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ABSTRACT 
 

 

Since the formal errors of many geodetic time series are also available, this paper proposes a new
singular spectrum analysis (SSA) approach with stabilizing weights (SSAW) by taking the
formal errors into account, where the weight of time series data is constructed based on the ratio
of formal error to signal power spectrum. The formulae of the proposed SSAW are derived in
detail and then used to process the real Global Mean Sea Level (GMSL) time series compared to
the traditional SSA. When the first 10 principal components are used to fit the GMSL time
series, the fitting errors of the SSAW and traditional SSA are 4.80 mm and 5.14 mm, with the
reduction of 6.61 %. According to the 500 simulations based on the reconstructed signals and
formal errors of GMSL time series, the mean root mean squared errors and mean absolute errors
of reconstructed signals using the SSAW relative to traditional SSA are reduced from 2.18 mm
to 1.66 mm and 1.67 mm to 1.34 mm, respectively. Therefore, if the formal errors of a noisy
time series given, the proposed SSAW approach is suggested to analyze this time series. 
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SSA can be directly used to process the time
series contaminated by additive noise (Allen and
Smith, 1997; Wu and Chau, 2011). When a time series
is contaminated by multiplicative noise, the traditional
strategy first converts the multiplicative noise to
additive noise by taking log-transform (Golyandina et
al., 2001), then processes it with traditional SSA. SSA
outperforms other methods in extracting signals from
heterogeneous time series, such as the Fourier
transform, wavelet transform, empirical mode
decomposition and Kalman filters (Kumar et al.,
2017; Barrios-Muriel et al., 2016; Watson, 2016;
Chen et al., 2016). The covariance or formal errors of
a time series are usually not being considered in most
SSA approaches, however, formal errors are available
for many geodetic time series data. Some SSA
approaches have been developed by prewhitening
a time series data using its noise matrix (Cadzow,
1988) or rank-deficient covariance matrix (Hansen et
al., 2005). Nevertheless, the prewhitening processing
will change the structure of original time series. In
order to keep the signal structure unchanged the
weighted singular value decomposition (Gillard and
Zhigljavsky, 2016) and weighted hankelization
(Zvonarev and Golyandina, 2017) applied the weights
to the trajectory matrix rows and columns, which are
thereby named as weighted SSA approach. However
since signals are unknown, an iterative algorithm is
needed. To avoid iteration, a new SSA approach with
stabilizing weights (SSAW) is developed in this

1. INTRODUCTION 

Singular Spectrum Analysis (SSA) has been
successfully applied to extract the trend and periodic
signals from a time series without prior knowledge
(Broomhead and King, 1986; Vautard and Ghil, 1989;
Golyandina et al., 2001). In SSA a trajectory matrix is
first constructed from a time series, and then principal
component analysis is carried out to pick out
dominant components. The signals of the time series
are reconstructed with the dominant components and
the remaining components are regarded as the noise
(Sivapragasam et al., 2001; Vitanov et al., 2008). SSA
has been widely used in geosciences, e.g. the stream
flow and sea-surface temperature analysis (Robertson
and Mechoso, 1998; Kondrashov and Ghil, 2006;
Chen and Sneeuw, 2016; Zotov et al., 2017), the
seismic tomography (Oropeza and Sacchi, 2011;
Tiwari and Rajesh, 2014; Rajesh and Tiwari, 2014),
earth rotation and climate variability (Zotov et al.,
2016), the gravity anomaly separation (Kumar et al.,
2017) and monthly gravity field analysis (Zotov and
Shum, 2010; Rangelova et al., 2012). For processing
an incomplete time series, several SSA approaches,
such as spatiotemporal data filling (Kondrashov and
Ghil, 2006), iterative data filling (Kondrashov et al.,
2010), or compensation via a scale (Schoellhamer,
2001) and its improved version (Shen et al., 2015),
which is based on the principle that a time series can
be reconstructed with its principal components (Shen
et al., 2014).  
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series can be represented by the first several RCs,
while the remaining RCs being treated as noise. Thus
the signals of the time series are the sum of dominant
RCs as follows,  

 

1

ˆ ,  1,2, ,
n

k
i i

k

x x i N
=

= =                                                  (6)

 

where ˆix  denotes the ith element of reconstructed

signals from the first  n dominant RCs.  
 
