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ABSTRACT 
 
 

In the general tropospheric tomography model, the tomographic area is divided into a large number
of voxels, which provides convenience for reconstructing tomographic observation equations.
However, due to the defect of GNSS acquisition geometry, there are plenty of empty voxels for
any tomographic epoch. Moreover, an unreasonable assumption that water vapor density is
constant within a voxel was imposed on the tomographic model. In this study, we proposed an
improved method based on the dynamic node parameterized algorithm to solve both key problems.
The proposed approach first tries to select effective GNSS signals and determines the dynamic
scope of the tomographic area using the dynamic algorithm. The parameterization of the
tomography model is performed by a cubic spline formula and Gauss weighted function.
Additionally, a piecewise linear fitting method based on Newton-Cotes interpolation is introduced
to estimate the tomographic observation of slant water vapor (SWV). The experimental results
show that the average number of effective signals increased by 32.33 % and the mean RMSE of
the tomographic results is decreased by 45 % with the proposed method. Further, compared with
the tomographic results of the general method, the improved solutions have a more centralized
distribution and a smaller bias. 
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The 3D water vapor field retrieved by GNSS
tomography not only supplies water vapor density at
different locations in the horizontal direction but also
provides water vapor profile information at different
altitudes. However, there are still some limitations
including distribution of GNSS stations, the
topological structure of satellite constellations, and
the quality of observation signals, which decrease the
accuracy of tomographic solutions. In view of
the geometric confinement of GNSS satellite reference
station networks and satellite constellations, the
satellite signal is an inverted cone that is mostly
concentrated in the middle and upper layer of the
tomographic region (Zhao et al., 2019b). These
structural geometries cause a mix-determined problem
in that a large number of voxels are not passed through
by any ray while excessive rays may pass from one
voxel (Rohm, 2013), which results in ill-conditioned
equations and a rank-deficient matrix (i.e., there are
many zero elements in the coefficient matrix of the
observation equation) when constructing tomographic
observation equations. Several methods have been
proposed in attempts to resolve this ill-conditioned
problem. It is a given that (1) horizontal and vertical
constraints are added and optimized (Flores et al.,
2000; Song et al., 2006); (2) a priori information, which
is initialized and updated by radiosonde, the European

1. INTRODUCTION 
Three-dimensional (3D) tropospheric water

vapor, characterized by dynamic and variable, plays
a key role in atmospheric modeling and weather
forecasting (Benevides et al., 2015; Zus, 2018). Water
vapor observations with high spatiotemporal resolution
and high-quality is useful to relieve the adverse effects
of extreme weather events (Andersson et al., 2007).
GNSS tomography, retrieving the local 3D water vapor
field, has bloomed into an efficient atmospheric water
vapor detection technique to study rainstorm events
and climatic change (Chen et al., 2017; Wang et al.,
2018). Bevis et al. (1992) first presented that water
vapor could be estimated by the Global Positioning
System (GPS), and tomography technology was
introduced to GPS water vapor research in 2000 to
offset the lack of two-dimensional water vapor
information (Flores et al., 2000). Since then,
considerable research and experiments have confirmed
that GNSS tomography performs well compared with
balloon soundings, water vapor radiometer, radar
detection, infrared microwave radiometer, and other
technologies. Additionally, in the study of Chen and
Liu (2014), it is noticeable that tomography deviates
less than to radiosonde observations and numerical
weather models. 
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 Centre for Medium-Range Weather Forecasts 
(ECMWF) and Atmospheric Infrared Sounder 
(AIRS), are employed in GNSS tomography (Yao and 
Zhao, 2016; Benevides et al., 2018); (3) observations 
from GPS, BDS, GALILEO and GLONASS are used 
in the GNSS tomography model (Benevides et al., 
2017; Dong and Jin, 2018; Zhao et al., 2018a; Zhao et 
al., 2019a); (4) the tomographic area is expanded to 
increase the number of available observations (Ding et 
al., 2018b; Zhao et al., 2018c; Yang et al., 2019); and 
(5) data in addition to GNSS observations (e.g., 
InSAR and GNSS-R) are used to add constraint 
information (Benevides et al., 2016; Heublein et al., 
2019; Jaberi Shafei and Mashhadi-Hossainali, 2018). 
Consequently, the quantity of the blank voxels is 
reduced, and the water vapor density of blank voxels 
can be estimated by additional constraints, which 
minimizes the rank defect of the observation matrix 
and improves the accuracy of the tomographic results. 
However, in most existing studies, a fixed box-shaped 
area is preset according to the location of the GNSS 
stations, which represents the final 3D water vapor 
tomography area for any tomographic epoch. Then 
GNSS signals passing from the top boundary of the 
tomography area are considered as effective signals, 
and all rays penetrating from the side of tomography 
area are eliminated without considering their 
usefulness. This behavior neglects useful observations 
and aggravates the ill-posed of water vapor 
tomography system. 

The voxel discretization error caused by 
unreasonable assumption also is researched in some 
studies. Perler et al. (2011) proposed that the water 
vapor density of the voxel be determined by 
a weighted sum of the 8 water vapor density values at 
the corners of the voxel instead of the water vapor 
density at the voxel center. Besides, a new 
parameterized method based on inverse distance 
weighted (IDW) interpolation introduced by (Ding et 
al., 2017) and (Zhao et al., 2018b) showed a horizontal 
parameterized approach without discretization in the 
horizontal direction. However, these improved 
parameterized methods based on the voxel model do 
not completely avoid the problem of discontinuity. 
Ding et al. (2018b) introduce a node discretization 
method with the novel convex hull boundaries, which 
is improved in this paper. 

To construct a matching tomographic area and 
retrieve a continuous 3D water vapor field, this paper 
proposes an improved water vapor tomographic 
method. Contrary to obtaining the tomographic region 
according to the location distribution of GNSS stations 
in the traditional model, the optimized tomography 
model gives priority to the spatial distribution of 
signals in each layer when determining the boundary 
and node position of the tomographic field. It should 
be noted that the tomography model would be 
dynamic as a result of the constant changing of the 
distribution of signals. In addition, the tomographic 
area is discretized into nodes instead of voxels with the 
node parameterized algorithm. This paper is structured 

as follows. Section 2 describes the GNSS processing 
procedure. Section 3 provides details about the 
improved node parameterized method. Experiments 
are performed and results are discussed in Section 4. 
Conclusions are drawn in Section 5. 

 
2. GNSS TOMOGRAPHY DATA 

PREPROCESSING  
In the process of positioning with GNSS, there 

are many errors including ionospheric delays, 
tropospheric delays, and multipath effects, which are 
the troubles when people use GNSS for precise 
positioning, precise navigation, and precise timing 
(Zumberge et al., 1997; Lu et al., 2015). However, in 
view of GNSS meteorology, the tropospheric delay 
induced by water vapor is considered as critical 
information for retrieving 3D wet refractivity 
(WR)/water vapor density (WVD). Therefore, the 
high-accuracy tropospheric delay is necessary to 
support water vapor tomography. 

