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 ABSTRACT 
 

 

The aim of this paper is to describe a new discrete method for the evaluation of local damage to
the bearing system of underground structures. The discrete boundary element method, which
serves  as  a numerical  means  for detecting  local  cracks, has  been  used  in  the  past either as
a general means for identifying sites with cracks or for assessing the possibility of bumps
occurring in underground mines. Newly, this method is non-trivially extended to the
combination with non-linear Navier-Stokes equations, which are solved by finite volumes used
to describe the propagation of air movement that creates a subsonic pressure wave in the free
space within the structure. Interaction of waves along the boundary of both phases is ensured by
interfacial conditions, which correspond to the combination of both numerical means -
discontinuous boundary elements and finite volumes. To maintain compatibility of both
environments, discretization of both air and solid is based on hexagonal meshes. Two typical
examples demonstrate the suitability of the method showing an initial (critical) state of the
development of pressure waves and the condition of damage to the structures of underground
parking. 
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velocity and changes in internal and kinetic energy.
The states of stress and deformation in the structure
are also generally described by non-linear relations.
Due to the relatively rapid development of the
extreme load of the structural elements (plates,
columns, shells, linings) after the detonation initiation,
nonlinear properties predominantly involve damage
and other nonlinear material changes can be
considered negligible. 

The issue of the effects of explosions on
structures in enclosed spaces is dealt with by
a number of publications, (Mitu et al., 2017; Edri et
al., 2012; Li et al., 2012), for example. There are
a number of publications that lead, if not directly to
standards, at least to useful recommendations that
come from the findings of practical knowledge,
(Cioca and Moraru, 2012; Metodology manual, 2008),
which are partially used in this study.  

At present, the most commonly used material for
underground structures is concrete, either classic,
which is reinforced with steel rods or fiber-reinforced
concrete. The latter is characterized by a cement
matrix and unevenly distributed and randomly
oriented fibers of various materials (synthetic-
polypropylene, steel, glass, etc.); the fibers may also
have different shapes and sizes. Thanks to these
specific properties, such a composite has a higher
tensile and shear strength. The abovementioned
fibrous materials can be combined, (Buchana and
Chenb, 2007; Luccioni and Luege, 2006). Steel fibers

1. INTRODUCTION 

Today's civilized world has a very urbanized
structure - a large part of the population lives in cities
and underground, generally enclosed, spaces, are
among the most important areas of modern towns.
The utilization of underground spaces is growing
rapidly. However, their structures are very vulnerable
to sudden changes in load, associated with terrorist
attacks, VBIED, unpredictable explosions (traffic
accidents, fire, rapid economic development), etc.,
that can cause huge damage to structures and may
have fatal consequences for human lives. Therefore, it
is very important to address and anticipate the
dynamic effects of explosions in enclosed spaces. The
location of the explosive center is very important. It
turns out that if its position is on the surface of the
building or over the terrain, no follow-up wave and
the interaction of the main blast wave with the
secondary waves are expected. Another situation
occurs when describing the time evolution in closed
spaces, where wave interactions play an important
role.  

Propagation of blast waves in gas (air) that fill
underground spaces is described by non-linear
equations of conserving density, momentum and
energy. The influence of gas pressure is usually given
for an adiabatic state for this type of problem. The
effects of explosions, i.e. initial airborne blast waves,
and then interactions with secondary waves, are
calculated for time changes in mass density, motion
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can be found in (Hou et al., 2012; Subramanian, 2019;
Kelliher, 2006; Naughton, 1986). 
 
2. THE EFFECT OF AN EXPLOSION IN 

ENCLOSED SPACES 

After detonation of explosives in various
underground spaces a time-varying course of
compression and tensile loads on the internal walls of
the underground complex is induced. The following
picture, Figure 1, illustrates such a situation in
a symmetrical 2D view of a closed space. The
supporting building elements can be rock, soil, tunnel
lining, underground power plant lining, or parking,
and possibly water pipelines. Recall that the effect of
explosion in an enclosure space can also be found in
building structures, such as bunkers, aircraft shelters
(hangars), etc.  

serve predominantly to bridge cracks in the material,
while synthetic fibers increase the ductility and
deformability of the concrete. They reduce or even
suppress the spalling of concrete. Appropriate
application of the free hexagon method may well
simulate properties of different types of fiber
reinforced concrete. 

In order to obtain the material properties of
objects subjected to a sudden change in load, tests are
carried out which, for more complex problems of the
propagation of blast waves in enclosed spaces and
their influence on structures are often carried out on
physical and scale models, (De et al., 2010; Procházka
and Trčková, 2008; Bakhtar, 1997). Compared to 1:1
or in situ models, these models make it possible to
achieve very reasonable results while saving time,
material and energy. 

Various methods exist to describe the
development of structural damage. A very efficient
model using the Uzawa algorithm, (Gharizade
Varnusfaderani et al., 2017; Gharizade Varnusfaderani
et al., 2015; Procházka and Šejnoha, 1995), is suitable
for cases where location of damage is a priori known.
In the case that the site of the damage is not known it
is advisable to use discrete elements. The basic idea
was presented in 1971, (Cundall, 1971), where
a continuous structure was replaced with circles or
rectangles in 2D or balls or bricks in 3D. A serious
problem in the method proposed by Cundal is the
point contact of possible neighbors, so the definition
of stress states within the particles is either inaccurate
or totally excluded.  

This has been overcome by solving distribution
of displacements and tractions within each particle in
terms of the boundary element method, in which the
lowest approximation of displacements and stresses is
introduced: the uniform distribution of these variables
along the boundary between adjacent elements, see
(Procházka, 2019; Procházka, 2014; Procházka,
2004). Similar method was proposed in (Fu et al.,
2017), where time dependent kernels were used. 

