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ABSTRACT 
 
 

Uniaxial compressive strength (UCS) represents one of the key mechanical properties used to
characterize rocks along with the other important properties of porosity and density. While several
studies have proved the accuracy of artificial intelligence in modeling UCS, some authors believe
that the use of artificial intelligence is not practical in predicting. The present paper highlights the
ability of an artificial neural network (ANN) as an accurate and revolutionary method with
regression models, as a conventional statistical analysis, to predict UCS within carbonate rocks
and mortar. Thus, ANN and multiple linear regressions (MLR) were applied to estimate the UCS
values of the tested samples. For experimentation we carried out ultrasonic measurements on cubic
samples before testing uniaxial compressive strength perpendicularly to the stress direction. The
models were performed to correlate effective porosity, density and ultrasonic velocity to the UCS
measurements. The resulting models would allow the prediction of carbonate rocks and mortar’s
UCS values usually determined by laborious experiments. Although the results demonstrate the
usefulness of the MLP method as a simple, practical and economical model, the ANN model is
more accurate. 
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parameters is a research field of a great importance
(Yagiz et al., 2012; Ferentinou and Fakir, 2017).
Consequently, predictive models targeting specific
parameters are emerging as an effective alternative
method in all areas of scientific research. To determine
the UCS, two methods are available. First, the direct
method tests the specimens in the laboratory. Second,
there is the use of predictive models (indirect methods)
(Baykasoğlu et al., 2008; Vavro et al., 2019),
recommended by many researchers for UCS
predictions (Mohamad et al., 2015). 

Artificial intelligence applies in several areas such
as transportation systems (Jabbar et al., 2018), health
(Said et al., 2018) and in the financial sector (Nweke et
al., 2018), as well as other areas. 

ANN is inspired from the brain and the human
nervous system (Ghaboussi et al., 1991), and it
represents an algorithm training to find the best
relationship between output and input variables.
Whenever this relationship is non-linear and complex,
this technique becomes very useful (Mohamad et al.,
2015; Dehghan et al., 2010). Recently, ANN was used
by several studies to predict geo-mechanical
parameters (Erdem, 2017; Kong et al., 2016;
Shahrbanouzadeh et al., 2015; Meulenkamp, 1997;
Singh et al., 2001; Meulenkamp and Grima, 1999;
Rabbani et al., 2012; Kahraman and Alber, 2006;

1. INTRODUCTION 
Building materials attract some significant

interest worldwide. Being scarce in several regions and
having high cost when imported, creates the need to
develop new technologies to facilitate the exploration
of these materials and therefore the estimation of
physical and mechanical parameters that control
geomaterial quality (Wang et al., 2012; Bahadori and
Khalili, 2019). In fact, determining physical and
mechanical properties of heterogeneous materials is
important to judge their usefulness (Maghouset al.,
2009; Zhang et al., 2019). Mechanical, physical and
geotechnical characteristics of rocks (uniaxial
compressive strength UCS, porosity, density, Micro-
Deval test and Los Angeles abrasion test etc.) are
determined in the laboratory using testing machines. 

Uniaxial compressive strength (UCS) is an
important parameter in determining a material’s quality
for mining, geological and geotechnical applications
(Bieniawski, 1974; Abdelhedi et al., 2017; Kurtulus et
al., 2012). In fact, determining UCS is essential in rock
mechanics, for tunnels and dam designs, rock blasting,
mechanical rock excavation, slope stability studies and
other applications. The UCS essay, adopting classical
laboratory methods is laborious, time consuming and
expensive. For this reason, the elaboration of prediction
models as an indirect method for the estimation of such

Cite this article as: Abdelhedi M, Jabbar R, Mnif T, Abbes Ch: Prediction of uniaxial compressive strength of carbonate rocks and cement
mortar using artificial neural network and multiple linear regressions. Acta Geodyn. Geomater., 17, No. 3 (199), 367–377,
2020. DOI: 10.13168/AGG.2020.0027 



M. Abdelhedi et al. 
 

 

368 

 

 
 

Sarkar et al., 2010; Baykasoğlu et al., 2008; Yagiz et 
al., 2012; Yılmaz and Yuksek, 2008). Momeni et al. 
have developed UCS prediction models in carbonate 
and granitic samples employing different optimization 
modes of ANN. However, they did not compare neural 
network modeling with other types of modeling 
(Momeni et al., 2015). Atici produced UCS prediction 
models with good coefficients of determination. 
Nevertheless, the number of samples (28 samples) 
used in his study was small (Atici, 2011). Yagiz (2012)
created many UCS prediction models with 54 
carbonate rock samples, nonetheless the coefficients 
of determination were low (less than 0.5) (Yagizet al., 
2012). 