The GNSS electromagnetic wave signal is 
influenced by the atmosphere on the way transmitted 
from satellites to receivers, resulting in the GNSS 
signals delay including ionospheric delay and 
tropospheric delay (Möller and Landskron, 2019). 
GNSS combining dual-frequency observations is used 
to eliminate the ionospheric delay, while the 
remaining one is estimated as an unknown parameter 
using empirical tropospheric models (Flores et al., 
2001). 

The tropospheric delay (ZTD) usually refers to 
the total delay in the zenith direction of the GNSS 
station, which includes the zenith hydrostatic delay 
(ZHD) and zenith wet delay (ZWD). The relationship 
is shown in Equation (1). 

 ZTD = ZHD + ZWD, (1)
 

ZWD which contains water vapor information 
usually be extracted from ZTD by eliminating ZHD. 
Currently, the main methods of obtaining ZTD are 
double-difference method and precise point 
positioning (PPP) method (Alber et al., 2000; Yu et al., 
2018b). Some empirical tropospheric delay models 
(e.g., Saastamoinen model, Hopfield model, and Black 
model) are used to estimate ZHD values. 

As mentioned above, ZWD only represents the 
wet delay values in the zenith direction of the station, 
which induces a defect that the 3-D water vapor field 
of a tomographic area cannot be fully retrieved. 
Therefore, with the assistant of wet mapping function 
and wet delay gradients, ZWD can be converted into 
slant wet delay (SWD) which represents the wet delay 
information in the direction of the GNSS signals. 

 SWD = 𝑚௪(𝑒) ∙ 𝑍𝑊𝐷 + 𝑚௚௪(𝑒) ∙ ∙ (𝐺ேௌ௪ ∙ cos(𝜑) + 𝐺ாௐ௪ ∙ sin(𝜑)) + 𝑅, (2)
 

where 𝐺ேௌ௪  and 𝐺ாௐ௪  are the wet gradient delay 
parameters, 𝑚௪(𝑒) and 𝑚௚௪(𝑒) represent the wet 
mapping function and horizontal gradient function, 
respectively. 𝑒 and 𝜑 are the elevation and azimuth, 
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respectively.  In this paper, Saastamoinen model was 
set as the expressions for the ZHD (Saastamoinen, 
1972),and VMF1 mapping function was used for 
calculating the SWDs (Boehm and Schuh, 2004). As 
far as the gradient components are concerned, the total 
gradients, similar to the total delays, consist of 
hydrostatic gradient component and wet gradient one. 
The former, can be estimated with the surface pressure 
around each GNSS station (Brenot et al., 2019). 
Therefore, the latter can be expressed by the difference 
of the hydrostatic to the total component. R is the post-
fit residuals calculated by GAMIT (v10.6) software, 
and the residuals exceeding 2.5 times the standard 
deviation were removed (Ding et al., 2018a). 

Usually, SWD is used as GNSS tomographic 
observations to restructure the 3D WR. In this paper, 
the slant water vapor (SWV) which has a nearly 
proportional relationship with the SWD is selected as 
input information for retrieving the 3D water vapor 
field in the node tomographic model. 

 SWV = Π ∙ SWD, (3)

where Π represents the conversion coefficient closely 
related to the weighted mean temperature of the 
atmosphere (Zhao et al., 2018b). 
 
3. DYNAMIC NODE PARAMETERIZED FOR 

PROPOSED IMPROVED METHOD   
Differ from the construction process of the 

traditional approach, useful GNSS signals are selected 
according to elevation angle in the improved method 
at first, the dynamic tomography area is determined by 
the geometric structure of signals. This section is 
organized as follows: Section 3.1 describes the way of 
selecting effective GNSS signals and determining the 
tomography area. The detailed process of the node 
parameterized algorithm for tropospheric tomography 
is discussed in Section 3.2. In addition, the Algebraic 
Reconstruction Technique (ART) for solving the rank 
defect tomographic observation equations is 
introduced in Section 3.3. 

 

3.1. OPTIMIZED PREPROCESSING OF GNSS RAYS 
WITH DYNAMIC ALGORITHM    
In the general GNSS tomography model, as 

shown in Figure 2a, a fixed cuboid area surrounded by 
a black border is preset according to the location of the 
GNSS stations, which represents the final 3-D water 
vapor tomographic region. However, it is 
a conspicuous disadvantage that a great number of 
voxels at the bottom boundary are not signaled. Many 
useless unknown parameters (i.e., the water vapor 
density parameter of the empty voxel) have to be 
estimated by the tomographic model, which reduces 
the accuracy of tomography model solutions. 

 
3.1.1. SELECTION OF EFFECTIVE SIGNALS     

Due to the effect of atmospheric bending, the 
propagation path of GNSS electromagnetic wave 
signal at low elevation angle (𝑒 ൏ 15°) bends when it 
passes through the atmosphere, and the study of 
(Möller and Landskron, 2019) develop a mixed ray-
tracing method to correct the low elevation 
observations. In voxel tomography model, 
tomography area is empirically preseted and signals 
passing from the top boundary of the tomography area 
are considered as effective signals (red lines in Fig. 1). 
However, there is an obvious drawback that same 
signals with an elevation angle greater than 15° (blue 
lines in Fig. 1) are eliminated because they pass 
through the side of the tomography area. The spatial 
distribution of GNSS signals changes at different 
epochs, this behavior will miss some useful 
observation information and decrease the utilization 
ratio of effective signals. To make matters worse, 
a few of signals are regarded as useful signals as they 
pass through the tomography top (green lines in 
Fig. 1), and their bending effect caused by the 
elevation angle below 15° are ignored. This 
phenomenon will get worse as the tomographic area 
gets larger. 

To solve this problem, a new method of signal 
selection based on the elevation angle is proposed. 
GNSS signals with an elevation angle greater than 15° 
are considered as effective observations to retrieve the 

Fig. 1 Observing geometry of GNSS satellites and ground-based receiver. The black frame represents the 
boundary of the tomographic area, the red lines, blue lines, and green lines show the GNSS 
electromagnetic signals. 
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Fig. 2 The spatial distribution of GNSS signals derived from the conventional approach (a) and the new 
proposed approach (b) and the comparison of two approaches is shown in (c). 

3D water vapor fields in this work. Due to the 
significant atmosphere bending effect, signals with 
elevation angle below 15° are passed. The number of 
useful signals and the elevation angle of these signals 
are analyzed on the basis of the 12 GNSS stations in 
Hong Kong (Fig. 8). Figure 2 shows the spatial 
distribution of the effective observed signals obtained 
by the two signal selection methods. It should be noted 
that the new signal selection method only depends on 
the elevation angle information of the signals. 

