects the greater
certainty in model parameters; the difference between
status A and status B is particularly notable. Second,
there are clear changes in parameter directions that
cause large or small changes in EΔ ; these are specific
main directions of the parameters. Finally, for a given
operating state, there are many combinations of model
parameters that result in almost identical subsidence
changes at the observed site points based on the

minE  is the minimum RMSE of the modeled

subsidence (i.e., the RMSE value for optimal
model parameter values based on observations for
a given exploitation stage). 

 

The contour lines in Figure 8 are shown in
meters, with each successive contour representing a

EΔ  greater than the previous by 3 cm. Each of the
distributions in Figure 9 was performed for two
parameters assuming the optimum (constant) value of
the third parameter based on observations. 

The calculated RMSE values can be interpreted
as follows. If the model is free from systematic errors,

minE  is the characteristic (statistic) of the random

spread (noise) of the observed values relative to
modeled values. In this case, EΔ  can be interpreted
as the impact of the error associated with the selected
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 mining is not less than 1 % – 3 % on average (Stoch,

2005; Kowalski, 2007). These studies were carried out
without any association with a specific subsidence
model and were based on the comparison of observed
subsidence with regular curves fitted with several
parameters. In this way, the spread of subsidence was
estimated assuming the existence of a smooth average
distribution of deformation indicator, for which the
observed one is only one of the possible realizations
of the deformation process. This scattering of
subsidence is not included in the intervals of the
subsidence values (percentiles, ss ± σ  and 3 ss ± σ ) in

Figures 3 and 5–7. The estimated value of this
intrinsic noise (standard deviation) of subsidence for
the analyzed case is on the order of 15–45 mm.
However, it should be borne in mind that its inclusion
does not linearly shift the value of the interval
boundaries because this scattering square will be
added to the squared sσ . For this reason, the

significance of the subsidence intrinsic irregularity
will be the higher the smaller is the forecast error
related to the uncertainty of the model parameters. 

A large study on Australian coal fields in Bowen
Basin and in NSW regions (MSEC, 2014b) covering
data from few hundreds of observational lines showed
that the prediction errors are much larger than the
modeling errors cited above. An assessment of
prediction errors in that study indicated that SRMS
error for the incremental profile method (IPM) is in
the range of about 15 % to 30 %, depending on the
mining area. At the same time, the study indicated
a 10 % – 15 % probability of the predicted maximum
subsidence being exceeded. For comparison, the
SRMS  values for the lines analyzed in this study
based on the average values of parameters are
presented in Table 10. These values show only the
accuracy of forecasts based on average parameter
values without accounting for the margin of safety
associated with the uncertainty in their designation.
Accounting for the safety margin will generally
increase the forecast error; however, it will reduce the
probability of exceeding the values forecasted based
on the observed values. 

In another accuracy study of forecasts made for
a large number (> 30) of exploitations in the USCB
area (Kowalski, 2015), the following indicator was
used to determine the forecast error: 

 

subsidence RMSE values. However, the forecasts
(i.e., predicted land subsidence as mining operations
progress) are not identical based on the sets selected.
The optimum estimated parameters at a given time
period are not necessarily optimal for subsequent
operating states. Therefore, this point-related estimate,
which does not account for both the uncertainty in the
estimated parameter values and correlations between
them, can erroneously estimate the values of land
surface point deformation indicators.  

The comparison of the obtained results poses
some difficulties as the majority of research works
concentrate on the accuracy of the model (with the
knowledge of optimal parameter values) and not on
the accuracy of forecasting. The calculations
presented herein were made based on information
known at the time of preparing the forecast, in
contrast to in many past studies (Cui et al., 2013; Hu
et al., 2011; Huayang et al., 2002; Kwinta, 2012a;
Lian et al., 2011; Liao, 1993; Nicieza et al., 2005;
Polanin, 2015; Weifeng and Xiaohong, 2013), which
assumed the knowledge of optimal model parameter
values determined after the exploitation. The relative
errors in the modeling of subsidence with optimal
parameters in these works were on the order of 4%–
8%, depending on the case considered. The problem
with this measure of error is its dependence on the
denominator value. Many observations suggest that
final subsidence modeling error has a nearly constant
value over one panel or block of panels. As
a consequence, the relative error is much larger at the
ends of observational lines (influence borders)
compared to at their centers, where subsidence is
relatively large. 

