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ABSTRACT 
 
 

We  are  discussing  changepoint  detection  in tropospheric parameter time series that occurs in
a numerical weather reanalysis model. Our approach applies a statistical method that is based on
the maximum value of two sample t-statistics. We use critical values calculated by applying an
asymptotic distribution. We also apply an asymptotic distribution to finding approximate critical
values for the changepoint position. Experiments on “test” and “real” data illustrate the assumed
accuracy and efficiency of our method. The method is assessed by its application to our series
after adding synthetic shifts. A total of more than 3,000 original profiles are then analysed within
the time-span of the years 1990-2015. The analysis shows that at least one changepoint is present
in more than 9% of the studied original time series. The uncertainty of estimated times achieved
tens of days for shifts larger than 9 mm, but it was increased up to hundreds of days in the case
of smaller synthetic shifts. Discussed statistical method has potential for suspected change point
detection in time series with higher time resolution.
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developed for calculating ZWD, as it is a more
complex parameter. The most accurate and widely-
used was developed by Askne and Nordius (1987). It
is an analytical model based on knowledge of the
mean temperature, temperature lapse rate, partial
water vapour, and its exponential decay rate. Its
enhancements through an optimal combination of
water vapour and ZWD decay rates has been
developed by Dousa and Elias (2014). 

The calculation of tropospheric delays depends
on input meteorological variables along with the
signal trajectory. These are usually not available for
real-time GNSS applications and the so-called blind
tropospheric models are thus often generated to
provide tropospheric corrections, e.g. Lagler et al.
(2013). Such models are based on a temporal
approximation of selected meteorological parameters,
usually given as the result of the time series analysis.
Nowadays, Numerical Weather Model (NWM)
reanalysis plays an important role as an input source
of meteorological data for providing 1) a priori values
for  ZHD  or  ZWD  parameters,  De Haan  (2008);
2) coefficients of mapping functions used for
converting ZHD and ZWD into slant hydrostatic and
wet path delays of actual signal elevations, Boehm et
al. (2006); 3) inputs for the conversion of ZWD into
IWV content, Nykiel et al. (2018); 4) reference time
series in process of changepoint detection in GNSS
products, Alshawaf et al. (2017).  

1. INTRODUCTION 
Space geodetic techniques exploiting

electromagnetic signals suffer from the atmosphere
propagation delay. We recognise two major delays;
first, the ionospheric delay, which can be eliminated
by carrier-phase combination technique and second,
the tropospheric delay, usually eliminated by models
including physical and meteorological aspects. 

The zenith tropospheric delay (ZTD – meaning
the signal delay is coming from the zenith direction of
the antenna) is usually described as consisting of two
contributions: zenith hydrostatic delay (ZHD) that is
later defined by the equation (2) and given as
a function of the atmospheric pressure, and zenith wet
delay (ZWD, see (3)). Although representing only
about 10 % of the ZTD, the ZWD plays the most
important role in calculating the tropospheric delay for
Global Navigation Satellite Systems (GNSS) signals
as it cannot be effectively predicted, Bevis et al.
(1992). The reason is that the ZWD depends mostly
on the distribution of temperature and water vapour in
the atmosphere which is a highly spatio-temporally
variable. Besides, ZWD is interesting variable from
a climatological point of view in the sense that
integrated water vapour (IWV) content can be given
as a function of ZWD, Bevis et al. (1994). 

Some traditional models, like that of Hopfield
(1969) or Saastamoinen (1972) were developed for
precise ZHD calculation, and even more models were
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methodologies such as those published in Toreti et al.
(2012) or Rienzner and Gandolfi (2013) have been
discussed. One of this paper’s objectives is to study
a possible implementation of (4) to our series { }iZ ,
which is recorded with a six-hour time resolution. 