A better comparison is shown in Figure 2c: the 
red lines represent GNSS signals that puncture the 
tomography top and have the peculiarity of elevation 
angle greater than 15°; rays with elevation angle below 
15° are indicated by green lines. The blue lines denote 
the GNSS rays passing through the side of the voxel 
tomography model but with an elevation angle greater 
than 15°, which are considered as useful signals in the 
new selection method. It is shown in Figure 2c that 
many signals, especially those penetrating from 
the side face of the tomography area are introduced to
the optimized tomography method, which may 
improve the performance of tomographic model.  

 
3.1.2. DETERMINATION OF TOMOGRAPHY AREA   

After selecting useful signals, we determine the 
tomography boundary according to the spatial position 
information of GNSS signals. The detailed steps of 
determining the tomography area are given below:  

 

1. Computing the space position coordinates of 
high-quality GNSS observation signals, which is 
very important for determining the location of the 
tomographic region. 

2. Calculating the coordinates of the puncture points 
(black intersection of the signal and each level in 
Figure 3a) in each layer. 

3. Acquiring the convex hulls covering all puncture 
points using Graham scan (Graham, 1972; Ding 
et al., 2018b).   

4. Determining the optimal rectangles which are best 
similarity with the convex hulls using the 
searching algorithm. The word “similarity”, equal 
to the ratio of convex hull area to rectangle area, 
is defined to express the similarity between the 
convex hulls and the rectangles. This rectangle is 

considered as the optimal tomographic 
boundaries in this paper. 

 𝛾 = ௌ೎೚೙ೡ೐ೣௌೝ೐೎೟ೌ೙೒೗೐ × 100 %, (4)
 

where 𝛾 is the similarity, and  𝑆௖௢௡௩௘௫ as well as 𝑆௥௘௖௧௔௡௚௟௘ represent the area of convex hulls and 
rectangles, respectively. The procedure of the 
searching algorithm is as below. An edge of a convex 
polygon can determine a rectangle parallel to this 
edge. Thus, a convex polygon can produce many 
rectangles. The similarity between these rectangles 
and this convex polygon is calculated in turn, and the 
rectangle with the highest similarity is chosen as 
the optimal rectangle boundary. 

The green wireframes in Figure 3a shows the 
optimized boundary of each layer, compared with
the common voxel model boundary (black wireframes 
in Fig. 2a), the new tomographic model boundary is 
obvious more suitable for the distribution of GNSS 
signals. In addition, this new method ensures that the 
boundary of each layer is consistent with the signal 
distribution and is dynamic in different epochs. More 
signal lines are accepted in the node model, which 
enlarges the scope of the tomographic area and 
improves the stability of tomographic model.  
 
3.2. STRATEGY FOR NODE PARAMETERIZATION  

After determining the boundary of the 
tomographic area, the primary mission of the node 
parameterized algorithm is to reasonably discretize
the tomographic region using nodes. Additionally, the 
quantitative relationships between the water vapor 
density of nodes and the SWV of GNSS signals are 
established according to the spatial location, which is 
the basis of constructing tomographic observation 
equations. 

 
3.2.1. DISCRETIZATION OF TOMOGRAPHIC AREA 

One customarily assumes that the water vapor 
density is equal everywhere in a small cuboid cell in 
the general tomographic model. Although it is 
convenient for reconstructing the 3D water vapor 
field, this discretized method breaks the continuity of 
water vapor density in space. Therefore, each voxel in 
the traditional model is independent and unrelated, 
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Fig. 3 (a) Dynamic boundary (green wireframe) on each horizontal level of the improved tomography model, 
the  black  point represents the intersection of the signal line and each layer of the tomographic model. 
(b) Node parameterization approach for GNSS tomography; the red dots are the nodes, and water vapor 
parameters at the nodes are solved in the tomographic model. 

which is no longer match with the actual water vapor 
distribution. Besides, due to the restrictions on voxel 
discretization, the SWV value obtained from the voxel 
tomographic model is different from the actual SWV 
value of the signal, which is called “discretization 
error”. 

As a result, a new discretized method based on 
nodes is introduced to minimize the discretized error 
and ensure the continuous spatial characteristics of 
water vapor. In node discretization, nodes are 
introduced as discretized units into the construction of 
a 3D water vapor tomographic field. About the 
strategy for assigning number and location of 
horizontal nodes, two options are proposed in this 
paper.  

The first one is that the horizontal distance 
between nodes (i.e., horizontal resolution) is set at 
first, this resolution can be equal to that of the voxel 
model (Perler et al., 2011; Ding et al., 2017). The 
number and location of horizontal nodes are 
determined according to the optimal tomographic 
boundary and the node horizontal resolution. 
Consequently, node model has less unknown 
parameters than the voxel model, which is conducive 
to improve the accuracy of parameter solutions.  

The second one is that the number of horizontal 
nodes is determined in advance. The same number of 
nodes in each layer generates that the horizontal 
resolution of node model increases gradually as the 
altitude decreases and approaches maximum in the 
surface, which is is consistent with the vertical 
variation of water vapor density. Furthermore, in the 
lower troposphere, the node model retrieves higher 
resolution 3D water vapor field than the voxel model, 
which is useful for atmospheric modeling.  

Obviously, the proposed node discretization 
method is more consistent with the spatial distribution 
of water vapor and reduces discretized error. The 
second scheme is selected in this paper. As shown in 
Figure 3b, the tomographic region is divided into red 
nodes, and the water vapor density of the red nodes is 
the unknown parameter to be solved. 

 

3.2.2. REDUCING DISCRETIZED ERROR USING 
A NUMERICAL INTEGRATION METHOD    

In the classical tomographic model, the total slant 
water vapor (SWV) of the GNSS signal is equal to the 
sum of the SWV value of the voxels through which 
this signal passes; the product of the length of signal 
in the voxel and the water vapor density of the voxel 
is regarded as the SWV value of the voxel ( Flores et 
al., 2000). As noted above, this computed method 
brings large discretization error to tomographic 
observation equations. 