The purpose of this study is to develop and 
evaluate two predictive models, built with ANN and 
multiple regressions for the estimation of the UCS
within geomaterials and evaluate them. 

2. EXPERIMENTAL PROCEDURE 
2.1. PREPARATION OF SAMPLES 

In the present work, 66 carbonate rocks samples 
were collected from 8 geological ages and shaped to 
cubes of 10 cm on each side according to BS-EN-
12390-1standard (Fig. 1, Fig. 2 and Table 1). 

Forty mortar specimens were prepared from 
1.350 g of normalized sand, water, and Portland 
cement. The latter was used as a cementitious material 
with a 32.5 MPa strength grade, in accordance with the 
EN 196-1 norm (2005). The normalized sand was 
prepared according to the EN 196-1 norm 
formulations. This standard relates the steps needed to 
make normalized sand and its granular fractions. In 
order to vary the w/c (water/cement) ratio from 0.3 to 
1.28 (Table 2), water and cement weights have been 
varied. 

Fig. 1 Sampling locations. 
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Fig. 2 Mortar and carbonate rocks samples. 

Table 1 Locations and geological characteristics of carbonate rock samples. 

Samples Location Petrographic descriptions
1-5 Sidi-Bouzid  Dolomite with algal laminations 

6-10 Jebel Matous Bioclastic, fine-grained limestones 
10-22 Metlaoui (Kef Eddour) Light-gray limestone with many oysters
23-29 Jebel Aziza Elhamma Darker red dolomite at the millimeter scale
30-35 Jebel Matleg (Regueb) Dolomitized limestone rich in rudists 
36-42 Kabbara (Nasrallah) Conglomeratic limestone 
43-53 Jebel Cherahil Bioclastic limestone
54-66 Thala Beige, hard and compact limestone 

Table 2 W/C ratios for (a) dry and (b) saturated mortar samples used in this study. 

(a) 
Designation 1 2 3 4 5 6 7 8 9 10

W/C 1.28 1 0.857 0.642 0.5 0.5 0.5 0.4 0.3 0.3
(b) 

Designation 11 12 13 14 15
W/C 1.28 1 0.857 0.642 0.4

Mechanical mixing was executed by 
a programmable mortar mixer as described in the EN
196-1 (2005) standard. The specimen was placed in 
metallic molds (10×10×10 cm3) at ambient 
temperature for 28 days to dry. To determine the 
effective porosity, five specimens were subsequently 
placed in water for 24 hours. 

 
2.2. ULTRASONIC TESTING 

The pulse transmission method was utilized to 
determine the “P” longitudinal wave velocities. The 
transmitter and the receiver ultrasonic transducers 
were placed perpendicularly to the load axis (Fig. 3). 
The pulse velocities V (m/s) were calculated from the 
resulting travel times according to the equation V =                                                                                  (1)

where L is the length of the straight-wave-path 
through the specimen, which corresponds to the 
distance between transducers faces, (i.e. 100 mm), and 
T is the transit time (s) determined by the ultrasonic 
device. 

The recorded ultrasonic velocities range between 
2264 m/s and 6800 m/s in carbonate rocks samples 
with an average value of 4747.85 m/s. The Ultrasonic 
velocities vary between the different samples 
dependently on the density and the heterogeneity of 
the rock (high velocities for Thala samples and low 
velocities for Kef Eddour samples). Within mortar 
samples, velocities range from 2630 m/s to 3953 m/s 
with an average of 3427 m/s. In mortar samples, which 
are more homogeneous than carbonate rocks, the 
variation of ultrasonic velocities is smaller. 

 
2.3. UNIAXIAL COMPRESSIVE STRENGTH TESTS 

The steps done in this test were carried out 
according to the EN 12390-3standard. 

The specimen’s UCS (uniaxial compressive 
strength) was calculated by dividing the compressive 
stress applied by the testing machine by the loaded 
surface area (MPa) (Fig. 3). 

The UCS values were between 15.42 MPa and 
124.29 MPa with an average value of 64.62 MPa in 
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 Fig. 3 Uniaxial compression apparatus with 
ultrasonic transducers. 

the purpose of this method is the prediction of the 
output parameters according to the input parameters. 
The LMR models were constructed using Microsoft 
Office Excel 2007. 