Another frequently used measure of subsidence
modeling or prediction error is scaled RMS error
(MSEC, 2014a), which is defined as 
 

100%
ext
pred

RMS
SRMS

s
= ⋅                                             (19)

 

where: 
SRMS  is scaled RMS error, 
RMS  is subsidence RMS error, and 

ext
preds is the extreme forecasted subsidence absolute

value. 
Research conducted in the USCB region by

several authors indicates that due to the irregularity of
subsidence, the SRMS value in the case of longwall

Table 10 Predicted SRMS values for subsidence in the mining area. 

Parameter sources SRMS  [%] 
USCB region (mean parameters) 17.3 
Mine region (mean parameters) 5.7 
Observations 2014/04 (stage A) 4.7 
Observations 2015/04 (stage B) 2.7 
Observations 2016/09 (stage C) 2.3 
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by SRMS  error). In practice, a balance in this trade-
off between the accuracy and conservativeness of the
forecast should be struck while taking into account
both the applicable legal regulations and the resistance
of objects located in the rock mass and on the surface.

 
6. CONCLUSIONS  

The following conclusions were drawn based on
the research results: 
1. Model parameters determined based on

observations of surface points from a specific
period of mining operations, especially in the
early stages of development, are characterized by
high uncertainty. 

2. Parameter uncertainty decreases as mining
operations progress, which is associated with an
increase in the value of the systematic subsidence
factor relative to the value of the random factor. 

3. Making predictions without accounting for the
uncertainty in the assumed model parameters and
correlations between them can lead to significant
discrepancies between the actual and modeled
deformation indicators. Furthermore, accounting
for these uncertainties can reduce the risk of
overestimating or underestimating the defor-
mation indicator values, which may both be of
significant economic importance. 

4. Using the Monte Carlo method provides
a mechanism for making predictions, even when
there is high uncertainty in the model parameters.

5. The disadvantage of the Monte Carlo method is
its relatively high computational effort, which
depends on the required accuracy of the
calculated deformation indicator statistics. 

6. For deformation model parameters with relatively
small uncertainties, good results are achieved by
applying the law of propagation of uncertainty;
the advantage of this method is the relatively low
computational effort. 

 
ACKNOWLEDGMENTS 

This work was supported by the statutory
research WGGiIS’ AGH University of Science and
Technology from the Department of the Protection of
Mining Areas, Geoinformatics and Mining Surveying
grant number 11.11.150.195 and by the Ministry of
Science and Higher Education under grant number
15.11.150.390. 

 
REFERENCES 

Alejano, L.R., Ramirez-Oyanguren, P. and Taboada, J.:
1999, FDM predictive methodology for subsidence
due to flat and inclined coal seam mining.
International Journal of Rock Mechanics and Mining
Sciences, 36, 4, 475–491.  
DOI: 10.1016/S0148-9062(99)00022-4 

Álvarez-Fernández, M.I., González-Nicieza, C., Menéndez-
Díaz, A. and Álvarez-Vigil, A.E.: 2005,
Generalization of the n-k influence function to predict
mining subsidence. Engineering Geology, 80, 1–36.
DOI: 10.1007/s10596-009-9134-1 

100 %
ext ext
pred obs

s ext
obs

s s

s

−
Θ = ⋅ ,               (20)

where:  

sΘ is the error indicator of the extreme subsidence

forecast, and 
ext
obss  is the extreme observed subsidence absolute

value. 
The average absolute value of the sΘ  index

(average error) obtained in these studies is about
15 %, and the standard deviation of this index is
±17.5 %. The average value of this index calculated
over the whole dataset used in the study is close to
zero (less than 1%). Interestingly, in an analysis of the
NSW region in Australia (MSEC, 2009–2017)
focused on the accuracy of forecasts using IPM, the
obtained value of this indicator was similar (an
average error of approximately 16 %). The indicator

sΘ  compares only extreme values of subsidence; it

does not verify their location. 
In the analyzed case, the application of mean

USCB parameters results in a discrepancy in the
extreme subsidence of 60 %; in contrast, the use of
mine-region average parameters gives a sΘ  value

close to 0 %. The analysis of the data collected in
Table 10 and Figure 5 indicates that such high
compliance for the use of mine-region average
parameters is accidental and does not represent the
whole of the forecast results. The value of this
indicator using parameters determined from only the
A-series measurement results is 11 %; the values
determined from only the B- and C-series
measurements are approximately 3.5 %. The obtained
values of sΘ  are similar in both works.  