To reduce discretized error, a numerical 
integration method based on the Newton-Cotes 
interpolation formula is adopted in the node 
parameterization. The SWV value along the radio 
signal from satellite antenna (𝑞) to receiver antenna (𝑟) 
can be expressed by Equation (5), 

 𝑆𝑊𝑉௤௥ = 10ି଺ ∙ ׬ 𝜌(𝑠)௥௤ 𝑑𝑠, (5)

where 𝑠 represents the signal path from satellite 
antenna (𝑞) to receiver antenna (𝑟), and 𝜌(𝑠) is the 
water vapor density along the signal. The integral 
formula is regularly encountered in mathematics. 
However, the conventional quadrature formula cannot 
be used, as the integrand function 𝜌(𝑠) cannot be 
expressed by an elementary function. The numerical 
integration method based on the idea of numerical 
approximation is usually used to solve such problems. 
The Cotes formula (6) and the complex Cotes formula 
(7) are expressed as follows: 
 

׬  𝑓(𝑥)௕௔ ≈ ௕ି௔ଽ଴ ∙ [7𝑓(𝑥଴) + 32𝑓(𝑥ଵ) + 12𝑓(𝑥ଶ) ++32𝑓(𝑥ଷ) + 7𝑓(𝑥ସ)],  

(6)

𝑥௜ = 𝑎 + 𝑖 ∙ (𝑏 − 𝑎)4 ,      𝑖 = 0, 1, 2, 3, 4. 
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 න 𝑓(𝑥)௕
௔ ≈ ෍ ℎ90 ∙ ൤7𝑓(𝑥௜) + 32𝑓 ൬𝑥௜ାଵସ൰௡ିଵ

௜ୀ଴ + 12𝑓 ൬𝑥௜ାଵଶ൰ + 32𝑓 ൬𝑥௜ାଷସ൰+ 7𝑓(𝑥௜ାଵ)൨        ≈ ௛ଽ଴ ∙ ൤7𝑓(𝑎) + 32𝑓 ∑ ൬𝑥௜ାభర൰௡ିଵ௜ୀ଴ ++12𝑓 ∑ ൬𝑥௜ାభమ൰௡ିଵ௜ୀ଴ + 32𝑓 ∑ ൬𝑥௜ାయర൰௡ିଵ௜ୀ଴ ++14𝑓 ∑ (𝑥௜) + 7𝑓(𝑏)௡ିଵ௜ୀ଴ ൨, 

 
 
 
 
 
 
 
 
 
 
(7)

𝑥௜ାଵସ = 𝑥௜ + (𝑏 − 𝑎)4𝑛 ,  𝑥௜ାଵଶ = 𝑥௜ + (𝑏 − 𝑎)2𝑛 ,  
𝑥௜ାଷସ = 𝑥௜ + 3(𝑏 − 𝑎)4𝑛 ,      𝑖 = 0, 1, 2, 3, ⋯ , 𝑛 − 1. 
where [𝑎, 𝑏] is a limited interval, equivalent to the 
distance from the top of the troposphere to the receiver 
antenna in this paper; 𝑥௜, 𝑥௜ାభర, 𝑥௜ାభమ, 𝑥௜ାయర are 

interpolation points; and 𝑛 represents the number of 
interpolation points in each small interval. 

The specific application of the formulas is as 
follows: As described by Figure 4a, the SWV value of 
a signal corresponds to the area enclosed by the whole 
curve and coordinate axis. The solutions to the 
problem mentioned above is to divide the general 
voxel model into two small steps: The first step is 
computing the product of the length of the signal 
passing through the voxel and the water vapor density 
of this voxel, which corresponds to the area of a small 
red rectangle in Figure 4a (e.g., 𝑆ଵ). The SWV of all 
voxels passed by the signal are added together as the 
total SWV value of the signal is the second step, which 
corresponds to the sum of 𝑛 small red rectangular 
areas (e.g., 𝑆ଵ + 𝑆ଶ + ⋯ + 𝑆௡). It should be noted that 
Figure 4 is only a schematic diagram to illustrate the 
principle of numerical integration fitting. Equation (8) 
shows this calculation method with mathematical 
formulas. 𝑆𝑊𝑉௤௥ = 10ି଺ ∙ ׬ 𝑓(𝑠)𝑑𝑠௕௔ ≈ 10ି଺ ∙ [𝜌ଵ ∙ ∆ௗభୱ୧୬(௘) ++𝜌ଶ ∙ ∆ௗమୱ୧୬(௘) + ⋯ + 𝜌௜ ∙ ∆ௗ೔ୱ୧୬(௘) + ⋯ + 𝜌௡ ∙ ∆ௗ೙ୱ୧୬(௘)],  

(8)

where ∆𝑑௜ is the vertical distance of the signal passing 
through a voxel, which corresponds to the width of the 
small red rectangle in Figure 4a; 𝜌௜ is the water vapor 
density in this voxel, which corresponds to the height 
of the small red rectangle; and ℯ represents the 
elevation angle of the satellite signal. 

From a mathematical point of view, however, 
this estimation method belongs to primary fitting, and 
the algebraic accuracy is only one. To improve the 
accuracy of the curved edge area, piecewise linear 
fitting is usually used in mathematics. Figure 4b shows 
a more accurate method in which each red segment is 
encrypted into 4 blue segments. The area of a curved 
edge is consequently replaced by the sum of the area 
of the 4 × 𝓃 small blue rectangle. The new method for 
calculating water vapor information in each layer 
using the Newton-Cotes numerical integration 
formula is proposed under such mathematical 
thoughts. 

The specific application of the Newton-Cotes 
numerical integration formula is shown below. The 
small blue squares (e.g., 𝑠ଵ, 𝑠ଶ, 𝑠ଷ, 𝑠ସ, 𝑠ହ) in Figures 5a 
and 5b are the interpolation points installed according 
to the Newton-Cotes formula (6) and (7). In this paper, 
contrary to the stratification interval of the lower layer 
(below 4 km), the stratification interval of the upper 
layer (above 4 km) is large. Thus, the Cotes formula 
(6) is applied to the lower layer where five 
interpolation points (including the two points at the 
two ends just in the layer) are installed in each layer, 
and the complex Cotes formula (7) is adopted at the 
upper layer where seventeen interpolation points are 
installed in each layer, as shown in Figures 5a and 5b. 
The formula for calculating the SWV value is 
transformed into the following expression: 

 𝑆𝑊𝑉௤௥ = ෍ 10ି଺ ∙ න 𝜌(𝑠௜)𝑑𝑠௜ =௜
௜ିଵ        

 = ෍ 10ି଺ ∙ ෍ 𝑠௜90 [7𝑓(𝑠௜ଵ) + 32𝑓(𝑠௜ଶ)௜ + +12𝑓(𝑠௜ଷ) + 32𝑓(𝑠௜ସ)+ 7𝑓൫𝑠௜ହ൯], (9)

Fig.4 (a) Integral schematic diagram of water vapor density based on linear fitting. (b) Integral schematic 
diagram of water vapor density based on piecewise linear fitting. 
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Fig. 5 The setting of interpolation points in the lower layer (a) and the upper layer (b). The small blue squares 
in both figures are interpolation points and the red dots represent the nodes in Figure 3b. 

where ρ(𝑠௜ଵ), ρ(𝑠௜ଶ), ρ(𝑠௜ଷ), ρ(𝑠௜ସ), and ρ൫𝑠௜ହ൯represent 
the water vapor density at five interpolation points in 
Figure 3a and 𝑠௜ is the length of the signal passing 
through the 𝑖th layer. Compared with Equation (8), 
Equation (9) has a higher calculation accuracy. For the 
sake of simplicity, the calculation of a high precision 
SWV value by the Cotes formula is listed here only. 
The application steps of complex Cotes formula are 
similar to the aforementioned. 
 