In some previous papers by the author of this
paper, the soft contact between adjacent particles was
described by the Mohr-Coulomb hypothesis. The
Bureau of Mines has published several studies
(Harami and Brady, 1995), where for dynamic
problems it is recommended to use the Johnson and
Hoek-Brown criteria, (Hoek and Brown, 1980; Girgin,
2014), instead of the previous hypothesis. The latter
method offers a better approximation of Mohr's
envelope, which expresses critical stresses. 

The choice of initial and boundary conditions
plays an important role in solving uniquely formulated
problems. The goal is to get conditions that are as
close to reality as possible. Such conditions are,
however, very poorly defined and can be very
complex. They are usually based on a large number of
tests. Since the main problem in this paper focuses on
solving the damage in a solid structure caused by an
explosion in an enclosed space, the interfacial
conditions that cause most problems are relatively
well defined. In the literature, discussion of various
interfacial conditions between air (fluid) and structure

 
Fig. 1 Description of effect of explosion in a sample

underground space. 

Extreme loads caused by detonation of the
explosive within a closed space can be essentially
divided into several time steps (which provide more
complex situations describing a combination of
impact and reflective blast waves and consequently
changing pressure) that can be considered decisive for
the main load of the structure. In the first phase, the
detonation charge causes the propagation of the blast
wave in the internal airspace. After impact on the
inner wall, reflection waves appear and in the next
part their mutual interaction occurs. Primary and
subsequent waves of this series provide very complex
time curves of the total load (measured mostly by
special sensors whose recording leads to the
overpressure spectrum). The prediction of the first
blast wave behavior is relatively easy, but the time
course of the impacts of the reflected blast waves
varies at different points of the internal volume and is
difficult to predict. 

The source of airborne impact waves can be
explained on a spherical charge of a particular volume
located in the air space. Detonation causes the release
of the total energy of the charge, which in addition to
blast waves produces gaseous chemical reaction
products and so-called chamber pressure. The charge
products propagate in spherical surfaces that expand.
The front blast wave separates from the waste
products (which are massive particles) and their effect
in the air is gradually suppressed; at a distance of
about 8-15 diameters of the original charges lose their
significance and the waves continue only as an
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Fig. 2 The domain of the solution and the geometry of the hexagonal mesh. 
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where t  is time, and the conservative variables
include the velocity vector 1 2{ , },v v v≡   mass density

of gas ρ , momentums vρ , pressure of gas

( 1)p γ ε= − ; potential and kinetic energies are

respectively ε  and 2 2
1 2

1
( )

2
v vρ + , and total energy of

a unit of mass of the gas is 2 2
1 2[ ( ) / 2]e v vρ ε= + + .

The ratio of specific heat is γ . Equation (1) describes

the conservation of mass density, the other two, (2),
(3), conservation of momentums, and (4) conservation
of energy.  

The last four equations may be written in the
matrix form as: 

 

1 2

0
A B C

t x x

∂ ∂ ∂+ + =
∂ ∂ ∂

                                                   (5)

 

where A  comprises the four conservative variables,
B , and C  represent the corresponding fluxes in the
directions of coordinates components. 

Equations (1) to (4) are strongly nonlinear. The
last modification of equations (1) - (4) consists in their
transcription into a quasi-linear form, the equations in
which are divided into the first time and position
derivatives of the vector 1 2{ , , , }V v v pρ= of the

original air effect. The blast wave energy also
decreases considerably with increasing distance from
the explosion approximately with the third root of the
distance. After some time, the effect of the interaction
of primary and reflected air waves is gradually lost.
The predictive behavior of co-acting blast waves is
not very reliable at the general point of the air domain.
This is also the reason that the condition is mainly
monitored in the short time after the explosion. In this
timeframe, it is possible to compare the results from
numerical studies and tests. 

The problem can be divided into two parts, the
formulation of the Landau-Lifschitz equations in the
air and the response to the blast wave from the
structure, formulated in terms of dynamic equilibrium.
In both cases, the goal is to solve a two dimensional
problems on the hexagonal mesh in the coordinate
system 1 20x x . The solution of both these problems is

connected along the interfacial boundary between the
air and the solid phase, see Figure 2. The reason why
selecting a hexagonal mesh to solve a discrete
problem in the structure, is obvious. This method of
discretization has proved to be very suitable for
monitoring the development of damage in the
structure. The hexagonal mesh in final volume
discretization of the air environment is chosen for the
compatibility of the solid phases. 

 
3. FINITE VOLUME METHOD ON THE 

HEXAGONAL MESH 

In this chapter, basic ideas will be formulated
regarding the problem of moving air particles as
a result of an explosion within a closed space. The
Euler equations, (Landau-Lifschitz, 1978), will be
formulated and modified for further numerical
processing.  

The basic equations are formulated in the
conservation form:  
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Fig. 3 Three adjacent particles and the slope of selected boundary element from the 1x - axis. 

components of matrices ( 1) ( 1)
1 2,t tA A− − are considered as

known from the previous time step ( 1)nt − . Let
1k , k ,...,mΩ =  be a non-overlapping set of hexagons

in Ω , where 2DΩ ∈  and the closure

, 1,..., k k mΩ =  completely covers Ω , i.e.

k k lΩ Ω Ω Ω= ∪ ∧ ∩ = ∅  for k l≠ . The classical

finite volume approximation of (6) relies on the
change of the control volumes between times ( 1)nt − and

( )nt . Select arbitrary admissible k  and

; , {1,..., }, k ll k l m SΩ Ω∈ ∩ = ≠ ∅ , i.e. the last two

hexagons are adjacent with the common boundary S .