2.2. SINGULAR SPECTRUM ANALYSIS WITH 

STABILIZING WEIGHTS 

In traditional SSA approach the Equations
(1)~(6) are normally used to process a time series
without considering its covariance or formal errors,
which implies that the priori information of
observational noise is neglected in traditional SSA
approach. In order to use the priori covariance Q ,

Hansen et al (2005) proposed one solution generating
a new time series by prewhitening the original time
series as, 

 
1 2−′ =x x Q                                                                (7)

 

where ( )1 2 nx ,x , ,x= ⋅⋅⋅x  is a time series represented

in row vector form. It is obvious that the covariance of
the generated time series ′x  is an identity matrix.
Therefore, Equations (1)~(6) can be applied to extract
the signals ˆix  from ′x . Then the signals of original

time series are recovered as, 
 

1/2ˆ ˆ ′=x x Q                                                                  (8)
 

Since not the full covariance Q  but only its

diagonal elements are available for most geodetic time
series, the Equations (7) and (8) can be simplified as, 

 

0
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and  

0

ˆ ˆ i
i ix x

σ
σ

′=                                                               (10)

where the formal error iσ  is the squared root of the

ith diagonal element of Q , 0σ  is the formal error of

unit weight which is computed with the principle of
keeping the total energy of the time series unchanged
(Li et al., 2015). However, the prewhitening
processing in Equation (7) or (9) seriously changes the
signal structure of the original time series, especially
when iσ  is varied significantly from epoch to epoch,

since the transformation of Equation (9) implies that
both the signals and noises of the time series are
multiplied by a weight factor 0 i/σ σ . In the weighted

SSA, an iterative procedure is needed (Gillard and
Zhigljavsky, 2016; Zvonarev and Golyandina, 2017).
For this reason, a new weight factor is derived in the
following parts, which can suppress noise, but hold
more signals than Hansen et al. (2005).  

contribution, in which the weight is constructed based
on the ratio of formal error to signal power spectrum. 

The rest of this paper is organized as follows: the
SSAW approach is introduced after traditional SSA
briefly presented in Section 2. The sea level change
signals are extracted from Global Mean Sea Level
(GMSL) time series and analyzed in Section 3. Then,
synthetic examples are carried out to demonstrate the
performance of the SSAW compared to traditional
SSA in extracting signals in Section 4, and
conclusions are given in Section 5. 

 
2. METHODOLOGY 

2.1. SINGULAR SPECTRUM ANALYSIS 

From a time series ( )1ix i N≤ ≤ , we can

construct an  L K× ⋅ (K=N-L+1)  trajectory matrix X
with a window size L   (Vautard et al., 1992) as
follows, 
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Its lagged covariance matrix C  is formulated as
T=C X X . Then the matrix C  is decomposed as,  

 
T=C VΛV                                                                 (2)

 

where Λ   is a diagonal matrix with eigenvalues sorted
in descending order, its kth number is denoted
as ( )1k k Lλ ≤ ≤ . V  is an orthogonal matrix; kv  is its

kth eigenvector. The principal component matrix A  is
determined by, 

 

Α = VX                                                                     (3)
 

The kth row vector ka   of A   is called the kth

Principle Components (PCs). Then the ith element

k ,ia  of ka   is computed with, 
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where ,k jv  is the jth element of kv . Then the

Reconstructed Components (RCs) of the time series
with the kth PC are represented as (Vautard et al.,
1992), 
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where k
ix  is the ith element reconstructed from kth

PC. Since the eigenvalues of covariance matrix C
are sorted in descending order, the signal of the time
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suppressed and the signal to noise ratio will increase
in SSAW processing. When the signal variance is not
known, it should be estimated beforehand. Especially,
when the time series is stationary, the signal variances

2

isσ  of all epochs are equal, which can be estimated by

using the reconstructed signals,  
 

2 2

1

1
ˆ ( )

1

N

s i
i

s s
N

σ
=

= −
−                                              (18)

 

where is  is the reconstructed signal at ith epoch; s  is

the mean signals of all epochs; N  is the number of
epochs of the time series. 
 
