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ABSTRACT 
 
 

In this work, we successfully identified seismic events (observations of earthquakes) in
seismograms using a Convolutional Neural Network (CNN). In accordance with past (analogue)
seismogram interpretations, we did not treat digital seismograms as a time series, as per the general 
method, but, rather, converted them into time snaps of continuous data flow. Multichannel
seismograms were represented with a time-frequency domain in the form of multilayer images, 
with each signal channel forming one image layer. Images were then exposed to CNN (composed
of three convolutional blocks whose architecture design was justified using Bayesian
optimization). To improve reliability, we evaluated the posterior type function (PTP) as
a combination of the probabilities of all of the considered classes of signal types (five in our case) 
which increased robustness of the identification. For data, we used records of acoustic emission
(AE) events. The events were generated during laboratory loading experiments originally
performed to study material/rock properties. As known, AE events may be studied in the same
manner as natural earthquakes and treated in other ways as laboratory earthquake models. AE
events are less complex compared to natural earthquakes where many of the physical parameters 
are known or may be controlled. Based on our results, we concluded that the successful
identification of AE events is a necessary step prior to applying the proposed methodology for
identifying natural earthquakes in seismograms. 
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1. INTRODUCTION 
Over the last decade increasing quantities of 

recorded data for natural events consequently require 
sophisticated methods for data processing. Such is also 
the case for seismic events (earthquakes) and their 
records - seismograms. In this work, we propose an 
approach for data processing based on Convolutional 
Neural Networks (CNN). While CNN algorithms are 
currently available in standard software libraries, 
using CNN applications for seismic signals is a fairly 
new field as indicate recently published works, e.g. 
(Zhou et al., 2019; Perol et al., 2018; Curilem et al.,
2018; Zhu and Beroza, 2018; Ross et al., 2018; Chen 
et al., 2019), an overview of various seismological 
application is given in (Kong et al., 2019). 

The origin of the CNN formalism lays in 
computer vision and pattern recognition (Krizhevsky 
et al., 2012). However, it has appeared soon to be 
capable to efficiently solve the problems from other 
fields.  

To perform such task successfully, the 
architecture of CNN has to be tuned and the data –
seismograms in our case – must be converted into form 
suitable for CNN formalism and finally the obtained 
probabilities – the CNN outputs - have to interpret in 
seismological terms. Naturally, all the processing must 

by tested and verified. In this number we have to deal 
with particular features of seismograms as e.g.: 
multi-channel signal inputs, appropriate signal 
representations, reasonable definitions of output 
classes, etc.  

Formally, seismograms may be characterized as 
a time series (with a constant time sampling) for non-
stationary processes. In the approach presented here, 
we, in some sense, suppress time dependent features 
of the seismic signal and treat it as an image in contrast 
to the older way of automatic seismogram processing, 
where the flow of signal or its changes are interpreted. 
We perform our computation in MATLAB platform 
and adopt their image processing/recognition library. 

From a general perspective treating seismograms 
as images has traditionally been done within
seismology: several decades ago, in the epoch of 
“analogue paper seismograms” and manual 
interpretations, operators were able to classify events 
using a type analysis, without the need of hard criteria, 
if they possessed long-term experience. At the 
beginning of our work, we considered this fact as 
a promising feature for suitable applications of the 
CNN approach. Details regarding problems related to 
analogue seismogram interpretations can be obtained, 
for example, from seismologist manuals printed 
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 during the last decades of the 20th century (Willmore,
1979) (now also available in electronic format). 

From a technical point of view, the problem may
be solved using different approaches. In the past, 
a time-frequency signal analysis of quoted signals has 
been used, for example see (Plešinger et al., 2016), 
while in other studies, for example see (Truong et al.,
2018), CNN algorithms have been applied. 