Next, select a time interval (1) (2)( , ) (0, )t t t Tδ = ∈  and

choose a simpler denotation ,k lK LΩ Ω= = .

Equations (6) are then defined on
(1) (2)( , )k t t K tΩ δ× = ×  and (1) (2)( , )l t t L tΩ δ× = × ,

respectively. Integrating them successively over
K tδ×  and then over L tδ×  yields 
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where 1,...,6j = , because 6
1j jK K=∂ = ∪ ∂  and

6
1j jL L=∂ = ∪ ∂ , ,jK in∂ ,jL in∂  are directional cosines of the

outward unit normal to jK∂  and jL∂ , respectively,

i.e. projections of the normal to ix , 1, 2i = . Equations

(7) and (8) can be recast as: 
 

6
(2) (1)

1

0j
K K K

j

V V F
=

− + =                                             (9)

 

conservative variables, which is applied to the
respective matrices, their members are linear:  
 

1 2
1 2

0
V V V

A A
t x x
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.                                        (6) 

 

Comparing (9) and (1) – (4), the matrices 1A

and 2A  become relatively simple: 
 

1 1

0 0 0
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v
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ρ

ρ
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 = +
 
 
 

A I , 

2 2

0 0 0
0 0 0 0
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v

p

ρ

ρ
γ

 
 
 = +
 
 
 

A I  

 

Inasmuch as the finite volume method is based
on the equilibrium of the transition flows between
adjacent elements, it is necessary to ensure their
continuity. In Figure 3, a cutout is made from the
definition area so that typical three adjacent particles
can be seen that are geometrically continuous and that
is also a flow. 

From Figure 3 it is obvious that the boundary
abscissas, marked sequentially 1,...,6i = , have the

angle of the slope oriented with respect to the 1x -axis

and denoted as iω . It means that 6ω = 2π , for

example. If the tangent (shear) direction to the
abscissas is iω , then the outward unit normals in will

be diverted from 1x -axis the by an angle

3 / 2iα π= + iω mod 2π , 1,...,6i = . 

Let the time be spanned from zero to the chosen
time  T , i.e.  (0, )t T∈ . The  time  interval  is

divided into non-overlapping subintervals
( 1) ( ) ( )[ , ], 1,..., ,n n n kt t t n k t Tδ −= = = . The problem of

solution of the non-linear equations (9) can be
linearized in such a way that at the time ( )nt the
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The algorithm immediately follows from the
above considerations: if the number of the element
abscissas  is  n ,  then  the  number  of  equations  to
be solved at each time ( )nt  is

4 (conservative  variables) 2 (directions) 8n n× × = ; 

the same is the number of unknowns. The solution of
the nonlinear equations providing the transition
between successive time points is based on the
predictor-corrector method. Recall that the above
algorithm is based on the forward differences. 
 
4. DISCONTINUOUS BOUNDARY ELEMENTS 

The equations describing the deformation states
in the structure will be formulated so that the initiation
of localized damage is considered depending only on
the local states of stress and strain. As a very fine
mesh will be accepted, non-linear behavior inside of
solid particles, such as plasticity or visco-plasticity
will not be considered and all non-linear changes in
the material will be described by the damage. It is
worth mentioning that these properties within the
particles can be extended to a much wider range of
materials but as the processes in both media are very
fast, the slow time-dependent material changes of the
type of hereditary problems as well as plastic
behaviors will be omitted in any case.  

As a numerical means of localized damage
caused by a rapid change of stress and deformation
states in the structure due to blast waves, the
discontinuous boundary elements (the free hexagon
method) will be formulated and applied. This method
can be included in distinct element methods, which is
becoming widely accepted as an effective method of
addressing engineering problems in discontinuous
materials. In the case of a fine mesh of hexagons, the
approximation in terms of the suggested method used
the uniform distributions along the interfacial
boundary of displacements and tractions. The adjacent
elements are linked by springs (soft contacts), which
are subject to the spring rules. The interface
conditions are formulated in terms of the Lagrangian
principle, in which the variables are constrained by the
penalty method. The penalty parameters are spring
stiffnesses. The material of springs can possess a large
value to ensure the contact constrains. On the other
hand, if the admissible stress is reached, the spring
parameters tend to zero and naturally no energy
contribution to the element boundary appears in the
energy functional (the Fishera-Signorini conditions). 

The hexagonal particles are studied under various
contact (interfacial) conditions of the elements. Two
contact conditions are adopted: 
• Hoek-Brown criterion is applied instead of the

standard generalized Mohr–Coulomb hypothesis
(in the next, the discussion of both methods and
their comparison will briefly be given), 

• Elimination of tensile tractions along the contact
when reaching the limit state. 
The problem formulated in terms of hexagonal

elements, which are not necessarily mutually
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On the common interfacial boundary S  of two
adjacent control areas ,K L , it holds at any time t , 
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x S K L∈ = ∂ ∩ ∂ , 3mod 6k j= + , hence the normal

fluxes are antisymmetric along the interfaces. In the
solid structure the free hexagon method with some
appropriate requirements - see next chapter – will be
used. Since geometric compatibility between air and
solid structure is required, the nodal points are placed
in the centers of the boundary abscissas of each
element. This admits a simple approximation of the
conservative variables that allows us to express
the necessary integrals as: 
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Assuming uniform distribution of boundary quantities
(displacements ( , )iu x t , tractions ( , )ip x t  and also