2.3. WINDOW SIZE AND RECONSTRUCTED ORDER 

The window size L  and number of dominant
PCs are the two key factors to be determined in SSA.
The window size mostly depends on the research topic
and the priori information of the time series
(Golyandina and Zhigljavsky, 2013). L  should be
large enough theoretically but not larger than 2N /
(Golyandina, 2010). If a time series contains
a periodic component, the window size had better to
be proportional to the period. If one is interested in
signal as a whole, but not the separability among
signal components, the window size is not a key factor
(Golyandina et al., 2001). There are different
approaches to determine the number of dominant PCs
for reconstructing signals, such as the threshold for
the sum contribution of dominant PCs (Figueiredo et
al., 2011; Ma et al., 2011), the first inflection point in
the logarithm of eigenvalues diagrams (Hu et al.,
2009), and the weighted correlations (w-correlation)
(Golyandina et al., 2001). Due to its intuitive, w-
correlation matrix is widely used to detect the signal
subspace (Golyandina et al., 2018). Thus the subspace
of dominant PCs is determined with w-correlation
matrix. The weights for computing weighted
correlations are determined by, 
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                               (19)

 

From Equation (19), it is apparent that the
weight is equal to the number of the element ix  in the

trajectory matrix X . Define the inner product of two
components PCi

 and PC j  of length N  is, 
 

1

(PC , PC ) PC PC
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i j i j
w k k k

k

w
=

=                                   (20)

 

The weighted correlation to measure the degree
of approximate separability between PCi

 and PC j  is
defined as follows (Golyandina et al., 2001),  

 

,

( ) (PC , PC )
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PC PCi j
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w i j w

i j

w w

ρ =                            (21)

 

A time series ( )1ix i N≤ ≤  is composed of signal

is  and noise ie  as follows,  
 

i i ix s e= +                                                                (11)
 

where is  is stationary with mostly low frequencies in

the spectrum, ie  consists of independent samples with

slowly changing variances.  
Supposing the signal and noise are independent,

the variance of ix  can be derived via the law of error

propagation law as, 
 

2 2 2

i ix s iσ σ σ= +                                                         (12)
 

where 2

isσ  is the variance of signal is . If both the iσ

and 
isσ  are available, we can convert the original time

series as, 
 

2 2 2 21 /
i i ii s i s i i i s i ix x x xσ σ σ σ σ α′ = + = + =              (13)

 

where the weight factor 2 21 / , 1, 2, ,
ii i s i Nα σ σ= + = ⋅⋅⋅

can suppress the impacts of noise. By the law of error
propagation, we can derive from Equation (13) as,  

 
2 2

i ix sσ σ′ =                                                                  (14)
 

Therefore, the converted time series ix′  can have

the same variance as the original signals. With the
converted time series ix′  or the correspondent

trajectory matrix ′X , one can form a lag covariance
′C  as, 

 
T′ ′ ′=C X X                                                             (15)

 

The eigenvectors ,k jv′  of the lag covariance ′C

are then used to calculate the PCs ,k ia′  with,  

, 1 ,
1

, 1 1
L

k i i j k j
j

a x v i N L+ −
=

′ ′ ′= ≤ ≤ − +                        (16)

Then the RCs of the time series are calculated as
Equation (5) by replacing the ,k ia and ,k jv

 
with ,k ia′

and ,k jv′ . With the signals x̂′ of the converted time

series determined with Equation (6), the signals of the
original time series is recovered with, 

 

ˆ ˆi i ix x α′=                                                                 (17)
 

Since a new weight factor 2 21 /
ii i sα σ σ= + ,

which is based on the ratio of iσ  to 
isσ , is introduced

in our developed approach, we call it as SSAW. The
weight factor iα  is larger than 1 and increases with

respect to the ratio of iσ  to 
isσ . Hence the larger the

noise is, the bigger the weight factor will be.
Therefore, the impacts of heterogeneous noise are
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If the weighted correlation is 0, it means that the
components PCi

 and PC j
 are fully separable. If the

weighted correlation between two components PCi

and PC j
 is larger than a certain threshold, then the

two components are regarded as non-separable.
Therefore, the PCs for reconstructing signals are
determined based on the threshold ε  as, 

 

( )
,max( (PC ,PC ) ) , 1,2, , ; 2, ,w i j

i j i L j i Lρ ε< = = + 
            (22)

 

If the ith component doesn’t satisfy the Equation
(22), then the reconstructed order is fixed at 1i − .   

 
3. GLOBAL MEAN SEA LEVEL TIME SERIES 

ANALYSIS USING THE SSAW 

The GMSL time series presented in Figure 1
includes 1368 monthly averaged data spanning from
1900 to 2013, and the corresponding formal errors are
presented in Figure 2, which are available from the
web site (http://www.psmsl.org). Since the number of
tide gauge stations continually increases all over the
world, the formal errors significantly become smaller
from 1900 to 2005. However, the formal errors
become larger from 2005 to 2013, mainly for fewer
records are available in these years due to the delay in
the transmission of GMSL information to the PSMSL
(Church and White, 2011). For GMSL time series, the
trend, which contains more than 90 % of the total
variance, is pre-determined using least squares fit
based on quadratic polynomial functional model
(Fig. 1). The de-trended GMSL time series (after
removing the trend) is shown in Figure 3 with blue
solid line, which is then processed with traditional and
SSAW and finally the trend is added back to the
reconstructed signal.  