The statistical method introduced in this paper
represents a principal concept, which will be further
enhanced and applied to two major points of interest
in our future work. First, analysing the NWM inputs
for blind model development. Second, testing the
statistical method for changepoint detection in a time
series given from high resolution GNSS tropospheric
products. In this study, we applied (4) to the data
without any gaps, but in the future, we will also use
time series with inhomogeneous time spacing. As
mentioned above, a reference series that is stationary
exists in a situation optimal for changepoint detection.
Unfortunately, in our case such a series is not
available and we had to choose a different approach,
i.e., to detect a change in the recorded series.
However, the potential changepoint may be difficult
to detect due to the strong seasonality. Therefore, we
removed the seasonality before detecting the
changepoint, namely, by computing the median
corresponding to a given fixed point in the year and
subtracting the median series from our data. The
median is chosen because it is not sensitive to outliers
Rienzner and Gandolfi (2013). In most cases of
changepoint detection, the presented method of time
series deseasonalising does not affect the process of
detection. However, on some very rare occasions,
such deseasonalising may slightly affect the
changepoint detection and estimation. 
 
2. DATASET DESCRIPTION 

Reanalysis is a scientific method for developing
a homogeneous record of weather and climate changes
in time. Observations and a numerical model are
combined to generate a synthesised estimate of the
state of the Earth’s atmosphere. Such reanalysis
typically extends over several decades or longer and
covers the entire globe in a grid and vertical levels
from the Earth’s surface to well above the
stratosphere. The ERA−Interim product includes
the recent global atmospheric reanalysis produced by
the European Centre for Medium-Range Weather
Forecasts (ECMWF), which provides temporal
resolution of six hours for the surface and upper-air
parameters covering the troposphere and the
stratosphere with a horizontal resolution of
approximately 1.0 × 1.0 degree, Dee et al. (2011). It
has a total of 60 vertical levels, with the top interface
level at 0.1 hPa. The ERA-Interim covers the period
since 1979 and extended forward in time until August
31st, 2019.  

Figure 1 shows a segment of all nodes for the
analysis. The region covers 3,850 grid nodes within a
limited domain by its longitude intervalλ∈〈−25°, 45°〉 and latitude interval  φ∈〈10°, 65°〉.

In this context, we would like to emphasise that
the long-time series of NWM data used, for the blind
model development, for example, can be affected by
changepoints, which may degrade the model’s
accuracy or reliability over time. The changes in the
time series may result from satellite data calibrations
or from changes in satellite constellations. We thus
suggest checking input data of the NWM reanalysis
for the occurrence of inhomogeneities, which is the
main interest of the paper. For this purpose, we
applied a widely used method of mathematical
statistics. 

Statistical methods of changepoint detection
represent a helpful instrument for discovering the
discontinuities in the mentioned series. Statistical
inference usually consists of two major steps; first,
a decision whether the analysed series includes any
suspected time of change and second, an estimation of
the shifts, Jarušková (1996). In the scope of
mathematical statistics, a decision whether the
parameter of interest has changed is based on
hypothesis testing, see (4). The null hypothesis in this
model claims that the process is stationary, while the
alternative hypothesis claims that the process is non-
stationary. The objective of statistical inference is to
decide whether, at some instant, the analysed signal
changed its behaviour and started to vary around a
different value of mean. 

The detection of a change in the series of
interest, denoted as iY  where ( )1,...,i n∈ , is made
possible by the existence of another series iX  for

( )1,...,i n∈ , which can be relied on to be correct and is
analogous to the series iY . The series { }iY  is then
called a reference series. This approach was
recommended by Potter (1981) for detecting shifts in
the mean of precipitation series. The same idea of
finding inhomogeneities in the series { }iY  using the
reference series { }iX  was also discussed in the papers
Alexandersson and Moberg (1997), Jarušková (1997)
or Peterson et al. (1998). A crucial book that covers
statistical method used for the purposes pursued in
this paper is Csörgő and Horváth (1997). 

Homogenization of atmospheric time series are
discussed in Vay et al. (2009) where authors studied
jumps in the PW (precipitable water) time series. Ning
et al. (2016) analysed change point detection method
applied on atmospheric water vapor time series that
were obtained from the GNSS reprocessed data. The
paper authored by Van Malderen et al. (2017) studies
some homogenization algorithms efficiency when
algorithms were applied on synthetic difference time
series between the IGS repro 1 and ERA Interim IWV
datasets.  

It should be noted that almost all the commonly
used methods are suggested for annual and monthly
time series. In the case of a time series with a higher
time resolution of the studied parameter, some
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Fig. 1 The locations of analysed grid nodes (cross symbols) within the domain of longitude λ∈〈−25°, 45°〉 and
latitude φ∈〈10°, 65°〉. The region covers 3,850 profiles and data is recorded every six hours within the
span of 1990-2015. Each analysed series sample covered more than 36,000 observations. 