( , )ib x t ) along six abscissas , 1,...,6k   kΓ = , creating

the boundary Γ , let: 
 

( ) ( , ), ( ) ( , ), ( ) ( , ),
, 1,..., 6.

k k k
i i k i i k i i k

k k

u t u x t   p t p x t   b t b x t     
x   kΓ

= = =
∈ =

                      (19)
where , 1,...,6kx   k = , are centers of boundary

abscissas. Positioning the points of observation ξ
successively at the points kξ , which are the centers of

boundary abscissas kΓ  of the hexagonal elements,

(18) leads us to six equations of twelve dependent
unknowns ( ), ( ), 1, 2, 1,..., 6k k

i iu t p t i k= = : 
 

1
( ) ( ) ( ,ξ ) d ( ) ( ,ξ ) d

2
( ) ( ,ξ ) d

k k

k k k
j i ij k i ij k

k
i ij k

u t p t u x  x-u t p x  x

b t u x  x
Γ Γ

Ω

∗ ∗

∗

= +

+
 


                     (20)
or in matrix form: 
 

( ) ( ) ( )Au t Bp t b t= +                                                (21)

As is well known, the matrix B  is regular, so it
can be inverted, resulting in an expression similar to
finite element method: 

 

Ku( t ) p( t ) Q( t )= + ,    1K B A−= ,    1Q B b−=     (22)
 

Recall that the stiffness matrix K  is different
from that arising in applications of finite elements
(here it is prevailingly non-symmetric square matrix).
In many publications a certain license is introduced,
namely instead of applying the above generally non-
symmetric stiffness matrix the arithmetic mean of
this matrix and its transposed is used. The
matrices A,B,K in (24), and (25) are square matrices

(12 × 12), u  is the vector of displacement
approximations, and p  is the vector traction

approximations; the previous two quantities are
vectors (12 × 1), all of them are defined at nodal
points (centered at the six boundary abscissas). 

The matrix K  can be arranged by first
prioritizing the direction 1x and then 2x . Hence, (25)

will be in an index notation 
 

11 12

21 22
K KK
K K
 ≡   

, 

1
1 2 3 2 2 2 2

2 1 1 1 1 2 3 6{ , , ,..., , , ,..., }Tu u u u u u u u
u
  ≡ 
 

,                  (23) 

and similarly for p   and Q .                           

 
4.2. INTERACTION OF ADJACENT ELEMENTS  

Consider arbitrary selected adjacent hexagonal
elements in the coordinate system 0x1x2. The elements
in undeformed state share a common part of element
boundaries - abscissa - which belongs to both
considered hexagons. Let us denote nk  the spring

stiffness in the normal direction and the spring

connected during the loading process (because of
arising non-linearity due to the interfacial conditions)
enables us to simulate the mode of propagation of
cracks. The cracking of the medium can be develops
so that local damage can be discovered.  

For the reason of systemization, the dynamic
state on one element will first be investigated. Note
that the shape of individual elements is by no means
restricted if their convex geometry is preserved; if the
particles have the same shape, it is possible to use
very fast iteration procedures because the stiffness
matrix can be stored once for all in the internal
memory of the computers. 

 
4.1. DYNAMIC EQUILIBRIUM ON ONE ELEMENT. 

Consider one typical hexagonal element that is
described by the convex domain Ω  and the boundary
Γ . The boundary is composed of six abscissas

1 6,...,Γ Γ  . The domain is equipped with a local

coordinate system 1 20x x . The state variables defined

on Ω  are: the velocity vector 1 2{ , }v v v≡ , the mass

density ρ , the fourth rank symmetric strain tensor

, 1,2{ }ij i jε ε =≡ and the fourth rank symmetric stress

tensor , 1,2{ }ij i jσ σ =≡ . All previous variables are

position 1 2{ , }x x x≡  and time t  dependent.  

The equations of elasticity in two dimensions
that apply in Ω  are defined by three kinematic
equations, three equations of Hooke’s law, and two
equations of dynamic equilibrium,  
 

( , )( , )1
( , )

2
( , ) ( , )

( , ) ( , ) ( , )
,

ji
ij

j i

ij ijkl kl

ij i i
i

j

u x tu x t
x t

x x
x t L x t

x t v x t u x t
v

x t t

ε

σ ε
σ

ρ

 ∂∂
= +  ∂ ∂ 
=

∂ ∂ ∂
= =

∂ ∂ ∂

                     (17) 

                                                                                    

where 1 2{ , }u u u≡  is the displacement vector, ijklL  are

the components of the elastic material stiffness tensor
of the fourth rank. The mass density ρ  is assumed

constant as well as the stiffness tensor, which is
homogeneous and isotropic. 

Integral representation of the previous equations
can be recorded as 
 

ξ d ξ d

ξ d

jk k i ij i ij

i
ij

c ( x )u ( ξ ,t ) p ( x,t )u ( x, ) x- u ( x,t )p ( x, ) x
v ( x,t )

u ( x, ) x
t

Γ Γ

Ω
ρ

∗ ∗

∗

= +
∂

+
∂

 


(18)
where ξ  is the point of observation, x  is the

integration point, 1 2{ , }p p p≡  is the boundary

tractions, jkc  is a diagonal matrix its values depend on

the position of the point of observation. If

jk jkcξ Ω Γ δ∈ −  = , if  
1

2jk jkξ cΓ δ∈  = . The

quantities with asterisk are given kernels.  

Denote for simplicity 
( , )

( , ) i
i

v x t
b x t

t
ρ ∂

= −
∂

.  
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Fig. 4 Three adjacent elements (left) and denotation of contact conditions (right). 

where κ  is the Heaviside function is one for an
argument greater than zero and otherwise equals zero.