 
2.6. ARTIFICIAL NEURAL NETWORK 

Several authors have confirmed that back 
propagation (BP) is the most efficient training method 
for artificial neural networks, prediction and decision 
support systems (Tawadrous and Katsabanis, 2007). 
Therefore, hyperbolic tangent sigmoid transfer 
function and back-propagation (TRAINLM) learning 
were applied in this study. The multiplication of the 
entries xn by the weights (wi) and the addition of the 
constant bias (Qi), represents the activation function 
“y”. The hyperbolic tangent function and the output of 
node “i” are described by the equations f(x) = tan h(x) = ୣ౮ିୣష౮ୣ౮ାୣష౮                                              (3)

and Yi = f(∑ w୧୩x୨ + Qi)                                                ୩୨ୀଵ (4)

respectively. 

An MLP network is formed when connecting the 
nodes in series and in parallel (Yılmaz and Yuksek, 
2008). In this work, "Matlab" was employed in 
a neural network analysis with a three-layered ANN
network using a back-propagation algorithm. One 
input layer formed by 3 neurons, one hidden layer with 
2 neurons and one output layer were used (Fig. 4). 
Each layer may contain more than one node (Yılmaz 
and Yuksek, 2008). The network training function and 
the activation function used in ANN were Levenberg-
Marquardt back-propagation (trainlm) and tansig, 
respectively. 

 
3. RESULTS AND DISCUSSION 

Two types of modeling were used to elaborate 
predictive models linking uniaxial compressive 
strength with effective porosity, density, and 
ultrasonic velocity. The relationships between inputs 
and outputs allowed the establishment of a predictive 
model for the uniaxial compressive strength (UCS), 
using three predictor variables: Vp (m/s) P wave 
velocity, P (%) effective porosity, and “d” density.  

Physical and mechanical parameters 
measurements of carbonate rocks and cement mortar 
samples and their statistical parameters are shown in 
appendix A, B and C. 

Several authors have emphasized the added value 
of ANN in the prediction of many parameters in 
geomaterials (Atici, 2011; Eskandari-Naddaf and 
Kazemi, 2017; Khademi et al., 2017). Usually, when 
establishing a relationship between several input 
variables with a single output variable, multiple linear 
regressions are generally applied (Tripathy et al., 
2015). 

 

carbonate rocks samples. They range between 
33.49 MPa and 5.29 MPa in mortar samples with an 
average value equal to 18.51 MPa. The UCS values 
are higher for carbonate rocks samples than that of 
mortar samples probably because carbonate rocks 
densities are higher. 

 
2.4. EFFECTIVE POROSITY AND DENSITY TESTS 

The effective porosity represents the volume 
occupied by the water flow (Lafhaj and Goueygou, 
2009). Thus, the specimens were saturated with water 
to determine the effective porosity (Pe), defined as  Pୣ = ౦౪                                                                             (2) 

where: Vpi and Vt represent the connected pores 
volume and the volume of the sample, respectively. 
(Peng and Zhang, 2007). 

Rock density is the mass of the sample contained 
in a given volume unit. It is usually expressed in 
kN/m3 or in kg/m3 (Peng and Zhang, 2007; Abdelhedi 
et al., 2018). 

Measuring results are shown in appendix A and 
appendix B. 

Density values were high within carbonate 
samples (between 2059 kg/m3 and 3180 kg/m3)
compared to those of mortar samples (between 
1941 kg/m3 and 2241 kg/m3). While carbonates 
effective porosities (from 1.05 % to 19.35 %) were
lower than Pe of mortar samples (from 4.74 % to 
22,65 %). 

 
2.5. MULTIPLE REGRESSION MODELING 

The relationship between several parameters is 
defined by multiple regression. The analysis of this 
relationship gives an equation that represents 
a parameter as a function of several variables. Overall, 
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Fig. 4 Structure of the ANN model. 

Table 3 Recent works on UCS Prediction using artificial intelligence techniques. 