 

3.2.3. ESTABLISHING THE NUMERICAL 
RELATIONSHIP BEUREWEEN INTERPOLATION 
POINTS AND NODES  

According to Equation (9), approximately one 
hundred interpolation points are installed on each 
signal. In addition, the water vapor density at the 
interpolation point on each signal is different, thus 
thousands of unknowns appear in the set time interval 
(e.g., 30 minutes) when the water vapor density of 
interpolation points is regarded as an unknown 

parameter. Obviously, this is not feasible. Therefore, 
to improve the computational efficiency and accuracy 
of the node tomographic model, the new numerical 
relationship between water vapor density at the 
interpolation points (blue squares in Fig. 5) and water 
vapor density at the nodes (red nodes in Fig. 5) is 
established according to the spatial distribution 
characteristics of water vapor density. This part 
includes the following two steps, which are shown in 
Figures 6a and 6b. 

As shown in Figure 5, the spatial location 
relationship between interpolation points and nodes is 
complex and irregular. Therefore, projection points 
are introduced to solve this problem in Figure 6a. 
Taking interpolation point S(λ, φ, 𝓏) as an example, it 
is projected to each level along the vertical direction 
(gray dashed line in Fig. 7a), and the small red squares 
on each level in Figure 6a are the projection points 
(e.g., P(λ, φ, 𝓏ଵ), P(λ, φ, 𝓏௜), ⋯ , P(λ, φ, 𝓏௜ାଵ), ⋯ , P(λ, φ, 𝓏ଵହ)). 

 

Fig. 6 Two step unification of the interpolation points and nodes. (a) The first step: computing the vertical 
projection coefficient between each interpolation point (small blue square) and its projection point (small 
red square) using the cubic spline interpolation. (b) The second step: horizontal weighting coefficients 
between projection points and their surrounding nodes are calculated by Gaussian weighting function. 
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 The quantitative relationship between water vapor density at the interpolation point and water vapor density 
at the projection point is computed using the cubic spline interpolation commonly used in tropospheric 
atmospheric research(Yu et al., 2018a). The layered configuration consists of 15 planes in this paper, 
corresponding to 15 projection points. The water vapor density at the interpolation point S(λ, φ, 𝓏) can be 
calculated using the water vapor density at 15 projection points from P(λ, φ, 𝓏ଵ) to P(λ, φ, 𝓏ଵହ) with the algorithm 
below. 

   𝜌ௌ(஛,஦,𝓏) = ௭೔ି௭∆௭೔ ∙ 𝜌୔(஛,஦,𝓏೔షభ) + ቀ(௭೔ି௭)య଺∆௭೔ − ∆௭೔(௭೔ି௭)଺ ቁ ∙ 𝐷௜ିଵ,: ×
⎣⎢⎢
⎢⎢⎡
𝜌୔(஛,஦,𝓏భ)𝜌୔(஛,஦,𝓏మ)⋮𝜌୔(஛,஦,𝓏೔)⋮𝜌୔(஛,஦,𝓏೙)⎦⎥⎥

⎥⎥⎤ +            𝑧−𝑧𝑖−1∆𝑧𝑖 ∙ 𝜌P(λ,φ,𝓏𝑖) +
+ ൬(𝑧−𝑧𝑖−1)36∆𝑧𝑖 − ∆𝑧𝑖(𝑧−𝑧𝑖−1)6 ൰ ∙ 𝐷𝑖,: ×

⎣⎢⎢
⎢⎢⎢
⎡𝜌P(λ,φ,𝓏1)𝜌P(λ,φ,𝓏2)⋮𝜌P(λ,φ,𝓏𝑖)⋮𝜌P(λ,φ,𝓏𝑛)⎦⎥⎥

⎥⎥⎥
⎤
, 

 

 

(10)

Where  𝓏௜ିଵ  and  𝓏௜  are the altitude of the two planes below and above the interpolation point, respectively, Δ𝓏௜ = 𝓏௜ − 𝓏௜ିଵ is the thickness of the 𝒾th layer, 𝐷௜ିଵ,∶ and 𝐷௜,∶ represent rows 𝒾 − 1 and 𝒾 of the matrix D where D = −𝐴ିଵ𝐵. The calculations of A and B are expressed by Equation (11) and (12). 

𝐴 =
⎣⎢⎢
⎢⎢⎢
⎡ 1  ⋯ ⋯ 𝑧ଵ 𝑧 𝑧ଶ ⋱ ⋱       ⋱     𝑧௜ିଵ  ⋱      

2(𝑧௜ିଵ + 𝑧௜) 𝑧௜  ⋱ ⋱  𝑧௡ିଵ 2(𝑧௡ିଵ + 𝑧௡) 𝑧௡1 ⎦⎥⎥
⎥⎥⎥
⎤
, (11)

𝐵 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 0   6𝑧ଵ − 6𝑧ଶ − 6𝑧ଵ 6𝑧ଶ ⋱ ⋱

      ⋱   
  6𝑧௜ିଵ  ⋱      

− 6𝑧௜ − 6𝑧௜ିଵ 6𝑧௜  ⋱ ⋱  6𝑧௡ିଵ − 6𝑧௡ − 6𝑧௡ିଵ 6𝑧௡0 ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤

, (12)

As 𝐴 and 𝐵 are only related to the altitude of each level, the matrix 𝐷 has to be computed once in the process 
of node parameterization. By introducing this algorithm, each interpolation point is associated with a projection 
point. The mission of calculating the water vapor density of the interpolation point is translated to compute the 
vapor density at the projection point, which is the first step to change. 

Similarly, the second step is to establish the quantitative relationship between the projection point (small red 
square in Fig. 6b) and nodes (small red dots in Fig. 6b) in each layer. In the voxels model, the Gaussian weighting 
function is used as a smoothing constraint to represent the spatial characteristics of water vapor density in the 
horizontal direction (Song et al., 2006), which is introduced to calculate the weighting coefficients between 
projection points and their surrounding nodes in this study. Therefore, the vapor density at the projection point 𝜌(ఒ,ఝ,𝓏) can be obtained by the following Equation: 

 𝜌(ఒ,ఝ,𝓏) = ௪భఘ(ഊభ,കభ,𝓏)ା௪మఘ(ഊమ,കమ,𝓏)ା⋯ା௪೙ఘ(ഊ೙,ക೙,𝓏)௡ = ∑ 𝑤௜𝜌(ఒ೔,ఝ೔,𝓏)௡௜ୀଵ , (13)

 
where 𝑤ଵ, 𝑤ଶ, ⋯ , 𝑤௡are the weighting coefficients of the projection points, 𝜌(ఒభ,ఝభ,௭), 𝜌(ఒమ,ఝమ,௭), ⋯ , 𝜌(ఒ೙,ఝ೙,௭)
represent water vapor density at the surrounding nodes, and 𝑛 is the number of the surrounding nodes, which is 
determined in the experiment. The weighting coefficients 𝑤௜ are expressed by: 𝑤௜ = ୣ୶୮ (ି ೏೔మమ഑మ)∑ ୣ୶୮ (ି ೏೔మమ഑మ)೙೔సభ , (14)
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where 𝑑௜ indicates the distance between a projection point and the surrounding nodes, and σ denotes a smoothing 
factor, which is influenced by the range of smoothing assumptions. 