The high value of the sΘ  obtained using the

average parameters for the USCB also coincides with
the observations from Kowalski's paper (2015), who
found a sΘ  error indicator of the forecast of up to

50% using the mean parameters for the USCB. These
results confirm that using the average parameters of
a large region (e.g., the entire USCB) for forecasting
is a last resort and carries a significant risk of large
errors. 

The presented solution is a special case that can
be adapted to most prognostic methods. As a result,
a simple tool for determining the uncertainty of
prepared mining deformation forecasts is obtained,
which is particularly important for urbanized areas
(e.g., USCB) and for assessing the safety of sensitive
objects (e.g., monuments, engineering structures, and
technical infrastructure), where even a slight
exceedance of permissible deformation values may
lead to structural damage. As rightly pointed out in the
MSEC study (2014b), the probability of exceeding
the forecasted values is a measure of the
conservativeness of the forecast and should not be
analyzed separately from its accuracy (e.g., measured



W. Gruszczynski et al. 
 

 

226 

 

 

Grzovic, M. and Ghulam, A.: 2015, Evaluation of land
subsidence from underground coal mining using
TimeSAR (SBAS and PSI) in Springfield, Ilinois,
USA. Natural Hazards, 79, 1739–1751.  
DOI: 10.1007/s11069-015-1927-z 

Hejmanowski, R. and Malinowska A.: 2009, Evaluation of
reliability of subsidence prediction based on spatial
statistical analysis. International Journal of Rock
Mechanics and Mining Sciences, 46, 432–438.  
DOI: 10.1016/j.ijrmms.2008.07.012 

Hejmanowski, R. and Malinowska, A.A.: 2016, Significance
of the uncertainty level for the modeling of ground
deformation ranges. International Journal of Rock
Mechanics and Mining Sciences, 83, 140–148.  
DOI: 10.1016/j.ijrmms.2015.12.019 

Herrera, G., Tomás, R., Lopez-Sanchez, J.M., Delgado, J.,
Mallorqui, J.J., Duque, S. and Mulas, J.: 2007,
Advanced DInSAR analysis on mining areas: La
Union case study (Murcia, SE Spain). Engineering
Geology, 90, 148–159.  
DOI: 10.1016/j.enggeo.2007.01.001 

Hu, Q.F., Cui, X.M., Wang, G., Wang, M.R., Xiao, Y. and
Xue, W.: 2011, Key technology of predicting dynamic
surface subsidence based on Knothe time function.
Journal of Software, 6, 7, 1273–1280.  
DOI: 10.4304/jsw.6.7.1273-1280 

Huayang, D., Jinzhuang, W., Meifeng, C., Lixin, W. and
Zengzhang, G.: 2002, Seam dip angle based mining
subsidence model and its application. International
Journal of Rock Mechanics and Mining Sciences, 39,
1, 115–123. DOI: 10.1016/S1365-1609(02)00008-4 

JCGM: 2008, Evaluating of measurement data - Guide to
the expression of Uncertainty in Measurement. 

Karmis, M., Agioutantis, Z. and Jarosz, A. : 1990, Recent
developments in the application of the influence
function method for ground movement predictions in
the US. Mining Science and Technology, 10, 3, 233–
245. DOI: 10.1016/0167-9031(90)90439-Y 

Karmis, M., Jarosz, A., Schilizzi, P. and Agioutantis, Z.:
1987, Surface deformation characteristics above
undermined areas: Experience from the Eastern
United States. Civil Engineering Transactions, 29, 2,
106–114. 

Khan, S.D., Huang, Z. and Karacay, A.: 2014, Study of
ground subsidence in northwest Harris county using
GPS, LiDAR, and InSAR techniques. Natural
Hazards, 73, 1143–1173.  
DOI: 10.1007/s11069-014-1067-x 

Knothe, S.: 1957, Observations of surface movements under
influence of mining and their theoretical
interpretation. In: Proceeding European Congress on
Ground Movement, Leeds, 210–218. 