The window size is chosen as L=600, which is
equal to 50 years, less than half of the length of de-
trended GMSL time series through experiments
comparison. The w-correlations are employed to
determine the PCs for reconstructing de-trended
GMSL signals, and the 10 leading PCs are determined
when the threshold is chosen as 0.5 empirically.
Thereby, 10 leading PCs (same as in SSA) are used to
reconstruct signals in the SSAW. With the
reconstructed de-trended GMSL signals from 10
leading PCs, we can estimate that 2ˆ 58.46sσ =  mm2.

The converted de-trended GMSL time series by
Equation (13)  is  shown  in  Figure 3  with  red  solid
line. 

The w-correlations between any pair of the 30
leading RCs are depicted in Figures 4 and 5 for
traditional and SSAW, respectively. It is expected that
the indicated pairs are 1-2, 3-4, 5-6, 7-8 and 9-10, so
the RCs 1-10 are as signals and the RCs 11-600 are
treated as noise. The noise and its frequency spectrum
are presented in Figure 6, in which the noise power
spectrum is about 10, much less that of signal. 

Fig. 1 Original GMSL time series and
corresponding trend term. 

Fig. 2 Formal error series. 

Fig. 3 The de-trended and its converted GMSL time
series. 
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Fig. 4 The w-correlations of 30 leading RCs of
traditional SSA. 

Fig. 6 The noise (RCs 11-600) of SSA (top) and its
frequency spectrum (bottom). 

Fig. 5 The w-correlations of 30 leading RCs of
SSAW. 

The periodograms of the 5 indicated pairs (1-2),
(3-4), (5-6), (7-8) and (9-10) are presented in Figure 7,
which reveal the impacts of Pacific Decadal
Oscillation (PDO), El Niño/South Oscillation (ENSO)
and sunspots on the GMSL time series, since the
periods of PDO, ENSO and sunspots are respectively
about 20~30, 20~25 and 10~11 years (Chen et al.,
1998; Nerem, 1995). The periods of the indicated
pairs (3-4 and 7-8) are possibly caused by PDO and
ENSO, respectively; the period of harmonic pair (5-6)
is consistent with the period of sunspots. Besides,
a 57-year oscillation (1-2) is significant in de-trended
GMSL time series, which is in a good agreement with
Church and White (2011) and Chambers et al. (2012).
The periods of 5 indicated pairs of the two approaches
are listed in Table 1 together with their amplitudes,
which are computed with least squares fit using
harmonic analysis. The results show that the
differences of periods between the two approaches are
very small, but differences of amplitudes are very
significant. 

The percentages of total variance of 10 leading
PCs are shown in Figure 8 for the converted and
original GMSL time series, where the PCs of the
converted time series contain more energy than that of
the original GMSL time series. Specially, the variance
of  10  leading  PCs of the converted time series is

Table 1 Periods and mean amplitudes of paired harmonic components. 

PC index Traditional SSA SSAW 

 Period/year Amplitude/mm Period/year Amplitude/mm 

1-2 57.00 4.89 57.00 5.19 

3-4 30.40 2.72 30.40 2.40 

5-6 10.36 2.10 10.36 2.29 

7-8 19.00 1.59 19.00 1.97 

9-10 7.12 1.17 7.24 1.25 
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Fig. 7 The corresponding period of the paired harmonic components. 

Fig. 8 The cumulated percentage of signal variance
for first 10 PCs. 

55.5 % of the total variance, much larger than that
(51.3 %) of the original time series.  