Automatic identification of useful seismic 
signals is, obviously, not a new task. As an example of 
possible approach, it could be mentioned usage of the 
STA/LTA algorithm (the Short Time Average/Long 
Time Average of signal amplitudes) by (Blandford,
1982) or usage of the AR-AIC (autoregressive –
Akaike Information Criteria) by (Kitagawa and 
Akaike, 1978). These algorithms are non-neural 
network algorithms and were not only used to identify 
an earthquake in the record but to trigger recording, 
especially during times when digital recording media 
capacity was heavily limited. Seismic event 
discrimination by classical/shallow neural networks 
has also been investigated, for example, by (Plešinger 
et al., 2000). These authors classified recorded events 
using two classes: natural events and artificial blasts. 
Even if the reliability obtained was fairly high (up to 
98 % for testing data set), the algorithm was not used 
in routine data processing. A newer attempt for 
NN seismic event identification was performed e.g. in 
(Doubravová et al., 2016). Here, a single recurrent 
NN was used with fairly high reliability. 
Implementation of the algorithm into routine use is 
part of the process (Doubravová – personal 
communication). Obviously, earthquake phenomena 
form a fairly large class of events beginning with small 
induced events in mines, continuing with quarry 
blasts, and extending to local and regional events 
and/or to large worldwide earthquakes. Since they can 
be superposed in time, these types of events are 
possibly mixed in records. To simplify our task, we 
decided to begin with a particular type of event –
acoustic emission (AE) events. Such events are
observed during loading experiments using material or 
rock samples. Rock AE events are connected with the 
generation, growth, and interaction of microcracks 
(Paterson and Wong, 2005). In general, the laboratory 
scale AE experiments are performed to study the 
relation between the mechanical properties of rocks 
and the loading induced fracturing, e.g. (Petružálek et 
al., 2019). Note that the “AE events” term is only 
a convention based on our experience with mining 
events. Typical AE frequencies for our events ranged 
from 0.1 to 1.0 MHz and, obviously, could not be 
directly heard. At present, most AE processing 
methods originate from seismology (Grosse and 
Ohtsu, 2008). Alternatively, some AE studies are 
capable of helping us understand seismologic 
problems: e.g. (Thompson et al., 2009) or (Lockner et 
al., 1991). AE events may be considered as laboratory
models of earthquakes. Over the past few decades, 
such events have been studied in the same manner as 
natural earthquakes, although a scale of similarity over 

several orders of magnitude must be inferred 
(Lockner, 1993; Sellers et al., 2003). Our processed 
data possessed several particular features in 
comparison with real earthquakes. In contrast to real 
seismograms where various kinds of events such as 
local versus teleseismic, can occur, our data set only 
contained one kind of event. All events occurred inside 
a limited size rock sample. Due to preprocessing, the 
location of events was available. The experimental 
setup displays a fairly favorable directional coverage 
of the sample by sensors, especially when compared 
to the usual distribution of actual seismic stations. 
Experimental conditions were known or controlled, 
especially for the actual stress-strain state. On the 
other hand, limitations in laboratory equipment and/or 
experiment organization often led to challenges. For 
example, limitations occurred due to among other 
reasons: (i) special type of noise generated by 
a loading frame; (ii) the high frequencies considered 
during recording; (iii) the proportion of samples, 
sources, and sensors (point approximation is often 
used for natural earthquake studies and may not be 
valid for this type of work). 

In general, preprocessed AE events seem to be 
a favorable choice of data for designing and verifying 
new indentification method of seismic events in 
seismic signals. 

 
2. DATA 
2.1. EXPERIMENTAL SETUP AND MATERIAL 

Westerly Granite, rock type often tested under 
laboratory conditions, was used in our experiment. 
The cylindrical rock sample was ground into a semi 
octagonal prism to enable flat contacts between the 
sample and the AE sensors (Fig. 1). The grinding 
improved sensitivity and homogeneity of registration 
in comparison to commonly used purely cylindrical 
shape. The sample diameter was 52 mm, the height 
104 mm. Loading frame MTS 815 was used to 
generate uniaxial stress during the experiment; for 
details see a description given in (Petružálek et al.,
2018, 2020). 