After the above procedure of node parameterization, a quantitative relationship is established between each 
Newton-Cotes interpolation points and the nodes in the 3-D tomographic field, which is essential for the 
construction of the tomographic observation equations. 

 
3.3. CONSTRUCTION AND SOLUTION OF TOMOGRAPHY OBSERVATION EQUATIONS 

Based on Equation (9)−(14), the tomographic observation equation of a GNSS signal is constructed as 
follows:       𝑆𝑊𝑉௤௥ = 10ି଺ ∙ ቈන 𝜌(𝑠ଵ)𝑑𝑠ଵ +ଵ

௤ න 𝜌(𝑠ଶ)𝑑𝑠ଶ +ଶ
ଵ ⋯ + න 𝜌(𝑠௜)𝑑𝑠௜ +௜

௜ିଵ ⋯ + න 𝜌(𝑠௡)𝑑𝑠௡௡
௡ିଵ ቉  = 

  = 10ି଺ ∙ ቀ𝜆ଵଵ ∙ 𝜌(𝑥ଵଵ) + 𝜆ଵଶ ∙ 𝜌(𝑥ଵଶ) + ⋯ + 𝜆ଵ௝ ∙ 𝜌൫𝑥ଵ௝൯ + ⋯ + 𝜆ଵ௠ ∙ 𝜌(𝑥ଵ௠)ቁ +         10ି଺ ∙ ቀ𝜆ଶଵ ∙𝜌(𝑥ଶଵ) + 𝜆ଶଶ ∙ 𝜌(𝑥ଶଶ) + ⋯ + 𝜆ଶ௝ ∙ 𝜌൫𝑥ଶ௝൯ + ⋯ + 𝜆ଶ௠ ∙ 𝜌(𝑥ଶ௠)ቁ ⋯ +      10ି଺ ∙ ቀ𝜆௜ଵ ∙ 𝜌(𝑥௜ଵ) + 𝜆௜ଶ ∙𝜌(𝑥௜ଶ) + ⋯ + 𝜆௜௝ ∙ 𝜌൫𝑥௜௝൯ + ⋯ + 𝜆௜௠ ∙ 𝜌(𝑥௜௠)ቁ + ⋯ + 10ି଺ ∙ ቀ𝜆௡ଵ ∙ 𝜌(𝑥௡ଵ) + 𝜆௡ଶ ∙ 𝜌(𝑥௡ଶ) + ⋯ +𝜆௡௝ ∙ 𝜌൫𝑥௡௝൯ + ⋯ + 𝜆௡௠ ∙ 𝜌(𝑥௡௠)ቁ, 

 

 

 

(15)
 

where the coefficient of the observation equation consists of  𝜆ଵଵ − 𝜆௡௠, 𝑛 is the number of layers and 𝑚
represents the number of nodes in each layer. 𝜌(௫భభ) − 𝜌(௫೙೘) are the estimated parameters of water vapor density. 
In a tomographic epoch, multiple GNSS signals correspond to multiple observation equations, and a system of 
linear equations consisting of a large number of the above linear equations is shown below. 

൦𝑆𝑊𝑉ଵ𝑆𝑊𝑉ଶ⋮𝑆𝑊𝑉௞൪ = ⎣⎢⎢
⎡𝜆ଵଵଵ 𝜆ଵଶଵ ⋯ 𝜆ଵ௠ଵ ⋯ ⋯ 𝜆௡ଵଵ 𝜆௡ଶଵ ⋯ 𝜆௡௠ଵ𝜆ଵଵଶ 𝜆ଵଶଶ ⋯ 𝜆ଵ௠ଶ ⋯ ⋯ 𝜆௡ଵଶ 𝜆௡ଶଶ ⋯ 𝜆௡௠ଶ⋮𝜆ଵଵ௞ ⋮𝜆ଵଶ௞ ⋱⋯ ⋮𝜆ଵ௠௞ ⋯ ⋯⋯ ⋯ ⋮𝜆௡ଵ௞ ⋮𝜆௡ଶ௞ ⋱⋯ ⋮𝜆௡௠௞ ⎦⎥⎥

⎤ ൦ 𝜌(𝑥ଵଵ)𝜌(𝑥ଵଶ)⋮𝜌(𝑥௡௠)൪, (16)

For the tomographic observation Equation (16), the high-precision solving algorithm is also an important 
factor for ensuring the accuracy of the tomographic model. There are a few ways to solve the tomographic 
equations (Brenot et al., 2019). Singular Value Decomposition (SVD), the non-iterative approaches for solving 
the ill-condition system, is applied in some research ( Flores et al., 2000; Champollion et al., 2005; Song et al., 
2006; Rohm, 2013). Gradinarsky and Jarlemark (2004) adopt the Kalman filter to retrieve the 3D distribution of 
the wet refractivity. In addition, the results of Heublein et al. (2019) show that the compressive sensing (CS) 
approach yields a more accurate and more precise solution than least squares (LSQ) in calculating the unknown 
parameters. Bender et al. (2010) analyze different algebraic reconstruction techniques (ART) that avoids the 
inversion of the normal equation by iteration. Moreover, this technology has been successfully applied to the 
reconstruction of a water vapor field in tropospheric tomography (Xiaoying et al., 2013; Prol et al., 2019). The 
iteration formula is shown below. 𝑥௞ାଵ = 𝑥௞ + 𝜆 ∙ ௠೔ି〈஺೔,௫ೖ〉〈஺೔,஺೔〉 ∙ 𝐴௜, (17)

where 𝐴 indicates the coefficient matrix of Equation (16) and 𝐴௜is the ith row of the matrix 𝐴, 𝑚௜ represents the 
column vectors on the left side of the Equation (16), and λ denotes the relaxation factor which makes a great 
difference in the iteration results. It is noted that λ can be adaptively adjusted according to the observation 
equations of different tomographic epochs in this paper. 
 
