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ABSTRACT 
 
 

In order to quantitatively study the influence of temperature and confining pressure on brittle
plasticity of granite, this paper reviews previous studies regarding quantitative calculation
methods for the brittle-plastic behaviors of rocks and their mechanical characteristics under high
temperatures and confining pressures. Combining the experimental results for temperatures and
confining pressures with theoretical calculations of brittleness and plasticity allowed quantitative
calculations and evaluations for the brittleness and plasticity of granite to be obtained. The main
conclusions are as follows. (1) High temperatures lead to a transformation of granite from brittle
failure to plastic failure. Comparing six conventional empirical equations from the literature, the
B3 and B6 can more accurately describe the relationship between the brittleness and temperature
of granite. (2) When the confining pressure σ3 is less than 20 MPa, the internal pore structure and
fractures of granite are re-compacted and reduced, which gradually increases its brittleness. With
the increasing confining pressure, the pore structure changes again after exceeding 20 MPa. This
initiates new cracks, which ultimately leads to a decrease of the granite brittleness. (3) The
abrupt temperature for the brittle-plastic transformation of granite is approximately 800 °C, and
the brittle-plastic transformation of granite is mainly affected by temperature and not the
confining pressure. 
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accurately predict the rock properties related to
brittleness. Jarvie et al. (2007), Wang and Gale
(2009), and Jin et al. (2014a and 2014b) proposed
quantitative calculations of rock brittleness by testing
the type, weight, and content of the mineral
components. 

Differences in the brittle plasticity of rocks is not
only reflected in the different mineral types but is also
seen for the same rocks under the influence of high
temperatures and pressures. In recent years, rock
engineering under high temperatures or both high
temperatures and confining pressures is an emerging
subject of rock mechanics. There are many human or
natural causes of high temperatures, such as the deep
burial disposal of high radioactive nuclear waste
(Hudson et al., 2001; Rutqvist et al., 2005; Emirov et
al., 2013; Wang et al., 2015), the development of
geothermal resources (Pearson et al., 1983; Ghassemi
et al., 2007; Duan and Wang, 2012; Wang et al.,
2018), tunnel fires (Gong and Zhao, 2007; Smith and
Pells, 2008; Ozguven and Ozcelik, 2013; Tang et al.,
2016), and coal spontaneous combustion (Ünal, 1995;
Whitehouse and Mulyana, 2004; Voigt et al., 2004;
Nolter and Vice, 2004), which further affect the
physical and mechanical properties of rocks. For this
reason, many researchers have simulated pressures
and ground temperatures at certain depths below the
earth surface using experimental methods with

1. INTRODUCTION 
The brittleness and plasticity of rocks are an

important basis to evaluate their mechanical
properties. To date, many researchers have studied the
brittle plasticity of different rocks through
experiments and proposed several quantitative
methods to calculate their brittle plasticity (Walsh and
Brace, 1964; Byerlee, 1968; Hucka and Das, 1974;
Andreev, 1995; Altindag, 2002; Wong and Baud,
2012; Evans et al., 1990; Tarasov and Potvin, 2013;
Paterson, 2013; Tarasov and Potvin, 2013; Luan et al.,
2014; Meng et al., 2015; Stacey, 2016; Ai et al., 2016;
Zhang et al., 2016; Chen et al., 2019). Based on the
stress-strain curves, tensile strength and compressive
strength, Hucka and Das (1974), Andreev (1995), and
Altindag (2002) introduced some quantitative
methods to calculate the brittleness and plasticity of
rocks. Andreev (1995) suggested that the absolute
irreversible longitudinal strain εli can be used to
identify rock brittleness, because the εli of brittle rocks
is less than 3 %, the εli of plastic rocks is more than
5 %, and the brittleness of rocks in the brittle-plastic
transition stage is between 3 % and 5 %. Altindag
(2002), Kahraman and Altindag (2004), and Gunaydin
et al. (2004) suggested that for rock drillability, the
fracture toughness and sawability of carbonate rocks
using the area calculated under the σc-σt curve to
quantify the brittleness of rock masses can more
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temperature and confining pressure on the mechanical
properties of granite were studied using mechanical
tests on high-temperature treated granite, which
included uniaxial and triaxial compressive strength
tests. In this paper, the effects of the temperature and
confining pressure on the brittle plasticity of granite
are quantitatively studied. Combining the
experimental results for the effects of temperature and
pressure with the theoretical calculations of the brittle
plasticity, a quantitative calculation and evaluation
method for the brittle plasticity of granite under the
effects of temperature and confining pressure is
proposed. 