We used 14 Fuji AE204A AE sensors with 
almost flat frequency characteristic within the range of 
240–520 kHz and sensitivity 708 V/m/s. All the 
sensors were attached to the rock surface, but the two 
that were placed in the bottom and top loading platens.
Each sensor could operate in two modes: (i) passive 
AE monitoring regime and (ii) active ultrasonic 
sounding (US) with use of high-voltage (200 V) input 
sine pulse. The sensors net covering the specimen is 
dispalyed in Figure 1a. Both AE and US waveforms 
were recorded using a multichannel transient recorder 
(AMSY-5 Vallen System, Germany) working in 
a triggering mode (if a defined signal level was 
reached at least on one channel, the 14 channel 
recording started). Waveforms length was set to 1,024 
points including 512 points of pre-triggering interval; 
sampling frequency was 10 MHz (it corresponds to 
0.1 ms record duration); 16-bits A/D converter was 
used.  
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Fig. 1 Experimental setup. (a): points 1-14 stand for AE/US (acoustic emission/ultrasonic sounding) sensors; 15 for 
extensometers and 16 for a cantilever. Semi-octagonal Westerly Granite specimen before loading experiment (b). 

2.2. DATA AND PREPROCESSING 
About 21 0001 AE events were recorded during 

the loading experiment. The two-step Akaike 
information criterion picker (Sedlak et al., 2009) was 
employed for automatic picking of first arrival times 
and amplitudes. Consequently, detected AE events 
were localized by a grid search method with an 
application of stress-strain dependent anisotropic 
velocity model in the form of three axis ellipsoid, that 
was determined from the periodical US (Petružálek et 
al., 2007).  The localization error of ±2 mm was 
estimated based on the localization of US events with 
the known position of transmitting sensors.  

Three basic types of signals were distinguished 
in each trace (Fig. 2): (i) usual noise at the record 
without signal, (ii) arrival of the AE signal, the first 
onset is on the 512th sample (triggering setup) and the 
consecutive onsets follow in dependency of the mutual 
position of AE event locations and the sensor 
positions. (iii) the coda – i.e. the signal following AE 
event arrival, a superposition of all reflected phases. 
Of course, additional complication may arise. For 
example, if two AE events occur almost 
simultaneously or if a previous event coda is not fully 
attenuated etc., more complex signals are observed.  

For our work, we exploited a previously 
processed pilot set of 38 selected AE events. These 
events were originally selected to develop and test the 
improved method for their mechanisms determination. 
Results of this interpretation may be found in 
(Petružálek et al., 2018). Considering presented 
experiment, the complete AE data set was used for 
a detail study of implementation of shear-tensile 
source model to AE (Petružálek et al., 2020) and 

demonstration of source directivity in AE laboratory 
scale (Kolář et al., 2020). 

 
2.3. IMAGES OF SEISMOGRAMS AND CLASS SETUP

In our approach, we treated multichannel 
seismograms as images. The images were converted 
from sub-records cut from the seismogram using 
a moving window, Figure 2. For our rock specimen 
(approximately 10 cm high and 5 cm in diameter) and 
for a seismic wave velocity of approximately 5 km/s 
the maximum difference in arrival times to the two 
most distant sensors (the two sensors located in the 
bottom and top loading platens) cannot exceed 
roughly 200 samples (regarding 10 MHz sampling 
frequency) for any event location. Therefore, we set 
the moving window width to 256 samples. Such 
a choice assured a sub-record that contained AE 
arrivals to all stations, including two consecutive 
signal extremes. The interval between signal arrival
(T0) and the second pronounced extreme (T2) was 
taken as the definition of event duration. The times T0
and T2 (and T1 corresponding to the first pronounced 
maximum) are routinely interpreted during signal 
preprocessing; the signal amplitudes in T1 and T2
define the peak to peak amplitude, that is used for 
source mechanism determination (Petružálek et al.,
2018). We primary were seeking the occurrence of an 
event in the investigated signal. In our analysis the 
event occurrence is defined as a portion of the record 
which include the interval <(min(T0i), max(T2i)>, 
where i=1-14 are channel numbers. The definition also 
constitutes one of the CNN classes that should be 
distinguished as accurate. 