4. VERIFICATION OF THE IMPROVED TOMOGRAPHY APPROACH  
4.1. EXPERIMENTAL SCHEME   

GNSS observation data of 12 uniform distribution continuously operating reference stations were obtained 
from the Hong Kong Satellite Positioning Reference Station Network (SatRef). Figure 7 shows their locations 
(red dots) in the horizontal direction, and the blue star represents the location of the Radiosonde HKKP in Hong 
Kong. About the setting of vertical resolution, some researchers have investigated the effect of vertical layered 
configuration on the accuracy of tomographic models. Studies have indicated that a nonuniform stratified 
tomographic model has better accuracy (Rohm and Bosy, 2011; Chen and Liu, 2014; Ye et al., 2016), which is 
introduced in this work. The vertical resolution of the tomography region is shown in Figure 8, where the 
tomography region is segmented into 15 non-uniform layers from 0 km to 11000 km where the water vapor density 
is close to 0 g/m3. 
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Fig. 7 Plane map of the Hong Kong area obtained 
by Mercator projection with 12 GNSS 
reference stations (red dots) and radiosonde 
HKKP (blue star) in Hong Kong. 

Fig. 8 Non-uniform vertical layer strategy for the 
tomographic model. 

The GNSS observations from 12 GNSS 
reference stations and 3 IGS stations are preprocessed 
by GAMIT/GLOBK 10.6 version, which is the high 
precision software for GNSS baseline solution. The 
sampling rate of GNSS data is 30 seconds, while the 
time resolution of estimated ZWD and gradient delay 
is 5 minutes, which is sufficient to reflect the time 
variation characteristics of water vapor. The 
experimentation time is set in August 2017, that is, day 
of year (DOY) 213-243, when Hong Kong is in the 
summer, and there are more rainstorms. In addition, 
two special experiments were carried out to compare 
the tomographic accuracy of the new node model and 
the general voxel model on sunny and rainy days in 
Sect. 4.2.4.  

 
4.2. ANALYSIS OF THE IMPROVED TOMOGRAPHY 

METHOD   
To validate the performance of the proposed 

method, we made tomographic solutions using the 

general method and the improved approach, identified 
as Scheme 1 and Scheme 2, respectively. The two time 
periods of 00:00-00:30 UTC and 12:00-12:30 UTC 
per day serve as the time field of tomographic 
experiments, and tomographic results are compared 
with radiosonde data at 00:00 UTC and 12:00 UTC 
due to its ability to obtain accurate water vapor density 
profiles at different altitudes. 

 
4.2.1. NUMBER OF EFFECTIVE SIGNALS AND 

SIMILARITY  
In the following, Figure 9 shows the analysis of 

the number of effective signals and utilization rate. 
The statistical result over the experimental period 
shows that, when the elevation angle greater than 15° 
instead of penetrating from the tomography top is 
considered as criterion, the average effective signals is 
increased by 32.33 %, whereas the average utilization 
rate of signals is enhanced by 12.62 % from 55.37 % 
to 72.19 %. Additionally, the stable similarity varying 

Fig. 9 The number of effective signals (a) and the utilization rate of signals (b) for general and new method 
during the period of DOY 213-243, 2017. 
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Fig. 10 The similarity of convex hull boundary and rectangle one during the tomographic period. 
 

Fig. 11 Comparisons  between  the  tomography results of the Scheme 1 (blue) and Scheme 2 (red) during the 
31-day period from DOY 213 to DOY 243, 2017, at UTC 00:00 (a) and UTC12:00 (b) daily. 

 
than 50 %. Further, it can be seen that Scheme 2 
significantly outperformed Scheme 1 in all three 
statistics from Table 1, except for the minimum value 
of  Bias.  However,  the  bias distribution of the 
Scheme 2 is more centralized and balanced than that 
of the Scheme 1 from Figure 12. Further, Figure 13 
denotes the distribution of two tomographic schemes, 
and a comprehensive comparison in Figure 13c shows 
the consistent conclusion that the Scheme 2 provided 
more accurate tomographic results than Scheme 1.  

 
4.2.3. ACCURACY ANALYSIS OF EACH LAYER 

In this subsection, more refined errors in each of 
the tomographic layers are compared. The comparison 
of the RMSE and relative error of every layer between 
water vapor density derived from two schemes are 
shown in Figure 14. 

It is well known that the RMSE value decreases 
with the increase of height as the water vapor density 
in the lower layer is much higher than that in the upper 
layer.  It can be observed from Figure 14a that the 
differences obtained by scheme 1 are small than those 
provided by scheme 2, particularly in the lower layers
from 0 to 2 km. In this altitude range, plenty of water 

from 75 % to 80 % can be found in Figure10, which 
shows that the proposed optimal rectangular 
boundaries are useful and reliable. 
 
4.2.2. TOMOGRAPHIC RESULTS OF SCHEME 1 AND 

SCHEME 2 
The tomographic results from two schemes are 

interpolated to calculate the water vapor density at the 
position of the radiosonde station in each layer. The 
RMSE (root-mean-square error) between the two 
tomographic results and the radiosonde data are shown 
in Figure 11, which refers to the 31-day period from
DOY 213 to DOY 243, 2017, at 00:00 and 12:00 UTC 
daily. Besides, Table 1 lists the statistics including the 
maximum, minimum and mean values of Bias, STD 
(standard deviation) and RMSE. 

It should be noted that Scheme 2 has a smaller 
RMSE than Scheme 1 in a majority of time periods, 
and the accuracy of some epochs is increased by 70 %, 
e.g., the value of RMSE decreased from 2.5020 g/m3

to 0.6832 g/m3 at DOY 225 UTC 0:00, when the 
accuracy has been improved by 73.41 %. Additionally, 
there are 22 days in which the accuracy improvement 
rate is more than 30 %, 11 of them increased by more 
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Table 1 Statistics (Bias, STD, RMSE) of the tomography results for two schemes. unit: g/m3. 

Scheme 
Bias     STD     RMSE     
Max. Min. Mean Max. Min. Mean Max. Min. Mean

Scheme 1 0.98 0.50 0.36 2.97 0.52 1.47 2.87 0.65 1.51 
Scheme 2 0.75 0.74 0.15 1.16 0.38 0.77 1.22 0.40 0.83 

Fig. 12 Bias distribution of the tomographic results of the Scheme 1 (a) and the Scheme 2 (b). 
 

Fig. 13 Distribution of one-month Scheme 1 (a) and Scheme 2 (b) tomographic results compared with the 
radiosonde data and comprehensive comparison (c). 

of the two schemes. A similar finding is indicated in 
Figure 15, where the tomographic results of Scheme 2 
are  more  centralized  and  stable  than those of 
Scheme 1. 