 

Even if Figure 1 presents the region covering mostly Europe, our main interest is to cover different climatological
and meteorological conditions. The zenith total delay is defined as a sum of the hydrostatic and wet components.
Following the paper de Haan (2008), both ZHD and ZWD, which are the parameters of interest in this paper, are
formally defined as integrals limited from the surface height to the top of the atmosphere  
 

6 6 3
1 2 10 0

10 10s sp pd dR R kZTD ZHD ZWD k dp k k qdp
g g T

ε
ε

− −  = + = + − + 
                                                                (1)

 
where ε is the ratio of gas constants for dry dR  and wet wR  air; q is the specific humidity; g  is the gravity
acceleration; T  is the temperature; sp  is the pressure at the surface height; and finally, the constants 1k , 2k , and
kε  are the so-called refractivity constants. The ZTD can be directly estimated from observations with the aid of
various space geodetic techniques, such as GNSS and VLBI (Very Long Baseline Interferometry) and the ZHD
can be precisely derived from the atmospheric pressure measurement. The ZWD can then be derived by
subtracting the ZHD from the ZTD. If we are using the NWM model as input, it is more convenient to calculate
ZTD, ZHD or ZWD by numerical integration of the (1) over the data provided in the model’s vertical levels.
Using the numerical integration of equation (1), both ZHD and ZWD can be approximated by 
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                                     (3)

 

where subscripts s and j denote the values referring to the surface height and the model level, respectively, and
ipΔ  is the thickness of the model level i, which is defined by 1

h h
i ip p+ − , see de Haan (2008). 
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variance 𝜎ଶ > 0, we may use the statistic  
 

( ) 1,..., 1maxk n kT n T= −= ,                                               (5)
 

where the statistics { }kT  are two-sample t-statistics.
The statistic kT  may be expressed as follows: 
 

( ) ( ) 1
k k k

k

n k k
T Z Z

n s
∗−

= −               (6)

 

with 
1

n
k ii

S Z
=

= , 
1

n
k ii k

S Z∗
= +

= , 1
k kZ k S−= ,

( ) 1
k kZ n k S−∗ ∗= −  and finally 

( ) ( ) ( )2212
1 1

2 k n
k i k i ki i k

s n Z Z Z Z− ∗
= = +

 = − − + −    . 
 

In order to decide whether the null hypothesis
should be rejected or not, 
 𝑇ሺ𝑛ሻ = maxୀଵ,…,ିଵ|𝑇| > 𝑧ఈ,                                      (7)
 
where 𝑧ఈ   𝑖s an 𝛼 ∙ 100 % critical value, we need to
know critical values of  𝑇ሺ𝑛ሻ. For their exact
determination, it is necessary to know the distribution
of the variables ሼ𝑍ሽ, Csörgő and Horváth (1997).
However, in most cases, even if the distribution ofሼ𝑍ሽ is known, the distribution of  𝑇ሺ𝑛ሻ is so complex
that its critical values can only be calculated for
a small number of observations. On the other hand,
the real critical values can be approximated by one of
the following appropriate methods: 
 

• By applying the Bonferroni inequality,
Worsley (1982). 

• By simulations, Ning et al. (2016). 
• By applying the asymptotic distribution (for

large n), Yao and Davis (1986). 
 

In our study, supposing that the number of
variables is large, we used approximate critical values
that can be calculated from Yao and Davis (1986) 

 ቀ maxଵஸஸିଵ|𝑇| > ௫ା ቁ ≈ 1 − 𝑒𝑥𝑝ሼ−2𝑒ି௫ሽ,              (8)
 

where 
 𝑎 = ඥ2 log log 𝑛,                   (9)
 𝑏 = 2 log log 𝑛 + 0.5 log log log 𝑛 − 0.5 log 𝜋.   (10)
 

We suppose that the null hypothesis was rejected
using the hypothesis testing (4), (6). We therefore
conclude that a change in the mean occurred. Suppose
that the true value of that change is m. Denoting 𝑚ෝ ,
the estimate of the changepoint can be given as 
 𝑚ෝ = argmaxୀଵ,…,ିଵ |𝑇|.                                                  (11)
 

The �̂� and 𝛿መ are then the least squares estimates
of 𝜇 and 𝛿 supposing that the change occurred at the
time 𝑚ෝ . In other words, 𝑚ෝ, �̂� and 𝜎ො are the values
which minimise. 