 
1 Note that 21.000 events is an upper number. Events or their records, respectively, are naturally of different quality and the number of events 
that can be used for a particular analysis is lower and depends on the type of the performed analysis, on the desired approach (qualitative or 
quantitative), on the required/acceptable level of reliability, etc. 
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Sub-records, cut from record(s) with use of 
a moving window, were converted into image format 
using a time-frequency transformation. For our case, 
conversion was made possible using MATLAB 
function ‘pspectrum’
(https://www. mathworks. com/ help /signal/ ref /pspectrum.ht
ml, accessed 18 February 2021) based on (Welch, 1967; 
Harris, 1978). Image size was set to 40 x 40 points and 
the frequency range was set to 2 kHz – 3 MHz. We set 
up five (sub-)image classes. In addition to those 
previously mentioned (i.e. ”noise” and AE 
arrivals/signals, labeled as an “event” and “coda”), we 
added two transitional classes: part-event and part-
coda. The definitions for these classes are provided in 
Table 1. These images were input data for the CNN 
analysis. Image examples are provided in Figure 3. 
When the time shift for the cutting window was set to 
eight samples, we obtained classes, each with 
approximately 600 members; noise classes then had 
more than 1,000 members constructed from the 
considered set of 38 events. Successful detection of an 
“event” class would be a solution in our task. Others 
classes were non-event types of signals, however they 
represented different physical types of signal and 
could not be merged into a single class. Additionally, 
as it is show below, accurate identification of these 
non-event classes played an important role in final 
post-processing.  

 

2.4. CNN DESIGN AND TUNING, CLASS 
DEFINITION  
CNNs are extensively used and have a large 

number of modifications, for example, see the review 
of (Schmidhuber, 2015). One of important field of 
CNN applications is image classification (Bishop,
2006). Since our computation was performed on the 
MATLAB platform
(https://www.mathworks.com/products/matlab.html, 
accessed 18 February 2021), some technical details of our 
work are directly connected to MATLAB available 
features. An important point which has to be resolved
is to form CNN input. Prior to MATLAB version 
R2018b, input images could either be 3D (most 
typically the RGB representation) or 1D (e.g. for B and 
W images). In MATLAB version R2018b, an option 
for multi-dimensional images was introduced
(https://www.mathworks.com/help/nnet/ref/nnet.cnn.layer.i
mageinputlayer.html, accessed 18 February 2021). We took 
advantage of this feature and our input images 
consisted of 14 layers (i.e. one layer for each channel 
- Fig. 4). Our previous attempts using three- or 
one-layer images, composed of various combinations 
of seismograms or their time-frequency 
representations, did not yield satisfactory results. For 
processing by CNN, data were randomly divided for 
training, validating, and testing subsets using ratios of 
60 %, 10 %, and 30 %, respectively. 

To represent seismograms in multi-dimensional 
time-frequency domain, as the subject of a CNN 

Fig. 2 An example of a 14 channel seismogram (event number 14). Channels are plotted using different colors/gray 
intensity. The triggering channel (i.e. the channel with the earliest occurrence of signal) is shown in bold, here as 
Channel 4. Dashed areas represent examples of the three basic types of signal; from left to right: (i) noise, (ii) event, 
and (iii) coda. The dashed boxes width is 256 samples (i.e. 26 μs). Signal onsets are marked by dots, the first signal 
extremes by crosses, and the second extremes by circles. These values are routinely interpreted during signal 
preprocessing and are used for routine AE event analysis. The three vertical dashed lines indicate (from left to 
right): the earliest onset (min T0i), the latest onset (max T0i) and the latest second maximum (max T2i); these values 
are then used for classes’ constitution. 
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Fig. 3 Examples of the time-frequency representation: event 
14, channel 4 (triggering channel), class: Noise (a), 
Event (b), Coda (c). Amplitudes are converted into a 
color/intensity shadow scale. The figures are of 
different value scales. 

analysis, is an innovative approach e.g. (Curilem et al.,
2018; Nakano et al., 2019). On the other hand, the idea 
of the identification of events in seismograms using 
time frequency representations is not new and was 
used, for example, in (Joswig, 1990; Sick et al., 2015). 
Time frequency representations are also commonly 
used in other fields for time series processing, for 
example see (Plešinger et al., 2016).  