 
4.2.4. ACCURACY COMPARISON UNDER DIFFERENT

WEATHER CONDITIONS   
To further compare the accuracy of the two 

tomographic methods, two-day observations were 
used for tomographic experiments. One is DOY 228 
when Hong Kong was sunny, the other is DOY 239 
when Hong Kong suffered heavy rain. As radiosonde 
can only provide observed data at 0:00 UTC and 12:00 

vapor, probably accounting for 60 % of the total, is
concentrated and variable. These results also validate 
the superiority of the improved tomography method in 
this work. 

In addition, it should be noted that the relative 
error dramatically increases with the increase of height 
above 5 km in Figure 14b, and especially is greater 
than 100 % above 6 km to 9 km. This phenomenon is 
not a calculation error, as water vapor mainly 
distributes below 5 km near the earth's surface, and 
water vapor content above 6 km is so low that it is 
below the corresponding RMSE value. Figures 15a 
and 15b show the box statistical diagram for the errors 
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Fig. 14 RMSE (a) and relative error (b) at each layer of the tomographic results from the Scheme 1 (blue curve) 
and Scheme 2 (red curve).   

Fig. 15 Box  plot of the error between the radiosonde data and tomographic results from Scheme 1 (a) and 
Scheme 2 (b). 

day for both schemes at heights of 0 to 1 km. These 
good tomographic results also provide a basis for the 
forecast and analysis of rainstorm weather. 

Table 3 shows statistics of the two tomographic 
schemes under two weather conditions. In both 
periods, the tomographic results of Scheme 2 have 
better accuracy than Scheme 1. The RMSE is reduced 
from 1.15 g/m3 (Scheme 1) to 0.84 g/m3 (Scheme 2) 
on  a sunny  day, and the accuracy is improved by 
26.96 %, while on a rainy day, the accuracy is 
improved by 44.12 % as the RMSE is decreased from 
1.02 g/m3 (Scheme 1) to 0.57 g/m3 (Scheme 2), which 
indicates that the optimized method has a better 
improvement effect on rainy days than on sunny days.

 
5. CONCLUSION   

An improved water vapor tomography method is 
proposed to construct a 3D tomographic water vapor 
field, which showed its superiority over the general 

UTC daily, only the tomographic results at these two-
time points are evaluated. Table 2 lists the weather 
conditions at these days. 

Water vapor profiles under two meteorological 
conditions are shown in Figure 16. It is obvious that 
the tomographic results of Scheme 2 match better with 
the radiosonde data than Scheme 1, and the 
coincidence is higher on rainy days. 

Comparing the results over the two days, the 
vertical distributions of water vapor are more even 
during the rainy day than those during the sunny day. 
On the fine day, water vapor mainly concentrates 
below 4 km altitude, where the water vapor density is 
more than 5 g/m3 and near 0 g/m3 above 6 km in 
altitude. However, the water vapor density is greater 
than 5 g/m3 below 6 km in altitude on a rainy day and 
near 0 g/m3 above 8 km in altitude. In addition, it is 
critical to note that the tomographic results from the 
rainy day are much better than those from the sunny 
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Table 2 Weather conditions at UTC 0:00 and UTC 12:00 on DOY 226 and DOY 239. 

DOY UTC Weather Wind Direction Temperature(℃) 

228 0 cloudy no sustained 29 
12 fine no sustained 33 

239 0 rainstorm north 25 
12 rainstorm southeast 30 

 

Fig. 16 Comparison of tomographic water vapor profiles between the Scheme 1 (a-d) and the Scheme 2 (e-h)
under different weather conditions using the radiosonde (black dots) as a reference. 

and the same GNSS observations during the period of 
1-31 August 2017 from Hong Kong SatRef were 
processed in both tests. Radiosonde data from HKKP 
were used as reference values to evaluate the 
tomographic performance of the two ways. By 
comparing the statistics of the tomographic results, the 
analysis from different perspectives is as follows: On 
the one hand, the mean RMSE for 31 days was reduced 
from 1.5 g/m3 with Scheme 1 to 0.83 g/m3 with 
Scheme 2. Furthermore, the optimized mean shows 
superior performance compared to the common 
approach at each layer, especially in the lower layer of 
0-4 km. On the other hand, two sub-experiments were 
carried out to analyze the improvement effect of the 
improved method under different weather conditions. 

approach. The main improvements are described as 
follows: 1) Compared with the common tomography 
model, the optimized model is more flexible and 
suitable for the spatial distribution characteristics of 
satellite signals. Besides, more GNSS signals and 
broader tomographic scope are determined by the 
dynamic algorithm. 2) The node discretization method 
replaces the voxel discretization method, which has 
a higher conformity to the spatial distribution of water 
vapor  and  minimizes  the discretization effects; and 
3) Piecewise linear fitting is used to calculate the 
approximate value of SWV, which has higher 
accuracy compared with the common one-time fitting.

Two tomographic schemes based on the 
traditional and improved method were implemented, 
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Table 3 Statistical  results  of  Node  and  Voxel  tomographic  water  vapor  density on a fine day and a rainy 
day. unit: g/m3. 

Weather Statistic Scheme 1 Scheme 2 Accuracy improvement
Sunny Bias 0.42 0.37 11.90 % 
 STD 1.10 0.74 32.73 % 
 RMSE 1.15 0.84 26.96 % 
 IQR 1.41 1.07 24.11 % 
Rainy Bias 0.54 0.24 55.56 % 
 STD 0.85 0.52 38.82 % 
 RMSE 1.02 0.57 44.12 % 
 IQR 1.14 0.67 41.23 % 
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Chen, B.Y. and Liu, Z.Z.: 2014, Voxel-optimized regional 
water vapor tomography and comparison with 
radiosonde and numerical weather model. J. Geod., 88, 
7, 691–703. DOI: 10.1007/s00190-014-0715-y 

Chen, B.Y., Liu, Z.Z., Wong, W.K. and Woo, W.C.: 2017, 
Detecting water vapor variability during heavy 
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34, 5, 1001–1019. DOI: 10.1175/Jtech-D-16-0115.1 

Ding, N., Zhang, S., Wu, S., Wang, X., Kealy, A., Zhang, 
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In terms of the RMSE of the tomographic results, the 
accuracy was improved by 26.96 % on a fine day while 
the accuracy improvement rate is 44.12 % on a rainy 
day. In summary, all the performed validations 
showed the advantage of the optimized method for the 
enhancement of tomographic results. 

Further investigations should focus on whether 
the improved method can improve the overall 
accuracy of the middle and boundary tomographic 
area. The tomographic boundary area with less signal 
passing will be more conducive to the analysis and 
study of water vapor changes in the whole region 
under some extreme weather conditions. A second 
point to investigate is the spare GNSS station network 
where there are too low station density to construct 
accurate 3D water vapor tomographic fields using the 
general method. However, the optimized method has 
unique advantages in this respect, which have yet to be 
implemented and verified. 
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