3. METHODOLOGY 
3.1. SEASONALITY PROBLEM AND MEDIAN SERIES

DEVELOPMENT 
According to the paper by Moberg and

Alexandersson (1997), the series of interest should be
compared with a reference series formed of high-
quality data obtained from several stations where the
variations of climate resemble the behaviour of
the series at the candidate site, Alexanderson (1986).
In our case, such a series is not available.
Nevertheless, our series are highly seasonal, and we
thus have to remove the seasonal effect. For any fixed
time, we take the median of all values over T years
that were available at the same time of the year. In this
way, a series of 365 × 4 elements is created as the
NWM model provides four values per day. We call
this series the median year series. Finally, we subtract
the median year series from our series of interest.
A similar approach was applied by Rienzner and
Gandolfi (2013), where the authors used highly
correlated neighbouring series. In our work, the
median series does not cover any observations of
the time series from the neighbouring grid nodes. The
reason is that the spatial resolution of inputs in
the longitude/latitude direction is 1.0 degree, which is
approximately equal to 100 km on the Earth’s surface.
This fact may cause that the median year series, as
suggested by Rienzner and Gandolfi (2013), might be
mixed by the values with different climatological or
meteorological conditions, and contaminated by errors
due to additional spatial interpolations. 

 
3.2. CONCEPT OF CHANGEPOINT DETECTION 

METHOD 
In mathematical statistics, a decision whether the

series is stationary is based on hypothesis testing,
Antoch et al (2002). Our desire is to detect a change in
the location parameter of a deseasonalised series{ }iZ .
Supposing that the potential changepoint k is
unknown, we can define the null hypothesis 0H  and
the alternative A  in the following way:  
 

0 : i iH Z eμ= +  for 1,...,i n=  
{ }: 1,..., 1A k n∃ ∈ −  such that               (4)

i iZ eμ= +  for 1,..., ki =  
i iZ eμ δ= + +   for 1,..., .i k n= +   

 

where { }ie  are the zero mean random errors

distributed according to the same distribution, 1μ ∈
is the mean value before the changepoint and 0δ ≠   is
a shift in the mean value after the changepoint. In such
a way, the null hypothesis 0H  claims that the
sequence { }iZ  is stationary while the alternative
hypothesis A claims that the shift in the mean occurs
at a certain unknown time k. In the case when { }ie  are
independent and identically distributed variables
distributed according to a normal distribution with
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Fig. 2 The scheme of the changepoint detection in studied ZHD and ZWD time series based on the maximum

value of two sample t-statistics. 

 ∑ ሺ𝑍 − 𝜇ሻଶୀଵ + ∑ ሺ𝑍 − 𝜇 − 𝛿ሻଶୀାଵ ,                                                                 (12)
 

and let 𝜎ොଶ be an estimate of 𝜎ଶ 
 𝜎ොଶ = 𝑠ෝଶ = ଵିଶ ൛∑ ሺ𝑍 − �̅�ෝ ሻଶෝୀଵ + ∑ ሺ𝑍 − �̅�ෝ∗ ሻଶୀෝ ାଵ ൟ.                                                                                    (13)
 
3.3. SCHEME OF METHOD APPLICATION 

To produce the extended median series ൛𝑌ሺሻൟ, it is necessary to add an appropriate median value ൛𝑌ൟ to
time of the original time series ሼ𝑋ሽ, which is characterized by index i. The whole procedure of changepoint
detection is shown in Figure 2.  

A visual presentation for one of the selected node profiles, together with the median year series, is presented
in Figure 3. The upper panel of Figure 4 displays the deseasonalised time series ሼ𝑍ሽ, and the bottom one presents
the statistics ሼ|𝑇|ሽ, together with its critical value at the 0.05 significance level. This pair of Figures shows the
time series with a synthetic shift of 15 mm introduced at “2004-09- 30 18:00:00” added for testing the accuracy
of the method and its practical presentation. The node position is:  𝜑 = 50° and 𝜆 = −15°, see Table 1. The time
series consists of more than 36,000 records within the time-span of “1990-01-01 00:00:00”- “2015-12-31
18:00:00”. 