The last relationship can extend the Mohr-
Coulomb hypothesis and the conditions (23) and (26)
can be expressed in Fischera’s sense: 
 

n n n n n n
2

n n
c n n t t

n c
2

n n
c n n t t

n c

[ ] 0,  0,   [ ] ( ) 0   normal direction

0 ( tan ) ( ) | |, |[ ] | 0,

tangential direction

( tan ) ( ) | | |[ ] | 0

u p p u p p

p p
c p p p p u

p p

p p
c p p p p u

p p

β

β

ϕ κ

ϕ κ

+ +

+
+

+

+
+

+

≥ − ≤ − =
 −≤ − − − ≥ − 

  − − − − =  −   

(27)
 

The following picture, Figure 5, shows that the
Mohr envelope according to the Hoek-Brown criterion
serves much well as that by Mohr-Coulomb. 

Comparing the previous condit\ions resulting
from the new criterion with the conditions applicable
to the Mohr-Coulomb hypothesis one concludes that it
is necessary to place the Heaviside function,
otherwise, in order to fulfill the realistic conditions
that both tangential and normal forces are equal to
zero once debonding occurs. The fraction on the right
is always positive because both normal traction pn

and critical compressive force pc  are greater than

admissible tensile force pn .  

Applying the “spring rule” to the neighboring
elements yields, see Figure 4: 

 

n n n t t t[ ] ,   [ ]p k u p k u= =  or  { } { }n n n

t t t

0 [ ]
0 [ ]

p k u
p k u

 =   
     (28)

 

Where nk , tk are normal and tangential spring

stiffnesses, respectively. 
The Lagrangian energy 1Π  of one particle is: 

 

1

2+
2 2 +n n n

n n t c t n n+
c n

1
( ) d

2
[ ]

[ ] [ ] (  ) [ ]  dt

a u,u x

k u p
k u k u c p tan | u | ( p p ) x

p p

β

Γ

Π

ϕ κ

= +

  − + + + − −  −   


(29)
 

where ( , )a u u  is internal energy of the particle and the

integral expresses the influence of boundary terms.
The weak formulation (33) leads to the theory of finite
elements while very weak formulation leads to
boundary elements. 

Note that the spring stiffnesses play the role of
penalty in an expanded variational principle.

stiffness in the tangential direction as tk  on the

interface. Such a case is illustrated in Figure 4. 
Furthermore, after deformation, 1[ ]u  is the

difference between displacement u  in the 1x

direction, while the difference between displacement
u  in the direction 2x  is 2[ ]u , see Figure 4.      

In the normal direction, adjacent elements are
constrained by contact conditions, which state that no
such elements can overlap each other and debonding
when the tensile limit state is reached: 

 

n n n n n n[ ] 0,  ,  if 0u p p p p p+ +≥ ≤ >  =                  (24)
 

where n[ ]u  means a jump of the displacement in the

normal direction, np  are tractions in the normal

direction and np+  is an admissible normal stress

(traction). In the tangential (shear) direction the Mohr-
Coulomb hypotheses is widely applied. A special
form used in the free hexagon method is as: 

 

t n n n

t n n n t n t

| | ( ) tan ,
f  | | ( ) tan tan sgn[ ]
p c p p p
i p c p p p p p u

κ ϕ
κ ϕ ϕ
+

+
≤ − −

> − −  =
                         (25)

 

where tp  is shear traction, t[ ]u  is the jump in

displacements in tangential direction, ϕ  and c  are

material constants, κ  is the Heaviside function
ensuring that when the condition of 0c =  is met,
there is a debond between adjacent particles.  

Since the determination of in situ rock strength is
required for successful design of underground
structures, Bureau of Mines in Denver issued a series
of publications, where suggestions for engineers can
be found for different material properties. A recom-
mendation that clearly follows from many tests on
different materials (not only rocks) suggests that for
a dynamic load, the Mohr-Coulomb hypothesis should
be replaced by Hoek-Brown's criterion.  

From the condition that the compression strength

cσ  and the tensile strength σ +  attain the same values

for the Mohr-Coulomb and Hoek-Brown criteria it
follows:  
 

2

n n
t n n

n c

( tan ) ( ).c

p p
p c p p p

p p

β

ϕ κ
+

+
+

 −
= − − − 

          (26)
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Fig. 5 Comparison of the Mohr-Coulomb hypothesis

with Hoek-Brown criterion. 

Compared to Lagrangian multipliers that can also bind
contact conditions, the solution using penalty reduces
the number of unknowns. In addition, the penalty
parameters are adjusted as required to meet the inter-
facial conditions. If nk  is large enough, the

discontinuity in the normal displacements along
the interface is suppressed, while, in the same time,
the tangential displacements can admit possible jump.
If tk  is large, the discontinuity in the tangential

displacements is zero. The introduction of the
Heaviside function into the formulas above will cause
the tangential traction to disappear after the debond in
the normal direction.  
 
4.3. PSEUDO-STATIC LOCAL EQUILIBRIUM 

Let's assume that each element is considered
small enough so that a dynamic problem can be
formulated by virtue of a lumped mass density
centered in each element, producing the D’Alembert
forces H  (in horizonal direction) and V (in vertical
direction). Consider further that the adjacent elements
of the current element are fixed at some time instant

( )nt . The only element that can deform at the time ( )nt

is that denoted by 0 in Figure 6.  
In order to ensure the equilibrium conditions in

the coordinate axis directions, it will be necessary to
carry out the transformation of the boundary tractions,
the jumps in the displacements and the spring
stiffness. For this, let's look again in Figure 4 and
consider particles 1 and 3 as typical adjacent elements
to study the situation at the mutual boundary.  