 
3. THE BRITTLENESS CALCULATION 

METHODS AND EXPERIMENTAL RESULTS  
3.1. CALCULATION METHODS OF ROCK 

BRITTLENESS 
Since the 1950s, there has been significant

research on the brittle plasticity of rocks and several
theoretical methods to quantitatively calculate the
brittle plasticity have been proposed. This paper
summarizes six theoretical methods to quantitatively
calculate and evaluate the brittle plasticity of rocks
based on the stress-strain curves, tensile strength, and
compressive strength of rocks.  

Hucka and Das (1974) analyzed the stress-strain
curves for different brittle-plastic rocks and found that
brittle rocks are destroyed when they produce
relatively small strains. In contrast, plastic rocks
undergo large inelastic strains without losing their
bearing capacity before failure. From the analysis and
comparison of the deformation and failure
characteristics for these two types of rocks, two
quantitative equations to calculate the brittle plasticity
were proposed as given by Eqs. (1) and (2). Equation
(1) gives the ratio of the elastic strain to the total
strain (equal to the ratio of the EF and OF strains in
Fig. 1), while Eq. (2) is the ratio of the elastic energy
to the total failure energy (equal to the ratio of the
areas for CEF and OABCF in Fig. 1). The two
methods can be used to quantify the brittleness of any
rock mass because the brittleness behavior of rocks
indicates the energy absorbed from its deformation
under stress. Greater ratios correspond to a larger
brittleness. 

 

1
el

tot

B ε
ε

=                                                                     (1)
 

where εel is the elastic (recoverable) strain and εtot is
the total strain at failure. 
 

2
el

tot

WB
W

=                                                                    (2)
 

where Wel is the elastic energy at failure and Wtot is the
total energy at failure. 

Andreev (1995) believed that when rocks are
subjected to axial loads, inelastic or plastic
deformations are characterized by irreversible
longitudinal strains. Therefore, absolutely irreversible
longitudinal strains can be used to quantify brittleness.
For example, higher values of Eq. (3) (equals the OE

laboratory conditions, such as high-temperature
pretreatment and uniaxial and triaxial compression
tests. There has also been significant work on rock
mechanical characteristics, failure modes, and brittle
plasticity (Wan et al., 2007; Gong and Zhao, 2007; Xi
et al., 2010; Yang et al., 2012; Xu et al., 2014; Sun et
al., 2015; Zhang et al., 2016; Yang et al., 2017; Zhou
et al., 2018). 

Many of the above studies only describe the
effects of the temperature and confining pressure on
the physical and mechanical characteristics of rocks,
while there are relatively few quantitative calculation
methods used to study the degree of brittleness and
plasticity of rocks. Therefore, this paper summarizes
and compares several previous quantitative methods
to calculate rock brittleness characteristics and
combines these methods with previous experimental
data. The brittleness index value is used to evaluate
the brittleness and plasticity of granite under different
temperatures and confining pressures, which provides
a theoretical basis for future research of their
influence on the mechanical properties of granite
(Yarali and Kahraman, 2011).  

In addition, this quantitative study on the
relationship between both the temperature and
confining pressure with brittle-plastic properties is of
great significance when considering deep minerals
and solving various geological and geophysical
problems.  With the increasing demand for minerals
and geothermal resources in recent years, shallow
resources have been unable to meet the needs of
science, technology, and social development.
Exploring and exploiting deep minerals and
geothermal resources requires more in-depth studies
on the deep structure of the earth. As one of the most
effective exploration methods to understand the deep
structure of the earth, drilling inevitably involves
problems associated with high rock temperatures and
confining pressures (Liu and Xu, 2014). At the same
time, the corresponding increases in temperature and
pressure cause the rocks to transition from local brittle
fractures to non-local plastic flow failure modes at
a certain range of underground depths. This
transformation is conducive to understanding various
geological and geophysical problems, such as the
focal mechanism and rheological model of the
lithosphere (Girggs and Handin, 1960; Heard, 1960;
Kaxiras and Duesbery, 1993; Amitrano, 2003;
Niemeijer and Spiers, 2005; Sun et al., 2013). 

 
2. EXPERIMENTAL RESULTS OF PREVIOUS 

STUDIES 
This paper summarizes previous studies from

two aspects. First, the theoretical methods to
quantitatively calculate rock brittle-plasticity are
reviewed. These methods mainly utilize the stress-
strain curve, tensile strength, and compressive
strength (Table 1). Each method has its preconditions
and scope of application. Second, this paper
summarizes a large amount of research data (Table 2)
regarding rock mechanical characteristics under high
temperatures and confining pressures. In previous
experimental and theoretical studies, the effects of the
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Table 1  Several methods to calculate rock brittleness. 