The signals, which are reconstructed from the
first 10 PCs with both the SSAW and traditional SSA,
are presented in Figure 9 and their differences in
bottom panel. It is apparent that the differences are
clearly correlated with the formal errors of the time
series. If the weights of the SSAW are determined in
such a way that the sum of the weights is equal to the
epochs number N , the root mean squared error of
unit weight indicates the fitting error of the SSAW.
According to the definition of weight, the weight of
the GMSL time series is defined as, 

 

2 2
0 / , 1, 2, ,i ip i Nσ α= =                                     (23)

 

where 2
0σ  is the variance of unit weight, iσ  is the

formal error at ith epoch. Since 
1

N

ii
p N

=
= , we can

solve 2
0σ  from Equation (23), that is, 

 

2 2
0

1

/ (1 / )
N

i
i

Nσ α
=

=                                                (24)

 

Substituting (24) into (23) yields the weight as,  
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window size ( )600L =   is chosen and first 10 PCs are

selected to reconstruct signals. Since the real signal is
known, we can compute the root mean squared error
(RMSE) and mean absolute error (MAE) with the
differences between the reconstructed signal and
simulated real signal. They are defined as the
following equations: 

 

2

1

1
ˆRMSE ( )

N

i i
i

s x
N =

= −                                      (28)

 

1

1
ˆMAE

N

i i
i

s x
N =

= −                                              (29)

 

where ˆix  denotes the reconstructed signal at ith

epoch, N   is the number of observations. The relative
improvements (IMP) of RMSE and MAE of the
SSAW with respect to traditional SSA is computed
with, 
 

s w
RMSE

s

RMSE -RMSE
IMP = 100%

RMSE
×                   (30)

 

 s w
MAE

s

MAE -MAE
IMP = 100%

MAE
×                        (31)

 

where the subscript ‘w’ and ‘s’ represent the values of
the SSAW and traditional SSA, respectively. 

The RMSEs and MAEs for the SSAW and
traditional SSA are presented in Figure 10, where all
the RMSEs and MAEs of the SSAW are smaller than
those of traditional SSA. The average RMSE and

Fig. 9 Extracted signals of the traditional and SSAW
(top) and their difference (bottom). 

If the signals reconstructed with the SSAW at ith
epoch is expressed with ˆw

ix , the fitting error of the

SSAW is estimated by,  
 

2

1

1
ˆ( )

N
w

w i i i
i

m p x x
N =

= −                                       (26)

 

Similarly for traditional SSA, the unit weight
adopted, the fitting error is estimated by,  

 

2

1

1
ˆ( )

N
s

s i i
i

m x x
N =

= −                                            (27)

 

where ˆ s
ix  is the reconstructed signal with traditional

SSA at ith epoch.  
The fitting errors of the GMSL time series using

10 PCs are 4.80 mm and 5.14 mm for the SSAW and
traditional SSA, respectively. Compared to traditional
SSA, the SSAW can reduce the fitting error about
6.61 %. Therefore, when the formal errors of a noisy
time series are available, the SSAW is suggested to
deal with the time series.  

 
4. SIMULATION STUDIES BASED ON THE 

RECONSTRUCTED GMSL SIGNALS  

To demonstrate the performance of the SSAW,
we carry out simulation studies based on the real
signals shown in Figure 9 extracted by traditional SSA
approach. The synthetic time series are generated for
500 times by Equation (11) where noise is the
normally distributed noise with zero mean and

variance 
2
iσ . The real 2

iσ  are the formal errors of

GMSL time series shown in Figure 2. The same
Fig. 10 RMSEs and MAEs of 500 simulations of the

SSAW and traditional SSA. 
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MAE are 1.67 mm and 1.34 mm for the SSAW,
2.18 mm and 1.66 mm for traditional SSA,
respectively. The corresponding IMPs of RMSE and
MAE are 23.85 % and 19.76 %, respectively.
Therefore, the proposed SSAW effectively extracts
signals from noisy series compared to traditional SSA

. 
5. CONCLUSIONS 

In order to more efficiently extract signals from
noisy time series, the SSAW approach is proposed by
considering the formal errors of the time series. The
GMSL time series are processed by using the SSAW
and traditional SSA; the results demonstrate that the
SSAW achieves better performance than traditional
SSA in reconstructing signals. The first 10 PCs of the
SSAW and traditional SSA contain 55.5 % and
51.7 % of total variance, respectively. When the first
10 PCs are used to reconstruct signals for fitting the
original time series, the fitting error of the SSAW is
4.80 mm, much smaller than 5.14 mm, the fitting error
of traditional SSA. Moreover, according to the
reconstructed GMSL signals and formal errors of the
GMSL time series, 500 simulations are carried out.
The statistics show that the mean RMSE and MAE of
the SSAW relative to traditional SSA are reduced
from 2.18 mm to 1.67 mm, 1.66 mm to 1.34 mm, with
improvements 23.85 % and 19.76 %, respectively. All
the RMSEs and MAEs of the SSAW are smaller than
those of traditional SSA. Therefore, when the formal
errors of a time series are available, the SSAW
approach is suggested to be applied to process this
time series. 
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