Let the normal in the undeformed state to the
boundary of particle 1, for example, be deviated from

1x byα . Then, the transformation of tractions p  from

the local system to the global one can be recorded as: 
 

{ } { } { }n n1

t t2

cos -sin
sin cos

Tp pp Tp pp
β α
α α

 = =  
                  (30) 

 

where p1  and  p2  are components of boundary

tractions in 1x  and 2x  directions, respectively, T  is

the unitary matrix of transformation and T  denotes
transposition. For the jumps in displacements it
similarly holds 

 

{ } { }n 1

t 2

[ ] [ ]
[ ] [ ]
u uTu u=                                                      (31)

Fig. 6 Typical element and its neighbors. 
 
where 1[ ]u  and 2[ ]u  are projections of the jumps in

displacements to the 1x - and 2x - directions,

respectively. With respect to (32), (34) and (35) the
following relation forces – jumps of displacements
holds valid: 
 

{ } { } { }1 11 12 1 1

2 21 22 2 2

[ ] [ ]
[ ] [ ]

p k k u ukp k k u u
 = =  

                          (32)

 

where 
2 2

11 n tcos sink k kα α= + , 2 2
22 t ncos sink k kα α= + ,

12 n t

1
( ) sin 2

2
k k k α= − .                                          (33)

 

Whereas (26) represents the relationship between
the differences in displacements and tractions in the
normal and tangential directions, (32) and (33)
determine the spring coefficients in the global
coordinate system 1 20x x . It is worth noting that the

jump in the boundary displacements on the respective
borderlines is antimetric; from the equilibrium
condition, the following implications apply 
 

- -0 ([ ] [ ] ) 0 [ ] [ ]p p k u u u u− + + ++ =  + =  = −     (34) 
 

where superscript  -  means “from the left”,
superscript  +  means “from the right”, and k   remains
unchanged if one looks at the relevant boundaries in
adjacent elements from the left or right. 

At time t  assume that all adjacent elements
numbered 1 through 6 are in a deformed state fixed. It
also means that boundary displacements of adjacent
elements are known. Using equations (22) and (33),
the D’Alembert forces H  and V  must be in
equilibrium with the sum of all surface forces on the
six boundaries. This can be expressed through
a relationship 
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every relation in the first phase of time development
are observed in the current state of the air and the
structure at a certain time ( )nt , depending on the
conditions in the previous time step ( 1)nt − . The
algorithm that is proposed consists of two iteration
cycles. In the first one, it is required to repeat the
movement law at the nodal points of the air particles
involving the interfacial conditions between the
phases. Forward time differences are applied, which
correspond to the procedure described in section 3,
which deals with the computation of transition states
between two consecutive times. 

This method of back time difference also applies
to the solid phase where it enters as the initial state of
the so-called second inner iteration cycle. This is
actually a local iteration for solving the stress and
deformation states in the structure, where the
development of damage is involved based on
the procedure described in Section 4. Using transition
conditions on the interface, i.e. the quantities received
from the first iteration type in the air are set at the
solid phase boundary. The individual particles are
gradually processed from the discredited solid phase.
The actual motion of the particles depends on adjacent
elements, which are considered fixed at the time of the
second cycle iteration, resolving its position relative to
the immediate neighbors, and iterations will take place
as long as the changes in the elements are less than the
selected error. This results in the current position of
the particle; the next step is to move to the next
element in order. The second iteration cycle ends
when greater particle movement is no longer
registered. 

Next, it is possible to move to next iteration of
the first cycle taking place for air; there are the values 
of the variables from the previous iteration achieved
both in the air and the interface between the two
media. Then, the second iteration cycle, which applies
exclusively to the structure, enters. If the time that was
selected as the ending is reached, the computational
process is terminated.  

The equations of motion in the structure can be
expressed as vector equilibrium equations in
coordinate directions. If the global coordinate system
is 1 20x x , in each particle the equation for translational

motion have to be fulfilled and can be written in the
form: 
 

( ), 1,2i i iF a g iρ= − = ,                                          (38)
 

where iF  are inertia forces, which must correspond

within the equilibrium to the sum of all externally
applied forces on the current particle in the direction
i , ρ  is the mass density of the particle, i ia u≡   is the

acceleration and ig  is the body force acceleration

vector (e.g. loading due to gravity), which is here
neglected. The translation and angular accelerations
are calculated as:  
 

( ) ( ) ( 1)1
( )n n n

i i ia v v
tδ

−= −                                              (39)

where jk  is the system of stiffnesses of the springs
between the current element and the element

, 1,...,6j j = , [ ] , 1, 2, 1,..., 6j
iu i j= =  are jumps in

displacements in the i -direction on the boundary of
the current element with the j -element. Let's note that
in 12 equations there are just twelve free boundary
displacements 1

ju  and 2
ju  in coordinate directions 1x

and 2x , respectively, and this system is always

uniquely solvable. This inner iteration takes place at
each time instant t .  

Having once the nodal displacements known at
time t , the higher order variables can easily be
defined as (velocity, acceleration and inertia forces), 
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v t a t H ma t

t t
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Ω
Ω

∂ ∂
= = =

∂ ∂
=

 

(36)
 

where 0meas  Ω   is the area of the current element. 