Calculation basis Brittleness Calculation explanations References

Stress-strain test 

𝐵ଵ ൌ 𝜀ୣ୪𝜀୲୭୲ εel is the elastic (recoverable) strain and εtot is the total strain at failure (Hucka and Das, 1974) 

𝐵ଶ ൌ 𝑊ୣ୪𝑊୲୭୲ Wel is the elastic energy at failure, and Wtot is the total energy at failure (Hucka and Das, 1974)  𝐵ଷ ൌ 𝜀୪୧ ∗ 100 % εli is absolute irreversible longitudinal strain at failure (Andreev, 1995) 

UCS test and BTS test 

𝐵ସ ൌ 𝜎ୡ𝜎୲ σc is the unconfined compressive strength and σt is the Brazilian tensile strength (Hucka and Das, 1974) 𝐵ହ ൌ 𝜎ୡ െ 𝜎୲𝜎ୡା𝜎୲  σc is the unconfined compressive strength and σt is the Brazilian tensile strength (Hucka and Das, 1974) 𝐵 ൌ 𝜎ୡ ∗ 𝜎୲2  σc is the unconfined compressive strength and σt is the Brazilian tensile strength (Altindag, 2002) 

Table 2   Rock mechanical parameters under high temperatures and pressures. 

Rock sample size 
(mm)

Temperature 
T (°C)

Heating rate (°C/min) Holding time 
t (h)

Confining pressure 
σ3 (MPa) 

References 

50×100 25-1000 5 4 0-15 (Hu et al., 2016)
50×100 25-1000 - 2 0-40 (Xu et al., 2014)

50×25, 50×100, 30×100, 
50×100 25-1000 10 2–3 0 (Liu and Xu, 2014) 

50×100 200-800 5 2 0 (Yang et al., 2017) 
40×80 25-800 10 6 0 (Chen et al., 2012) 

50×25, 50×100 25-900 5 1 0 (Zhang, 2017)
50×25, 50×100 25-600 10 12 0 (Gautam et al., 2015) 
50×25, 50×100 25-600 2 2 0 (Jin et al., 2019)
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Figure 2(f) shows the value of B6 decreases from
402.01 and 733.19 to 88.78 and 144.72 in the range of
25-800 °C.  

 
3.3. THE INFLUENCE OF CONFINING PRESSURE 

ON ROCK BRITTLENESS 
The relationship between granite brittleness and

the confining pressure is obtained by calculating and
processing data from the literature using Eqs. (1), (2)
and (3). Figure 3 shows the relationship between the
brittleness and confining pressure as expressed using
B1, B2, and B3. At the range of 0-5 MPa, B1 and B2
increase overall in the range of 0-5 MPa, while B3
decreases. Figure 3 also shows the relationship
between the confining pressure and brittle-plastic
behavior of rocks in the range of 0-40 MPa. The
change trend for the brittleness can be divided into
two stages. In Stage I (0-20 MPa), the brittleness as
expressed by B1 and B2 increases, while the brittleness
as expressed with B3 has only slight changes. In Stage
II (20-40 MPa), the brittleness as expressed with B1
and B2 decreases, while the brittleness expressed with
B3 increases. 

 
4. ANALYSIS AND DISCUSSION 

The brittle plasticity of rocks is affected by many
factors in natural environments, such as the mineral
composition, particle size, temperature, confining
pressure, strain rate, liquid medium, etc., which lead
to changes in the brittle-plasticity (Simpson, 1985;
Horii and Nematnasser, 1986; Ellis and Stöckhert,
2004; Wong and Baud, 2012; Paterson, 2013; Duda
and Renner, 2013; Xu et al., 2015). In this paper, the
effect of temperature and confining pressure on the
brittleness and plasticity of granite is summarized and
studied, and the mechanism for the effects of
temperature and confining pressure on the granite
brittleness are analyzed. 