References Method R² Description Input parameters 
Tonnizam et al., 2018 PSO-ANN 0.91 38 sandstone samples ρ, Mc, Vp, Is (50), Id
Dehghan et al., 2010 ANN 0.86 30 travertine samples Vp, Is (50), SRn, n
Yagiz et al., 2012 ANN 0.50 54 carbonate rock samples Vp, n, SRn, Id,γd
Armaghani et al., 2015 ANFIS 0.98 45 granite samples Vp, ρ, PSV 
Ceryan et al., 2013 ANN 0.88 55 Carbonate rock samples n, Id, Vm, ne, PSV
Momeni et al., 2015 PSO-ANN 0.95 66 limestone and granite core 

samples
SRn, Vp, Is (50), ρ 

Mishra and Basu, 2013 FIS 0.98 60 granite, schist and 
sandstone samples

Vp, Is (50), BPI, SRn 

Eskandari-Naddaf and 
Kazemi, 2017 

ANN 0.94 54 cement mortar samples Age of specimen (day), 
w/c, S/C, CSC, HRWR

Khademi et al., 2017 ANN 0.92 173 concrete samples W/C, MSA, AG, AC, AS 
¾, AS 3/8, MS

Tonnizam et al., 2015 PSO-ANN 0.97 40 shale, old alluvium and 
Iron pan samples

BD, Is (50), BTS, and 
Vp 

Atici, 2011 ANN 0.95 28 concrete samples PCR, BS, 
Age, SRn, and Vp

Çelik, 2019 LS-SVM 0.86 90 carbonate rocks samples Vp, SRn and cubic 
sample sizes 

 
Is(50): point load index; Vp: P-wave velocity; ρ:density; Mc: Moisture content; Id: Slake durability index; SRn: Schmidt 
hammer rebound number; n: porosity; ne: effective porosity; γd: (dry unit weight); PSV: petrography study values; Vm: P-
wave velocity in solid part of the sample; BPI: block punch index; W/C:water/cement ; S/C: sand/cement; HRWR: volume of 
super plasticizer; MSA: the maximum size of aggregate; AG: the amount of gravel; AC: the amount of cement; AS¾: the 
amount of sand ¾; AS 3/8: the amount of sand 3/8; MS: the fineness modulus of sand; CSC: Cement strength class; PCR: 
Portland cement resistance; BS: Blast-furnace slag. 
 

Table 3 illustrates numerous previous works that 
used artificial intelligence methods for establishing 
uniaxial compressive strength prediction models. 

 
3.1. PREDICTION OF UNIAXIAL COMPRESSIVE 

STRENGTH WITHIN CARBONATE ROCKS 
WITH MULTIPLE LINEAR REGRESSIONS 
(MLP) 
A multiple regression analysis was created using 

Excel 2007 as a conventional tool. Figure 5 shows the 
correlation between the expected uniaxial 

compressive strength (UCS) and the measured values. 
The coefficient of determination (R² = 0.83) proves 
that the elaborated model was acceptable even if not 
optimal. 

The corresponding equation is: 
 UCS =(0,02xVp) െ (33.29xD) െ (2.81xP) + 75.71

 (5)
Where: 
Vp = Ultrasonic P-wave velocity (m/s). 
UCS = Uniaxial compressive strength (MPa). 
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Fig. 5 Correlation of measured and predicted UCS of carbonate rocks using MLP. 

Fig. 6 Validation plot of ANN analysis (For UCS prediction of carbonate rocks). 

P = Effective porosity (%). 
D = Density(kg/m3). 

 
3.2. PREDICTION OF UCS WITHIN CARBONATE 

ROCKS USING ANN 
The ANN was applied to produce UCS’s 

predictive model. Therefore, ultrasonic velocity, 
effective porosity and density values previously 
determined were analyzed.70 % of data (46 samples) 
were used for training the model, 15 % (10 samples) 
for testing and 15 % (10 samples) for the validation. 
One hidden layer containing 2 neurons was used to 
establish this model (Fig. 4). The number of neurons 
in the hidden layer was determined according to 
Vujicic 2016. The input parameters were: ultrasonic 
velocities, effective porosity and density. Figure 6 
illustrates the validation curves.  

The curves show that, as the epochs increase, the 
root mean squared error (MSE) of the training curve 

decreases. The figure shows the performances 
achieved throughout training. The best validation 
performance was equal to 0.01 and was reached at 
epoch 28 (Fig.6). Figure 7 shows the regression plot 
for the validation, testing and training of the model.  

Very high coefficients of determination (R²=0.9) 
linking predicted and measured uniaxial compressive 
strength values proves the efficiency of the model and 
its accuracy in the prediction of UCS (Fig. 8). This 
model is more accurate than the one created with MLP.