Suppose the solid structure is discretized into n
elements and m  internal boundaries. Moreover, Ω  is
the overall domain with external boundary Γ . The
domains of particles is denoted as , 1,...,i i nΩ = , and

the internal boundaries are , 1,...,j j mΓ = . The

Lagrangian energy Π  of overall solid structure is: 
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In addition, it is introduced in (39): intE  is the

sum of internal energies over all particles, ( , )ia u u  is

the internal energy of the i − th particle, Eext  is the

energy of external forces including the sum of inertia
forces, jI  are the interfacial energy density, n t,j jk k

are spring stifnesses and n t[ ] ,[ ]j ju u  are jumps in

displacements on the j − th interfaces and the

remaining quantities are considered the same on each
interface, for simplicity.  

 
5. TIME DEVELOPMENT ALGORITHM OF THE 

AIR - STRUCTURE SYSTEM 

To be in line with the air time evolution
described in section 3, let the time be spanned from
zero to the selected time T , i.e. (0, )t T∈ . The time

interval is divided into non-overlapping subintervals
( 1) ( ) ( )[ , ], 1,..., ,n n n kt t t n k t Tδ −= = = . This means that
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Fig. 7 Geometry of the underground parking and the grains arrangement.   

109  N/m2, ρ  = 2250 kg/m3, ν  = 0.16, friction angle is

350, tensile strength is 1.26 ×  106 N/m2 and shear
strength is 0.37 ×  106 N/m2. It is assumed that the
rock will not suffer from damage; the displacements
and stresses differences are not traversed from
concrete to the rock. 

In Figure 7, the geometry of the problem is seen
together with the regular particles set up for the
computation. Total amount of particles in our problem
is 3800; from that amount 1400 define the rock, 300
covers the lining and 2100 is defined in the air.
Internal diameter of each particle is 0.10 m. The
height of the air space is 2.2 m, the thickness of the
concrete lining is 0.5 m and the thickness of the
interacting rock is 1 m. The load from overburden is
10 MPa. The time step is introduced by the value of
0.1 ms. It can be considered as a sufficient
approximation.  

The initial conditions are introduces for the state
variables at 0t = : 
 

0ρ ρ= ,   0
1 1v v= ,   0

2 2v v= ,    0p p=  
 

where the superscript null denotes the position
functions specified.  
 

Boundary conditions: 
Along the vertical external boundaries:  

1 1 0u v= = ,     
1

0
p

x

∂ =
∂

    …    air 

1 1 0u v= = ,       2 0t =     …   structure 
 

Along the bottom external boundary:       

2 2 0u v= = ,   
2

0
p

x

∂ =
∂

    …    air 

2 2 0u v= = ,       1 0t =     …   structure 

Along the upper external boundary: 2 0t σ= , 1 0t =  
 

Interfacial boundary:  

u u=a s
2 2 ,   v v=a s

2 2 ,   
1 1

v v

x x
μ μ∂ ∂

=
∂ ∂

a s
a s1 1     

Inserting these velocities to the equations for
motions (39) and solving it for the velocities at time
( )n  result in: 

 
( ) ( 1) ( 1)[( ) / ]n n n
i i i iv v t g Fρ δ− −− − = ,                          (40)

 

Finally, the velocities are used to update the
position of the nodal point in the solid phase and also
in the interfacial boundary, i.e. the displacements are
attained from the relations: 
 

( ) ( ) ( 1)( ) /n n n
i i iv u u tδ−= − ,  ( ) ( ) ( 1)n n n

i i iu v t uδ −= +         (41)
 

The last four equations form the initial state for
internal iteration within which stress and deformation
states are reached. Starting with this state, there is an
internal interaction resulting in a state of structural
damage. This internal iteration is performed until the
all elements in the structure are in internal equilibrium
with all adjacent elements. Then, one goes back to the
first iterative process, that is, the situation in the time
instant ( 1)nt + is to be computed based on the results
from time ( )nt .  

 
6. EXAMPLES 

Explosion in underground parking is supposed
with the charge located on the bottom and at the
center of vertical symmetry. The value of the radius of
charge is 0.10 m, its mass q = 50 kg and the density of

TNT TNTρ = 31620 kg/m . Initial pressure of the

charge is 1.3 kN/cm2 and the detonation velocity is
6.94 km/sec. This information, as well as all other
related to the explosion, is obtained by courteous
cooperation with Austin Detonator Co, Vsetin, Czech
Republic. 

Material properties are introduced as: the granite
rock materials remain stable inside of the particles and
is  given in a standard way by modules taken for
linear elasticity: Young’s modulus E = 38 × 109 N/m2,
mass density ρ  = 7833 kg/m3, Poisson’s ratio ν =
0.17, while concrete lining properties are: E = 14 ×
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Fig. 8 Particle movements in 0.1 ms. 

In the above notation 1 2,t t  are boundary

tractions, the upper index a means air and the upper
index s refers to the structure, μ  is  the dynamic

viscosity. Because the dynamic viscosity of a gas is
small compared with that of a structure, the right side
of the latter equation is small, and can be considered
negligible. This allows us to write 
 

s
1

1

0
v

x

∂
=

∂
  instead. 

 

The movements in the air in a cut above the
charge after 0.1 ms are seen in Figure 8, together with
their vectors.  Because in the longitudinal direction
the situation does not change much, only the vertical
cutout around the charge is shown in the following
pictures. 

The movements in the air in a cut above the
charge after 0.1 ms are seen in Figure 8, together with
their vectors.  Because in the longitudinal direction
the situation does not change much, only the vertical
cutout around the charge is shown in the following
pictures. 

In Figures 9 and 10, the movement of particles is
shown in 0.5 and 1.8 ms, respectively. 