The relationship between the brittleness and
temperature are linearly fit in Figure 4. The changes in
B1, B2, B3, B4, B5, and B6 all indicate that the
brittleness of granite decreases with increases in
temperature. Compared with the other four methods,
B3 and B6 can better express the relationship between
temperature and brittleness. High temperatures cause
thermal damage to the internal structure of granite. As
the temperature increases, the adherent water and
crystalline water in the granite overflow, which results
in changes to the granite pore structure (Yoshitaka et
al., 2010; Sun et al., 2013; Xu et al., 2014; Liu and
Xu, 2015). In addition, because granite is composed
of minerals with different thermal expansions, as the
temperature continues to rise, the minerals produce
non-uniform expansion deformations, which generates
new cracks, i.e. intragranular and intergranular cracks
(Somerton and Boozer, 1961; Xu et al., 2010; Sun et
al., 2015; Zhang et al., 2016; Liu and Xu, 2014; Freire
et al., 2016). Therefore, these changes in the internal
structure of granite ultimately lead to a gradual
reduction in its strength. As a result, the failure mode
of granite gradually changes from brittle failure to
plastic failure with the increasing temperature. 

The variations of B1, B2, and B3 in Figure 5
shows that different confining pressures have different

Fig. 1 Typical stress-strain curve for brittle rocks. 
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value in Fig. 1) correspond to a smaller brittleness. 

2 100%liB ε= ∗                                                           (3)

where εli is the absolute irreversible longitudinal
strain. 

Hucka and Das (1974) found that the unconfined
compressive strength (UCS) and Brazilian tensile
strength (BTS) differ greatly when expressing the
mechanical properties of brittle rocks. While the UCS
shows the compressibility of a rock mass, the BTS
shows the cohesion between rock mineral particles.
Therefore, two equations are proposed as Eqs. (4) and
(5). 

4
c

t

B σ
σ

=                                                                     (4)

5
c t

c t

B σ σ
σ σ

−
=

+
                                                             (5)

where σc is the compressive strength (UCS (MPa))
and σt is the tensile strength (BTS (MPa)). 

Altindag (2002) then proposed and proved that
the brittleness of a rock mass can be better quantified
by using a function for the area under the σc-σt curve
after considering the drillability and fracture
toughness of rocks. For example, higher values of Eq.
(6) corresponds to a larger brittleness. 
 

6 2
c tB σ σ+

=                                                              (6)
 
3.2. THE INFLUENCE OF TEMPERATURE ON ROCK 

BRITTLENESS 
The relationships between the granite brittleness

and temperature (Fig. 2) are obtained using Eqs. (1)-
(6). The brittleness from B1, B2, and B6 decreases with
the increase of temperature, and the brittleness from
B3, B4, and B5 increases with temperature overall. As
shown in Figure 2(a), the value of B1 decreases from
0.6-0.8 to 0.3-0.6 in the range of 25-1000 °C. The
value of B2 decreases from 0.65-0.85 to 0.5-0.65 in the
range of 25-1000 °C, as shown in Figure 2(b). The
value of B3 increases from 0.05-0.25 to 0.75 in the
range of 25-1000 °C in Figure 2(c). Figure 2(d) shows
that the value of B4 increases from 10.17 and 15.90 to
16.32 and 52.62 in the range of 25-800 °C. As shown
in Figure. 2(e), the value of B5 increases from 0.82
and 0.88 to 0.89 and 0.96 in the range of 25-800 °C.
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Fig. 2 Brittleness of granite treated using different temperatures: (a) B1; (b) B2; (c) B3; (d) B4; (e) B5; and (f) B6 

effects on the brittle-plastic behavior of granite.
Figure 5 shows that the granite brittleness increases
gradually in the confining pressure range of 0-15
MPa, while from 20-40 MPa, the brittleness shows
significant increases. Due to the compactness and
hardness of natural granite, micro-cracks will occur in
its interior under natural stresses or human factors
(e.g. drilling and mining). In the figure, the brittleness
of granite increases gradually with the compaction of
the micro-cracks under very small confining
pressures. When the confining pressure exceeds the
value the sample can bear, the granite pore structure

further changes, resulting in new cracks and an
ultimate reduction of its brittleness. 

As shown in Figure 6, the brittleness of granite
decreases with the confining pressure when the
applied temperature exceeds 800 °C. This shows that
the integrity of granite itself is significantly
compromised and its brittleness is nearly lost after the
applied temperature exceeds 800 °C, which is similar
to previous studies (Brian and Fang, 1992; Zhou and
He, 2002; Zhou et al., 2002; Zhou et al., 2014; Chen
et al., 2018). These studies noted that the temperature
is the primary factor that affects the brittle-plastic
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Fig. 3  Relationship between brittle plasticity of granite and the confining pressure: (a) B1; (b) B2; and (c) B3.  

transformation of granite in the experimental
temperature-pressure range. When the temperature
exceeds 800 °C, granite failures are primarily from
plastic deformations, which is independent of the
confining pressure. 