The maximum of the statistics ሼ|𝑇|ሽ was identified at “2004-11-18 00:00:00” and the value was equal to
27.47. Comparing this value with the 5 % critical value 10.51, the null hypothesis defined in (4) is rejected at the
0.05 significance level. Detecting the changepoint in the presented series, the question of the presence of another
changepoint may arise. However, this question is not the primary goal of this paper and it will be studied in the
future. A possible way would be to split the time series into two parts and study them separately, i.e., to consider
independently the parts before and after the changepoint. 

 
4. EXPERIMENTAL RESULTS 

We applied the presented statistical method to the changepoint detection procedure in the time series of
ZHD and ZWD derived from the NWM model. In this section, we present the results of that practical experiment.
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Fig. 3 Example of the ZWD time series of interest (black) and the median year series (silver) that is developed
from the candidate time series. Synthetic shift of 15 mm was introduced at “2004-09-30 18:00:00”. 

Fig. 4 Example of changepoint detection based on applying the |T୩| statistic. Upper panel of the presented
figure shows deseasonalised time series as well as the adjusted means and the bottom panel shows the
progress of the |T୩| statistics. The vertical red line refers to the changepoint location. 

09-30 18:00:00 (MJD 53278.75). The main objective
of this experiment is to statistically assess the detected
times and values of changepoint and compare the
results with the known ones.  

Second, we statistically assessed the changepoint
detection in the original time series when searching
for real (unknown) changepoints. For this purpose, we
defined rectangular   blocks denoted as Real in
Table 1, and we assessed consistencies and
uncertainties of times and values of individually
detected changepoints within each block. 

The whole experiment is divided into two scenarios
using the testing (Test) and real (Real) data as defined
in Table 1. 

First, we evaluated the method suitability
through the analysis of semi-synthetic data (Test
blocks) based on the original time series from the
ERA-Interim and modified by introducing shifts
according to Table 1. The Test blocks were defined as
squares consisting of 11× 11 nodes in the regions
where no changepoints were initially detected. All
Test nodes were modified in the same time of 2004-
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summarises times of adding synthetic shifts into the
original time series. These times were distributed over
the whole time-span of the candidate time series. The
principle of the testing was the same as the one
presented in the previous example. For each synthetic
changepoint time, five tested blocks were defined
following the scheme shown in Figures 5, 6 and
Table 1. 

Table 1 List of all tested (Test and Real) blocks. The
Test blocks were defined as squares
consisting of 121 nodes in the regions where
no changepoints were initially detected. The
last column then includes information of
the added synthetic shift in the blocks at the
instant of 2004-09-30 18:00:00 (Modified
Julian Date – MJD is 53278.75). 

Case 
Study 

Latitude ሾ°ሿ Longitude ሾ°ሿ Shift 
[mm] 𝜑 𝜑௫ 𝜆 𝜆௫ 

Test 1 45 55 -20 -10 15
Test 2 45 55 -8 -2 12
Test 3 45 55 4 14 9
Test 4 45 55 16 26 6
Test 5 45 55 28 38 3
Real 1 57 62 9 19 -
Real 2 34 42 13 23 -
Real 3 33 37 27 34 -
Real 4 26 30 20 33 -
Real 5 10 23 5 40 -
Real 5a 14 22 11 17 -
Real 5b 10 14 8 21 -
Real 5c 13 18 22 30 -
Real 5d 14 19 34 36 -

 
4.1. CASE STUDY: CHANGEPOINT DETECTION IN 

“TEST” BLOCKS 
Figure 5 shows the results of detected

changepoints when displaying their times given as
Modified Julian Days. Table 2 then contains summary
statistics including the total number of grid points
with identified changepoints. The common
expressions of BIAS and RMSE are 
 𝐵𝐼𝐴𝑆 =  ଵே ∑ 𝑇 − 𝑇,ேୀଵ                                          (14)
 𝑅𝑀𝑆𝐸 =  ටଵே ∑ ሺ𝑇 − 𝑇ሻଶேୀଵ ,                                (15)
 

where ሼ𝑇ሽ are estimated changepoints or the shifts in
our study, and 𝑇 is the reference value. Figure 6
shows the distribution of the estimated shifts in the
time series, and the summary statistics are then given
in Table 3. We can observe a good agreement between
the estimated and true times of the synthetically
introduced shifts, in particular for those larger than
6mm. The RMSE indicates uncertainties of 81 and 89
days for a shift of 15mm and 12mm, respectively. The
uncertainty of these estimates increases with the
decrease of the shift magnitude, indicating a quarter of
year or more for shifts below 10 mm. 