Currently, only soft recommendations exist for 
CNN architecture design and their control parameters 
setup. We, therefore, followed, almost literary, 
MATLAB manual examples 
(https://www.mathworks.com/help/nnet/ref/trainingoptions.
html, accessed 18 February 2021) and used a CNN 
composed of three convolutional cells, with control 
parameters set to the default or to the middle of the 
allowed intervals. Our CNN consists of three 
convolution blocks; its structure is described in 
Table 2. To justify our choice of CNN architecture and 
control parameters setup Bayesian optimization (BO) 
was used. The method is named after Thomas Bayes 
(1701?-1761). Among others, BO can be used for the
optimization of hyper parameters of a task, here, the 
number of convolutional cells, their depth as well as 
values of CNN teaching control parameters. We again
followed the MATLAB example
(https://www.mathworks.com/help/deeplearning/examples/
deep-learning-using-bayesian-
optimization.html?s_tid=srchtitle, accessed 18 February 
2021), modified the necessary parts, and searched for 
optimal values of following CNN parameters: the 
number of convolutional cells and number of 
convolutions in each cell. The CNN learning 
parameters were the Initial Learning Rate, the 
Momentum, the Drop Out value and the L2 
regularization value. We used CNN accuracy (the sum 
of successful class identifications given in the 
Confusion matrix trace) in order to compare the 
efficiency of the tested CNN configuration. For the
initial CNN configuration the accuracy oscillated 
several percent above 90 % (Fig. 5a). For the fully 
optimized CNN, the accuracy was only some better 
(92.6 % vs. 93.9 %, Fig. 5b). Most false identifications 
occurred in the transition zones; i.e. between noises to 
part-event, from part-event to event, from event to 
part -coda, and from part-coda to coda classes. The fact 
that these classes were not clearly separated but 
mutually merged and that the sharp classifications 
could not be reliably setup is not a surprise as our 
definition (provided in Table 1) was partly artificial. 
Since results gained by the initial and optimized CNN 
are similar, we employed the initial CNN in future 
calculations. As the initial tests indicated, the pure 
classification of the data is not enough robust in our 
case. Hence, we created posterior type function (PTF) 
depending on combination individual class 
probabilities. As it is shown below, the values PTF or 
their changes indicate searched classes of 
seismograms. 
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Fig. 4 Example of a 14 layer’s image (event number 14, class Event). For better visibility, individual layers were normalized. 

Table 1 Classes definition.  
twinBeg and twinEnd are times of cut sub-records at the beginning or ending, respectively. T0i are onset times and T2i are 
times of the second pronounced extremes, i = 1-14 are channel numbers; c.f. Figure 1.  
The time of the first signal arrival is relatively clearly defined, even if possibly disturbed, for example, by higher 
noise level. In contrast, due to its interferential character, the coda phase has no exact beginning. For real earthquakes, 
the distances among the source and points of observation are relatively, as well as absolutely, longer than those in 
our laboratory experiment. Therefore, different seismic phases (i.e. the reflected and/or refracted signals) are often 
separated in time and can generally be distinguished in seismograms. Such is not the case for AE signals where 
individual phases are not separated and the signal of the first phase fluently merges into an interferential coda. As 
a result, for our study, we used the interval between signal onset and the second pronounced extreme as representative 
of an event class and the rest of the signal as the coda class.  

Class Definition
Noise  twinEnd  <=  min(T0i)
Part Event min(T0i)  <  twinEnd  &&  twinEnd  <  max(T2i) 
Event  twinBeg < min(T0i)  &&  max(T2i)  <  twinEnd
Part Coda  min(T0i)  <  twinBeg  &&  max(T2i)  >  twinEnd
Coda twinBeg  >  max(T2i)

 

Table 2 Architecture of the employed CNN. Three convolution blocks were used. The user’s manual example for a type of 
CNN (https://www.mathworks.com/help/nnet/ref/trainingoptions.html, accessed 18 February 2021) was almost 
literary followed. However, necessary tuning for our data format and the required output was applied. 

Convolution 
package 

Layer  
No. 