In anterior researches, other parameters were 
used as inputs in order to produce prediction models 
for the UCS. Tariq et al. (2017) established an ANN
model to predict UCS in carbonate rocks using density, 
shear waves and compression wave velocities. The 
coefficients of determination were 0.84. Ferentinou 
and Fakir (2017) used the point load index, the weight 
γ, the tensile strength (σt) and the lithology as input 
parameters to elaborate predictive models for UCS
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Fig. 7 Regression plot from ANN analysis (For UCS prediction of carbonate rocks). 

Fig. 8 Relationship between predicted and measured UCS of carbonate rocks using ANN. 

within many varieties of rocks in KwaZulu-Natal. The 
coefficients of determination were 0.99 and 0.92 for 
training and testing, respectively. 

 
3.3. PREDICTION OF UCS OF MORTAR SAMPLES 

USING MULTIPLE LINEAR REGRESSIONS 
(MLP) 
Multiple linear regressions were used using 

Excel to predict UCS values within mortar samples. 
This model consists of 3 input variables (ultrasonic 
velocity, density, and effective porosity). Figure 9 
shows the correlation between measured and predicted 
values of UCS. 

The figure shows a good relationship between 
measured and predicted UCS within mortar samples. 
A coefficient of determination R² of 0.79 validates the 
model. 

The elaborated equation is: 
 UCS =(2.13xVp) + (19.20xD) + (155.94xPe) െ       െ 9166.36                                                                (6) 

Where: 
Vp = Ultrasonic pulse velocity (m/s), 
UCS = Uniaxial compressive strength (MPa), 
P = Effective Porosity (%), 
D= Density (kg/m3). 
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Fig. 9 Relationship between predicted and measured UCS of mortar samples using MLP. 

Fig. 10 Validation plot of ANN analysis (For UCS prediction of mortar samples). 
 

3.4. PREDICTION OF UCS OF MORTAR SAMPLES 
USING ANN 
An ANN model was created for the prediction of 

UCS in mortar samples. 70 % of data (28 samples) 
were used for training, 15 % (6 samples) for testing 
and 15 % (6 samples) for the validation. The input 
parameters were ultrasonic velocity, density and 
effective porosity (three neurons) which were already
determined. 

The validation line follows the test curve 
(Fig.10).  

The root means squared error (MSE) of the 
training curve decreases progressively with increasing 
epochs. The best validation performance was equal to 
0.009, it was reached at epoch 10 (Fig.10). Figure 11 

shows the regression plot for the testing, the 
validation, and the training of the model. 

The correlation between predicted and measured 
UCS is quite acceptable (R²=0.87), which proves the 
validity of this model (Fig. 12). 

Eskandari-Naddaf and Kazemi (2017) 
established ANN models to predict the UCS of the 
mortar. These models indicated good precision in 
predicting the UCS using 5 input parameters: the high 
range water reducing (HRWR), the W/C ratio, the age 
of the specimen, the S/C ratio and the cement strength 
class. 

Such models represent an accurate method for 
rock and mortar quality estimation. The need for fast 
and accurate methods emerges from the fact that 
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Fig. 11 Regression plot from ANN analysis (For UCS prediction of mortar samples). 

Fig. 12 Correlation of measured and predicted UCS of mortar samples. 

standard methods are time consuming and laborious. 
In the current model, strong relationships with good 
correlations were recognized to predict the UCS. 
Models created with ANN showed good 
prediction accuracy compared to those built with 
MLP. 

 
4. CONCLUSIONS 

The Geomaterial prospecting involves several 
domains (civil, geotechnical, geological or mining 
engineering). The exploitation depends on the quality 
and the physical, chemical and mechanical 

characteristics of the said Geomaterials. UCS is one of 
the most important parameters for geomaterial 
evaluation. The major outcome of the present work is 
the comparison between ANN and multiple 
regressions used to develop prediction models. The 
latter could be used as a non-destructive and 
economical method for the prediction of mechanical 
properties, namely the uniaxial compressive strength 
of geomaterials. This paper succeeded in confirming 
the efficiency of ANN to generate accurate models 
compared to MLP in carbonate rocks and mortar. Such 
correlations provide good predictions of uniaxial 
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compressive strength (UCS) within carbonate rocks 
and mortar. Therefore, this could avoid time-
consuming and tedious lab test methods. The 
determination of ultrasonic velocity, effective 
porosity, and density is simple, non-destructive and 
fast. As a result, these models are expected to be useful 
as a practical approach for the depiction of mechanical 
properties of geomaterials. The findings of the present 
work contribute to the artificial intelligence scientific 
revolution in the scope of the prediction models.  
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