In the paper Antoch et al. (1997) the behaviour
of the selected statistical methods which are based on
the partial sum were discussed. In addition to others,
they showed some of them are appropriate for the
change  detection at  the beginning  or at the end of
the series, while others are more powerful when the
suspected time of the change is in the middle of
the series. We dealt with this issue as well. Table 4

Table 2 Statistics of changepoints detected in semi-
synthetic time series. The RMSE indicates
uncertainties of 81 and 89 days for
a synthetic shift of 15 mm and 12 mm,
respectively. 

Block No. Mean 
[MJD] 

BIAS 
[day] 

SDEV 
[day] 

RMSE 
[day] 

Test 1 121 53338.26 59.51 54.84 80.62
Test 2 121 53269.25 -9.50 89.66 89.42
Test 3 121 53382.49 103.74 188.51 213.80
Test 4 121 53685.77 407.02 276.75 490.91
Test 5 55 53506.00 227.25 367.09 426.03

Table 3 Statistics of shifts estimated in Test blocks.
We can observe relatively good agreement
between the estimated and synthetically
introduced shifts.  

Block No. Mean 
[mm] 

BIAS 
[mm] 

SDEV 
[mm] 

RMSE 
[mm] 

Test 1 121 15.68 0.68 0.53 0.86
Test 2 121 13.00 1.00 0.63 1.17
Test 3 121 11.51 2.51 0.57 2.57
Test 4 121 9.84 3.84 0.63 3.89
Test 5 55 8.0 5.03 0.77 5.09

Figure 7 presents percentages of successfully
detected changes in each of the tested blocks as
depending on the instants of the shifts within the data
span (x-axis), see Table 4. The black column in the
Figure represents the number of detected changepoints
in the time series, where a synthetic shift of 15 mm
was added. The legend further distinguishes other case
studies, i.e., for shifts 12, 9, 6 and 3 mm. We clearly
see a higher success rate for detecting changepoints
located in the middle of the series compared to the
interval borders. For example, the method’s efficiency
of 3mm shift detection reaches about 50 %. The
success of 100% is observed for 6mm shifts and
larger, if the time of the change occurred 3-4 years

Table 4 Times of synthetic shifts introduced in time
series. Introduced synthetic changepoints are
distributed over the whole time-span of
analysed time-series. 

ID. Synthetic changepoint MJD 
1991 1991-07-06 18:00:00 48443.75
1998 1998-07-06 18:00:00  51000.75
2004 2004-09-30 18:00:00 53278.75
2010 2010-06-18 18:00:00 55365.75
2015 2015-01-01 00:00:00 57023.00
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Fig. 5 Spatial distribution of detected changepoints. Red boxes show Real blocks defined for the discussed
method assessment. 

Fig. 6 Spatial distribution of estimated shifts. The most significant shifts were mostly estimated in North Africa
and Mediterranean Sea. Several blocks were also detected in southern Sweden. 
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Fig. 7 Statistics of successfully detected synthetic shifts in the time series 

Fig. 8 Statistics of changepoint detection uncertainty. 

changepoint detection, are reliable for detecting at
least one changepoint in the candidate time series. The
applicability of the reference series, provided as
the median year series, will be further studied in the
following work, in particular when considering
the use for non-equidistant time series, such as given
by GNSS ZTD products. 

 
4.2. CASE STUDY: CHANGEPOINT DETECTION IN 

“REAL” BLOCKS 
Figure 5 provided a view on changepoints

detected in the original time series grouped in REAL
blocks. As we know nothing about potential changes,
we can only study a consistency of detected
changepoint times within the defined blocks provided
that changepoints in the original NWM time series
should be similar in specific domains. Indeed, the grid
nodes with statistically proven changes are generally
distributed in specific areas. We can observe similar
characteristics in terms of times and shifts of the
detected changepoints. The largest block of
changepoints is in the North of Africa. Other
interesting regions can be found in the Mediterranean
Sea and a small block is also visible in southern
Sweden.  

away from the interval borders, i.e., roughly about 1/5
of the entire interval. The efficiency of detecting
relatively small shifts, however, rapidly decreases
when the suspected time occurs near the interval
borders. For synthetic shifts of 9 mm, the efficiency
drops below 50 %.  