Kowalski, A.: 2005, Errors of surface deformations factors
due to errors of parameters of theories. In: Kwiatek, J.
(Eds): Problems of mining exploitation under urban
areas. Central Mining Institute, Katowice, 270–277,
(in Polish). 

Kowalski, A.: 2007, Transient mining surface deformations
in the prediction accuracy aspect. Central Mining
Institute, Pap No. 871, Katowice (in Polish). 

Kratzsch, H.: 1983, Mining Subsidence Engineering.
Springer, Berlin, 503 pp. 

Kwiatek, J.: 2007, Building facilities in mining areas.
Central Mining Institute, Katowice, 384 pp., (in
Polish). 

Ambrožič, T. and Turk, G.: 2003, Prediction of subsidence
due to underground mining by artificial neural
networks. Computers & Geosciences, 29, 5, 627–637.
DOI: 10.1016/S0098-3004(03)00044-X 

Ao, J., Wu, K., Wang, Y.Z. and Li, L.: 2016, Subsidence
monitoring using LiDAR and Morton Code Indexing.
Journal of Surveying Engineering, 142, 1, 1–7.  
DOI: 10.1061/(ASCE)SU.1943-5428.0000166 

Asadi, A., Shakhriar, K. and Goshtasbi, K.: 2004, Profiling
function for surface subsidence prediction in mining
inclined coal seams. Journal of Mining Science, 40, 2,
142–146.  
DOI: 10.1023/B:JOMI.0000047856.91826.76 

Barbato, J., Hebblewhite, B., Mitra, R. and Mills, K.: 2016,
Prediction of horizontal movement and strain at the
surface due to longwall coal mining. International
Journal of Rock Mechanics and Mining Sciences, 84,
105–118. DOI: 10.1016/j.ijrmms.2016.02.006 

Białek, J.: 2003, Algorithms and computer software for
forecasting mining deformation. Publishing House of
Silesian University of Technology, Gliwice, 199 pp,
(in Polish). 

Byrnes, R.: 2003, Case studies in the application of
influence functions to visualising surface subsidence.
4th Australasian Coal Operator’s Conference.
Wollongong. 

Chaussard, E., Wdowinski, S., Cabral-Cano, E. and
Amelung, F. 2014, Land subsidence in Central
Mexico detected by ALOS InSAR time-series.
Remote Sensing of Environment, 140, 94–106.  
DOI: 10.1016/j.rse.2013.08.038 

Cui, X., Miao, X., Wang, J., Yang, S., Liu, H. and Hu, X.:
2000, Improved prediction of differential subsidence
caused by underground mining. International Journal
of Rock Mechanics and Mining Sciences, 37, 615–
627. DOI: 10.1016/S1365-1609(99)00125-2 

Cui, X.M., Li, C.Y., Hu, Q.F. and Miao X.X.: 2013,
Prediction of surface subsidence due to underground
mining based on the zenith angle. International
Journal of Rock Mechanics and Mining Sciences, 60,
246–252. DOI: 10.1016/j.ijrmms.2012.12.036 

Díez, R.R. and Álvarez, J.T.: 2000, Hypothesis of the
multiple subsidence trough related to very steep and
vertical coal seams and its prediction through profile
functions. Geotechnical & Geological Engineering,
18, 4, 289–311. DOI: 10.1023/A:1016650120053 

Doležalová, H., Kajzar, V., Souček, K. and Staš L.: 2009,
Evaluation of mining subsidence using GPS data. Acta
Geodyn. Geomater., 6, 3, 359–367.  

Ehrhardt, W. and, Sauer, A.: 1961, Die Vorausberechnung
von Senkung, Schieflage und Krümmung über dem
Abbau in flacher Lagerung. Bergbau- Wissenchaften,
8, 415/28, (in German). 