Figure 9 shows that the blast wave is cut into
a concrete structure and causes shear damage above
the source of detonation. In the pressure condition
described in Figure 10 there is attenuation of the air at
the location where the shear and tensile damage was
indicated in the previous period of time, and now
a part of concrete material is cracked and spalling
occurs.  

The distribution of overpressure on the lining
above the charge is seen in the next picture Figure 11.

The geometry and conditions of another example
are similar to the previous one, but with the same
detonation parameters, the structure is higher and is
supported by columns. The plate structure is therefore
also thicker. The geometry of the problem is again
determined by the section of the underground car
park, Figure 12. 

The entire domain is again composed of air and
solid sub-regions; both are geometrically

Fig. 9 Particle movements in 0.5 ms. 

Fig. 10 Particle movements in 1.8 ms. 

Fig. 11 Overpressure spectrum on the lining lower
boundary above the charge. 
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Fig. 12 Geometry of the underground parking and the grains arrangement. 

state of stress and deformation is observed. In the first
case, the ceiling of the underground parking is
relatively low and thus the space for the wave
propagation is narrower compared to the second
example. It is apparent from the pictures of the
development of the wavefronts that the dumping is
slow and the pressures and tensions acting on the
structure alternate in quick succession. Due to
the forces of pressure and tension, the structure is
severely damaged, relatively large shear and tensile
cracks occur, and the damage concentrates near the
vertical axis of symmetry. 

In the second case, the ceiling is relatively high,
the lining structure is thicker and thus the situation is
different compared to the previous case. Due to the
large vibration space within the parking structure,
the dumping is rapid, the wave force is
disproportionately smaller and causes essentially only
compression and tensile (not shear) damage. The
pressure wave disappears relatively quickly. It should
be remembered that the pressure force at the same
charge mass decreases with approximately the square
root of the distance. 

There are some examples of the interaction of
structure and shock waves in the technical and
mathematical literature. For example, in the articles
(Feistauer et al., 2012; Feistauer et al., 2013; Kosik,
2016), the interaction of the ear tube (similar to the
tunnel) and the shock waves is monitored. Albeit
these papers are based on the state of finite
deformations, the procedure is considerably simpler as
it assumes the interaction of air movement with the
elastic solid phase. The fact that the presented article
deals with the non-trivial way of damaging the lining
(in our algorithm the number of iterations is possible

approximated by a regular hexagon mesh. The
diameter of the circle of each hexagon is equal to
10 cm. The number of elements in the horizontal
direction is 85 (80 is air and 5 is half of the column),
vertical is 63 elements (40 approximates the area of 
air and 23 is in the area of the concrete slab). The total
dimensions of the studied domain are: 8 × 3.5 m2 is
the area of air, 1 m column width, the plate has
a thickness of 2 m and its half is 8 m long. In this
case, it is again an underground car park that is
studied in its longitudinal direction; the slab
is supported by other columns whose influence is
neglected due to the usual periodicity. This scheme
is designed to monitor the impact of the explosion on
the structure, but the purpose is not to assess the load
capacity. The same detonation conditions are taken to
allow comparison with the previous example. 

Figure 13 shows the state at 0.8 ms when the
blast wave reaches the interfacial boundary of the
concrete structure and causes movement in the area of
contact. The following pictures, Figures 14-16, show
the evolution of overpressure over the source of
the explosion in the time scale. In Figure 17, the
overpressure spectrum referenced to the same location
indicates that the critical values are substantially
smaller than in the previous example. In this case, it is
almost exclusively shear damage in the structure
above the charge. 

 
6.1. EVALUATION OF THE EXAMPLES 

The dynamic behavior induced by the explosion
in an enclosed air space bounded by the concrete
structure of the underground car park is monitored
both in the area of the propagation of the waves in the
air and in the structure, where the effect of the induced
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Fig. 14 Particle movements in 1.7 ms. 
 

Fig. 13 Particle movements in 0.8 ms. 

Fig. 16 Particle movements in 3 ms. Fig. 15 Particle movements in 2.2 ms. 

method has previously proven to be very promising
for resolving a damage if its exact location is not
known in advance. Since the mesh in the air should be
compatible with that created in the structure, the same
type of mesh is also used when finite volumes are
applied. Mesh selection and other approximations
are shown to be well-compatible, nodal points are
concentrated in nodes located in the centers of
hexagon segments (abscissas) in both media. An
exception is the inertial force that is centered on the
elements of the structure. 

The properties of the structural material and the
air are relatively well defined. On the other hand,
the spring stiffness is influenced by the choice of the
law of damage and a wrong choice of its coefficients
can greatly affect the particle behavior of the
structure. In our case, the choice of the Hoek-Brown
criterion appears to be a suitable option. 

In the solved examples, a regular distribution of
the elements is assumed in both the air and the
structure. Thus, only one stiffness matrix relating
boundary tractions and displacements is provided in
each element in the structure. This assumption will
greatly speed up the computation, as the iterative
process for detecting states in the structure for
a certain time is relatively long. In addition, post-
processing has been developed in the form of images
that offer a better overview of the movement of
particles. 

Fig. 17 Overpressure spectrum on the lining lower
boundary above the charge. 

hundreds of times compared to the procedures in the
mentioned articles), the calculation procedure is much
more complicated, and even the interfacial conditions
have to be tuned to get the correct results. 

 
7. CONCLUSIONS 

In this paper, the numerical solution of equations
for the conservation of energy, momentum and mass
density is based on the finite volume method and for
studying mechanical changes, namely damage to the
structure; the discontinuous boundary elements - the
method of free hexagons - are applied. The latter
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