Figure 8 shows RMSE characterising the
method’s accuracy for each of the analysed case
studies. We can see relatively small errors when the
suspected time of change is in the middle of the series.
Figure 8 also demonstrates that the degree of the
statistical uncertainties is significantly smaller for
larger shifts.  

Finally, Figure 9 shows estimated values of the
BIAS, standard deviation and RMS error. The results
correspond to the case study while adding the
synthetic shift of 9 mm. The best results are clearly
observed when the change was synthetically added in
the middle of the series. We can notice higher error
rates at the beginning of the series compared to the
end of the same sample.  

Based on the results of semi-synthetic time series
analysis, we can conclude that the homogeneous time
series, defined as the median year series in
combination with the applied statistical method of the
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Fig. 9 Statistics of changepoint detection from the analysis of Test 3 block with a 9 mm synthetic shift
introduced to all node time series. 

 

Fig. 10 Distribution of detected changepoint’s time in Real 5 block. Sub-regions for specific statistics are
displayed in red boxes. 

into four parts (A-D) due to a clear variability in its
estimated changepoint characteristics. Figures 5 and
10 show the detected time changing from east to west,
and Figure 6 displays that shifts are particularly
increasing towards the two central areas. Statistical
assessment is thus difficult for this block, in particular
for uncertainties. By splitting the REAL 5 block into
four parts, and still using (14)38-56 samples, reduced
the standard deviation values of the changepoint times
by a factor of 4.7, 8.6, 2.0 and 106.2 for parts A, B, C
and D, respectively. Mean shift uncertainties also
decreased and, generally, they showed values lower
by an order in all blocks indicating the statistical
significance of the estimated shifts. According to
Table 5, the most significant variability, besides the
whole REAL 5 variance, is clearly visible in the case
of REAL 5C block. 
 
5. CONCLUSIONS 

The presented study is focused on two main
aspects related to the ZTD time series analysis. First,
the applicability of the statistical method for
a changepoint detection, which was performed by
applying the method on semi-synthetic time series
including control change points. Second, we assessed

Figure 6 displays mean shifts statistically
detected in the original time series and reaching
absolute values within a range of approximately 5–
20 mm. According to Table 1, the uncertainty of
detecting and estimating synthetic shifts of 9 mm
(TEST 3 block). These roughly correspond to the
majority of values detected in the original time series,
and showed a variation of about 189 days, see
Tables 2 and 3. We can assume a similar uncertainty
of detecting a common changepoint location within
REAL blocks, i.e., without knowing the deviation
from the truth. 

Table 5 contains statistics of the mean and
standard deviation of the detected changepoints times
and estimated shifts for each defined block. The
number of nodes contributing to the statistics is given
in the second column, ranging from 20 to 58. Some
blocks show a reliable changepoint detection, which is
characterised by a low standard deviation in both
estimated quantities, in particular for the shift
estimates. However, detecting the shifts reached larger
uncertainty in most cases according to the expectation
from the analyses of semi-synthetic time series. 

Special attention should be paid to the largest
block (REAL 5) located in the East Sahara and split



AN ASSESSMENT OF THE METHOD FOR CHANGEPOINT DETECTION APPLIED IN … 
. 
 

 

111

 

domain. It confirmed our initial expectation
since the ZHD is related to the atmospheric
pressure, and represents a smoother
parameter, easier to be observer and
modelled. On the other hand, the ZWD time
series strongly depends on satellite
observations in areas such as oceans and
deserts. These might introduce
inhomogeneities due to changes in satellite
missions and their calibrations. 

 

The assessment of time series given from the
numerical weather model in context of changepoint
detection is motivated by their further application. In
our next research we will focus on the method’s
application in the time series given from high
resolution GNSS tropospheric records with the
presence of inhomogeneous time spacing. We will
study an optimal calculation of the reference time
series for such a case, including the assessment of the
calculation from numerical weather reanalysis. As we
plan to use the NWM time series as a reference series
it is very important to consider the homogeneity for
their further applicability. It is also important to
underline that for this study no gaps were involved in
the candidate series and each of analysed series
sample covered more than 36,000 observations.  
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