Ghabraie, B., Ren, G., Barbato, J. and Smith, J.V.: 2017, A
predictive methodology for multi-seam mining
induced subsidence. International Journal of Rock
Mechanics and Mining Sciences, 93, 280–294.  
DOI: 10.1016/j.ijrmms.2017.02.003 

Gruszczyński, W.: 2007, Application of neural networks for
prediction of deformations modelling (Ph.D. thesis).
AGH-UST, Cracow, (in Polish). 

Gruszczyński, W., Matwij, W. and Ćwiąkała, P.: 2017,
Comparison of low-altitude UAV photogrammetry
with terrestrial laser scanning as data-source methods
for terrain covered in low vegetation. ISPRS Journal
of Photogrammetry and Remote Sensing, 126, 168–
179. DOI: 10.1016/j.isprsjprs.2017.02.015 



INFLUENCE OF MODEL PARAMETER UNCERTAINTIES ON FORECASTED SUBSIDENCE 

 

 

227

 
 

MSEC: 2017, Bulga Coal continued underground
operations: Blakefield South Mine - BSLW8. End of
Panel Subsidence Monitoring Review Report of
Blakefield South Longwall 8. Report no. MSEC911.
Rev A. Mine Subsidence Engineering Consultants.  

MSEC: 2009, Bulga Coal Continued Underground
Operations: Subsidence Monitoring Report for 2008.
Report no. MSEC392. Rev B. Mine Subsidence
Engineering Consultants.  

MSEC: 2010, Bulga Coal Continued Underground
Operations: Subsidence Monitoring Report for 2009.
Report no. MSEC435. Rev B. Mine Subsidence
Engineering Consultants.  

MSEC: 2011, Bulga Coal continued underground
operations: Subsidence Monitoring Report for 2010.
Comparison between the Observed and Predicted
Mine Subsidence Movements for the Monitoring
Lines which were Measured during 2010. Report no.
MSEC464. Rev A. Mine Subsidence Engineering
Consultants.  

MSEC: 2012, Bulga Coal continued underground
operations: Subsidence Monitoring Report for 2011.
Comparison between the Observed and Predicted
Mine Subsidence Movements for the Monitoring
Lines which were Measured during 2011. Report no.
MSEC543. Rev A. Mine Subsidence Engineering
Consultants.  

MSEC: 2014b, Review of the Incremental Profile Method –
review of the accuracy of vertical subsidence
predictions obtained using the Incremental Profile
Method of prediction for longwall mining in
Queensland and NSW. MSEC Report to SKM. MSEC
Report Number MSEC654, Rev B. Mine Subsidence
Engineering Consultants. Chatswood, Australia. 

Metropolis, N. and Ulam, S.: 1949, The Monte Carlo
method. Journal of the American Statistical
Association, 44, 247, 335–341. 

NCB: 1975, Subsidence Engineer’s Handbook. National
Coal Board, Production Department, London, 111 pp.

Nicieza, C.G., Alvarez Fernandez, M.I., Menendez, D. and
Alvarez Vigil, A.E.: 2005, The new three-dimensional
subsidence influence function denoted by n–k–g.
International Journal of Rock Mechanics and Mining
Sciences, 42, 3, 372–387.  
DOI: 10.1016/j.ijrmms.2004.12.003 

Niedojadło, Z.: 2008, The problems of exploitation of the
copper deposit in shaft protection pillars in the
conditions of LGOM. Dissertations and Monographs,
No. 177, Cracow, 176 pp., (in Polish). 

Niedojadło, Z. and Gruszczyński, W.: 2015, The impact of
the estimation of the parameters values on the
accuracy of predicting the impacts of mining
exploitation. Archives of Mining Sciences, 60, 1, 173–
193. DOI: 10.1515/amsc-2015-0012 

Ostrowski, J.: 2006, Surface deformations and damages
threat to buildings in the mining areas in a
probabilistic aspect. Dissertations and Monographs
No. 160, Cracow, 119 pp., (in Polish). 

Peng, S.S.: 1992, Surface subsidence engineering. Littleton,
Colorado, 161 pp. 

Perski, Z., Hanssen, R., Wojcik, A. and Wojciechowski, T.:
2009, InSAR analyses of terrain deformation near the
Wieliczka Salt Mine, Poland. Engineering Geology,
106, 1-2, 58–67. DOI: 10.1016/j.enggeo.2009.02.014 

Polanin P.: 2015, Application of two parameter groups of
the Knothe-Budryk theory in subsidence prediction.