Name, function Description, parameters  

(input) 1 'Image Input' (40 x 40 x 14) images with 'zerocenter' normalization 
1st  2 'Convolution 1' 14 (7 x 7) convolutions with stride [1  1] and padding 'same' 

3 'Batch Normalization 1' Batch normalization
4 'ReLU 1'      ReLU
5 'Max Pooling 1'    (2 x 2) max pooling with stride [2  2] and padding [0  0  0  0] 

2nd  6 'Convolution 2'   28  (5 x 5) convolutions with stride [1  1] and padding 'same' 
7 'Batch Normalization 2 Batch normalization
8 'ReLU 2'    ReLU
9 'Max Pooling 2'     (2 x 2) max pooling with stride [2  2] and padding [0  0  0  0] 

3rd  10 'Convolution 3'    56 (3 x 3) convolutions with stride [1  1] and padding 'same' 
11 'Batch Normalization 3' Batch normalization
12 'ReLU 3'   ReLU

(output and 
classification) 

13 'Dropout' 50 % dropout
14 'Fully Connected' 5 fully connected layer
15 'Softmax'    Softmax
16 'Classificaation output' Crossentropyex
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2.5. POST-PROCESSING 
The identification of classes using the CNN was 

slightly over the 90 % level (Fig. 5ab), a level that we 
did not consider as a fully acceptable result. We were 
not able to increase this percentage even with tuned 
CNN architecture and/or teaching control parameters. 
To emphasize the reliability of the algorithm we 
introduced a posterior type function (PTF) evaluated 
as the combination of individual probabilities for all 
considered classes for each classified subimage2 The 
following formulas were optionally considered: 

 

PTF1 = 0.5*pN + (1-pPE) + pE + 0.5*pPE + (1-pC), 
 (1)

PTF2 = (1-pN) + 0.5*pPE + pE + 0.5*pPE + (1-pC), 
(2)

PTF3 = (-pN) + (pPE-0.5) + pE + (pPC-0.5) + (-pC), 
  (3)

 
where pN, pPE, pE, pPC, and pC indicate the 
probability of individual classes: Noise, Part-Event, 
Event, Part-Coda, and Coda (the sum of these 
probabilities is always one). The PTFn values were 
evaluated for each CNN input image. The time 
sequence of those values or their changes respectively, 
can indicate an event occurrence (i.e. desirable 
information – Fig. 6). Such an approach increased the 
number of successfully identified events in a way that 

all of the tested events were identified. Particular 
features of given PTFn formulas are discussed in the 
following paragraphs. 
 
3. RESULTS 

As described above we process set of 38 selected 
events. These events were cut into more than 3400 
sub-images and this number represents also the real
size of the input files submitted to CNN. Applying the 
method, we successfully identified events in all 11 
randomly selected testing records from the processed 
set. Even three unexpected particular anomalies in 
records were also recognized (Fig. 6) and these events 
were studied in more details. In concordance with 
general CNN application rules, for training, 
validation, and data testing, subsets were randomly 
divided from the available data set. However, 
exceptional events number 8, 9, and 28, which 
exhibited some anomalies during method tuning, were 
forced to be members of the testing data to prove the 
method capabilities when loaded with anomaly types 
of records. Their description is, as follows: (i) for 
event number 8, the identification indicated a delay
compared to the triggering time. In the seismogram 
(Fig. 7), it is evident that the majority of traces indicate 
a double event (here, we do not speculate as to whether 
it is really a double event, with a second stronger
event, or some reflection that appears on the same 

Fig. 5a A confusion matrix for the initial CNN 
configuration and the five classes classifications. 
From the matrix it follows that most of false 
classifications (marked by circles) occur within 
two transient zones amongst the three basic 
classes/signal types (i.e. noise, event, and coda). 
The percentages in the individual cells are the 
portion of the identified class examples 
normalized as a function of the total number of 
examples. 

Fig. 5b A confusion matrix for the optimized CNN 
configuration (the same meaning as in Fig. 5a). It 
follows from the figure/numbers that the 
improvement of classification accuracy is only 
partial. This fact justifies usage of CNN with basic 
architecture and the default setting of control 
parameters. 