In summary, the temperature and confining
pressure have important effects on granite brittleness.

Temperature and confining pressures affect the brittle
plasticity of granite by changing its internal structure,
including the water content, pore structure, and
mineral structure. In addition, a method to
quantitatively calculate the brittleness and plasticity of
granite under the effects of temperature and the
relationship between the confining pressure with the
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Fig. 4  Brittleness of granite treated under high temperatures: (a) B1; (b) B2; (c) B3; (d) B4; (e) B5; and (f) B6
(Data are from Chen et al. (2012), Xu et al. (2014), Gautam et al. (2015), Hu et al. (2016), Yang et al.
(2017), Liu and Xu (2014), Zhang (2017) and Jin et al. (2019)). 

brittleness and plasticity are also obtained in this
study. The results are of great significance for
engineering construction and geological research. 

 
5. CONCLUSION 

In this paper, theoretical methods to
quantitatively calculate the brittle-plastic properties of
rock and the data of rock mechanics under varying
temperatures and confining pressures are summarized.

Combining experimental results with the theoretical
calculation method of brittleness and plasticity,
a quantitative calculation and evaluation method for
the brittleness and plasticity of granite under the
effects of temperature and confining pressure is
proposed. The main conclusions are as follows.  
1. High temperatures cause thermal damage to the

internal structure of granite, which leads to the
transformation from brittle failure to plastic
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Fig. 5  Relationship between the brittle plasticity of granite and confining pressure ((a) B1; (b) B2; and (c) B3) 
(Data are from Xu et al. (2014) and Hu et al. (2016)). 

failure. Based on previous studies, six empirical
equations to quantitatively calculate the
relationship between the brittleness and
temperature of granite are obtained. Comparing
the six empirical equations shows that B3 and B6
can more accurately and quantitatively express

the relationship between the brittleness and
temperature of granite. 

2. When the applied experimental confining
pressure is lower than 20 MPa, the internal pore
structure and fractures of granite are re-
compacted and reduced, which gradually
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(e)                                                                                                                                                                          (f) 

Fig. 6 The relationship between the brittleness with the temperature and confining pressure ((a) and (b) B1; (c)
and (d) B2; (e) and (f) B2) (Data from Xu et al. (2014) and Hu et al. (2016)). 
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enhances its brittleness. As the confining 
pressure further increases, the pore structure of 
granite will change again after exceeding 20 
MPa. This causes new cracks to appear, which
ultimately leads to a decrease in the granite
brittleness. 

3. 800 °C is the abrupt temperature for the brittle-
plastic transformation of granite. In addition, the 
results also show that when temperature is higher 
than 800 °C, the brittle-plastic transformation of 
granite is primarily affected by temperature and 
not the confining pressure. 

 
6. EXPECTATION 

Variations in B1, B2, and B3 show that different 
confining pressures have different effects on the 
brittle plasticity of granite, which is of particular 
interest. Figure 5 shows that the brittleness of granite 
increases at confining pressures from 0-15 MPa and 
decreases at confining pressures from 20-40 MPa. 
Therefore, it is inferred that the brittleness of granite 
is related to the original confining pressure of granite 
samples. That is, the original confining pressures of 
granite samples in the two experiments (Hu et al., 
2016; Xu et al., 2014) are approximately 15 and 20 
MPa, respectively, at a certain underground depth. 
After granite is exposed to the earth's surface due to 
tectonic actions, weathering, or human factors (e.g. 
drilling and mining) from a certain depth 
underground, the confining pressure is released, 
causing the internal pore structure to change and 
cracks to expand. In the studies of Hu et al. (2016) 
and Xu et al. (2014), the brittleness of granite 
increases gradually due to the reintroduction of the 
confining pressure, which recompacts and reduces 
the internal pore structure and fractures of granite. 
When the confining pressure exceeds the original 
value of the sample, the pore structure of the granite 
changes and results in new cracks, which ultimately 
lead to a decreased brittleness. 

However, this is only a conjecture, because the 
two considered references did not specify the depth 
of the granite samples or other detailed information to 
prove this conjecture. If the conjecture is correct, it is 
of great significance for changes in geological 
conditions for granite-containing regions adopted by 
research institutes to study the relationship between 
confining pressures and rock brittleness-plasticity 
under laboratory conditions. It is hoped that more 
such experiments will be conducted in the future to 
verify this conjecture. 
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