Kwinta, A.: 2011, Application of the least square method in
determination of the Knothe deformation prediction
theory parameters. Archives of Mining Sciences, 56,
2, 319–329.  

Kwinta, A.: 2010, Estimation of errors of deformation
indicators based on the accuracy of the parameters of
Knothe theory. Przegląd Górniczy, 11, 39–45, (in
Polish). 

Kwinta, A.: 2012a, Prediction of strain in a shaft caused by
underground mining. International Journal of Rock
Mechanics and Mining Sciences, 55, 28–32.  
DOI: 10.1016/j.ijrmms.2012.06.007 

Kwinta, A.: 2012b, Procedure of determination of Knothe
theories parameters. In: Kowalski, A. (Eds): Objects
protection on mining areas. Central Mining Institute,
Katowice, 171–179, (in Polish). 

Lian, X.G., Jarosz, A., Saavedra-Rosas, J. and Dai, H.Y.:
2011, Extending dynamic models of mining
subsidence. Transactions of Nonferrous Metals
Society of China, 21, 3, 536–542.  
DOI: 10.1016/S1003-6326(12)61637-9 

Liao, C.P.: 1993, Fuzzy influence function method for
calculating mine subsidence in a horizontal seam.
Geotechnical & Geological Engineering, 11, 4, 235–
247. DOI: 10.1007/BF00466366 

Luo, Y. and Cheng, J.W.: 2009, An influence function
method based subsidence prediction program for
longwall mining operations in inclined coal seams.
Mining Science and Technology, 19, 592–598.  
DOI: 10.1016/S1674-5264(09)60110-1 

Metropolis, N. and Ulam, S.: 1949, The Monte Carlo
method. Journal of the American Statistical
Association, 44, 247, 335–341. 

MSEC: 2014, Bulga Coal continued underground
operations: Annual Subsidence Monitoring Report for
2013. Comparison between the Observed and
Predicted Mine Subsidence Movements for the
Monitoring Lines which were Measured during 2013.
Report no. MSEC669. Rev B. Mine Subsidence
Engineering Consultants.  

MSEC: 2013, Bulga Coal continued underground
operations: Blakefield South Longwalls 1 and 2.
Comparison between the Observed and Predicted
Mine Subsidence Movements for the Monitoring
Lines due to the Mining of Blakefield South
Longwalls 1 and 2. Report no. MSEC605. Rev A.
Mine Subsidence Engineering Consultants.  

MSEC: 2014a, Bulga Coal continued underground
operations: Blakefield South Mine - BSLW3. End of
Panel Subsidence Monitoring Review Report of
Blakefield South Longwall 3. Report no. MSEC702.
Rev A. Mine Subsidence Engineering Consultants.  

MSEC: 2015, Bulga Coal continued underground
operations: Blakefield South Mine - BSLW4. End of
Panel Subsidence Monitoring Review Report of
Blakefield South Longwall 4. Report no. MSEC744.
Rev A. Mine Subsidence Engineering Consultants.  

MSEC: 2016, Bulga Coal continued underground
operations: Blakefield South Mine - BSLW5. End of
Panel Subsidence Monitoring Review Report of
Blakefield South Longwall 5. Report no. MSEC797.
Rev A. Mine Subsidence Engineering Consultants.  

MSEC: 2016a, Bulga Coal continued underground
operations: Blakefield South Mine - BSLW7. End of
Panel Subsidence Monitoring Review Report of
Blakefield South Longwall 7. Report no. MSEC868.
Rev A. Mine Subsidence Engineering Consultants.  



W. Gruszczynski et al. 
 

 

228 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tajduś, K.: 2009, New method for determining the elastic
parameters of rock mass layers in the region of
underground mining influence. International Journal
of Rock Mechanics and Mining Sciences, 46, 8, 1296–
1305. DOI: 10.1016/j.ijrmms.2009.04.006 

Torano, J., Rodriguez, R. and Ramirez-Oyanguren, P.: 2000,
Probabilistic analysis of subsidence-induced strains at
the surface above steep seam mining. International
Journal of Rock Mechanics and Mining Sciences, 37,
7, 1161–1167. DOI: 10.1016/S1365-1609(00)00046-0

Ulam, S.: 1950, Random processes and transformations.
Proceedings of International Congress of
Mathematicians, Cambrigde, 264–275. 

Unlu, T., Akcin, H. and Yilmaz, O.: 2013, An integrated
approach for the prediction of subsidence for coal
mining basins. Engineering Geology, 166, 186–203.
DOI: 10.1016/j.enggeo.2013.07.014 

Waddington, A.A. and Kay, D.R., 1995, The Incremental
Profile Method for the prediction of subsidence, tilt,
curvature and strain over a series of panels. In:
Proceeding of the Mine Subsidence Technology
Society, 3rd Triennial Conference on Buildings and
Structures Subject to Ground Movement. 

Weifeng, Y. and Xiaohong, X.: 2013, Prediction of mining
subsidence under thin bedrocks and thick
unconsolidated layers based on field measurement and
artificial neural networks. Computers & Geosciences,
52, 199–203. DOI: 10.1016/j.cageo.2012.10.017 

Whittaker, B.N. and Reddish, D.J.: 1989, Subsidence:
Occurrence, Prediction and Control. Nottingham, UK,
528 pp. 

Zhang, J.Z., Huang, H.J. and Bi, H.: 2015, Land subsidence
in the modern Yellow River Delta based on InSAR
time series analysis. Natural Hazards, 75, 3, 2385–
2397. DOI: 10.1007/s11069-014-1434-7 

 

Journal of Sustainable Mining, 14, 67–75.  
DOI: 10.1016/j.jsm.2015.08.010 

Qu, F., Zhang, Q., Lu, Z., Zhai, C., Yang, C. and Zhang, J.:
2014, Land subsidence and ground fissures in Xi’an,
China 2005-2012 revealed by multi-band InSAR time-
series analysis. Remote Sensing of Environment, 155,
366–376. DOI: 10.1016/j.rse.2014.09.008 

Ren, G., Li, G. and Kulessa, M.: 2014, Application of a
generalized influence function method for subsidence
prediction in multi-seam longwall extraction.
Geotechnical and Geological Engineering, 32, 4,
1123–1131. DOI: 10.1007/s10706-014-9787-y 

Ren, G., Reddish, D.J. and Whittaker, B.N.: 1987, Mining
subsidence and displacement prediction using
influence function methods. Mining Science and
Technology, 5, 89–104.  
DOI: 10.1016/S0167-9031(87)90966-2 

Saavedra-Rosas, J. and Drage, M.: 2014, Improvement of
the Execution Time of a Cellular Automaton for
Subsidence Prediction. In: Drebenstedt, C. and
Singhal, R. (eds): Mine Planning and Equipment
Selection, Springer, 943–953.  
DOI: 10.1007/978-3-319-02678-7_91 

Salmi, E.F., Nazem, M. and Karakus, M.: 2017, Numerical
analysis of a large landslide induced by coal mining
subsidence. Engineering Geology, 217, 141–152. 
 DOI: 10.1016/j.enggeo.2016.12.021 

Shahriar, K., Amoushahi, S. and Arabzadeh, M.: 2009,
Prediction of surface subsidence due to inclined very
shallow coal seam mining using FDM. In: Aziz, N.
(Eds): Coal 2009: Coal Operators' Conference,
University of Wollongong & the Australasian Institute
of Mining and Metallurgy, 130–139. 

Sheorey, P.R., Loui, J.P., Singh, K.B. and Singh, S.K.:
2000, Ground subsidence observations and a modified
influence function method for complete subsidence
prediction. International Journal of Rock Mechanics
and Mining Sciences, 37, 5, 801–818.  
DOI: 10.1016/S1365-1609(00)00023-X 

Sikora, P.: 2016, Simulation of rock mass horizontal
displacements with usage of cellular automata theory.
Archives of Mining Sciences, 61, 4, 749–763.  
DOI: 10.1515/amsc-2016-0051 

Singh, K.B. and Singh, T.N.: 1998, Ground movements over
longwall workings in the Kamptee coalfield India.
Engineering Geology, 50, 125–139.  
DOI: doi.org/10.1016/S0013-7952(98)00005-2 