 

2 In an ideal case the probability of identified class should be one, while the others should be zeros. However, the real data produced rather 
wide combination of considered class probabilities. 
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Fig. 6 Superposition of PTF1, PTF2, and PTF3 (formula (1)-(3)) for a testing subset of 11 events randomly selected from 
an investigated set of 38 events (various colors/shadow intensities indicate separate events). The most deviating PTF 
behaviors are discussed individually in consequent Figures 7-9.  

channels as a second event). The used CNN approach 
preferred to identify the second, more pronounced 
event. (ii) For event number 9, the identification was 
earlier than correspond to automatic trigger. In the 
seismogram, the trigger was activated not only by the 
first arrival but by the second arrival, and the event 
generally occurred sooner, see Figure 8. Such 
situations can exceptionally occur during the 
experiment. (iii) For event number 28, some unusual 
noise or false signal appeared during the pre-event 
time period. An analysis of seismograms indicated that 
for at least one sensor, a signal was not interpreted as 
noise. However, the signal was also not recognized as 
an event, see Figure 9. This result potentially indicates
a part-event class of some other event, but not with 
a high probability. 

Based on the data, we concluded that all of these 
incidences presented cases that proved the method’s 
capability. With use of combination of CNN 
classification and posterior PTFn function we were 
able to identify all events from testing data subset and 
excluded anomalies excited by other sources. 

Based on the results provided in Figure 6, since 
their values significantly increased during the time of 
event occurrence, the posterior types PTF1 and PTF2
indicated rather “pure” event identification. Function
PTF3 then seemed to be suitable for the identification 
of an event with a border (i.e. with a part-event and 
a part-coda parts), and the PTF2 seemed to be more 
robust for double events. PTF1 displayed the most 
figurative indication for part-event types (a decrease 
in the value). In general, differences, especially 
between PTF1 and PTF2, appeared to be small. 
A future analysis will indicate whether they bear 
significant information or whether they are, in 
practice, commutable. 

We additionally processed an enlarged set of 660 
events of which a subset of 200 events was used for 

testing. Events were routinely preprocessed in the 
same manner as for the pilot set of 38 events, although 
a detailed analysis was not performed. The results are 
provided in Figure 10. The figure indicates good 
capability for the method in identifying event 
occurrence within the signal. Previously documented 
anomalies again appeared in the results, which 
indicate that such cases may occurred rarely but 
regularly during the recording. 

Some recently published works solved the 
simultaneous processing of multiple channels 
seismograms, as an example it could be mentioned e.g. 
in (Perol et al., 2018; Kriegerowski et al., 2019; 
Lomax et al., 2019). Also probability description of 
occurrence of searched feature (e.g. phase onset) is 
used e.g. in (Dokht et al., 2019). Our approach was 
developed independently on those works. 

 
4. DISCUSSION AND CONCLUSION 

In this work, we introduced a new method for the 
identification of seismic events in multichannel 
seismograms using convolutional neural networks. 
The method consists of the following three principal 
steps: 
1. Seismograms are represented in the 

time-frequency domain when each channel 
represents one layer of a multidimensional image 
that forms an input of the CNN. 

2. The CNN employs three convolutional blocks.
The CNN design employed standard architecture
and learning parameters was set to default values. 
The performed optimization of CNN architecture 
as well as of the learning parameter values, only 
exhibited insignificant result improvements (i.e. 
our classification is not sensitive to CNN tuning 
and default setting can be employed). 

3. To improve algorithm resolution, we suggest to 
use posterior type function instead of selecting 
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directly a class with the highest probability
indicated directly by the CNN. The posterior type 
function is a combination of probabilities of all 
(five) considered classes. The functions’ intervals 
with approximately constant values correspond to 
the ranges of individual classes, while the sudden 
changes indicate their limits. This step 
successfully solved the problem ambiguity for 
badly constrained classified signals. 

 

The point (2) in our approach is formal up to 
certain point and the CNN architecture and control 
parameters setting follow more or less generally 
recommended schema. The point (1) – CNN input data 
in form of images multilayer spectrograms was 
adopted after numerous tests as the one yielding 
acceptable results. Within point (3) we convert series 
of “static” images back into time series. It can be 
directly matched to original signal time flow and the 
points of relevant signal occurrences can be identified. 
To our knowledge, such an identification of events in 
seismograms or other types of time series data have
not been performed yet. In addition in our approach 
whole processing is delegated to Artificial Intelligence 
(to CNN in our case) and e.g. location of events is not 
performed subsequently in classical way from 

identified signal onsets as it is done e.g. in (Perol et al.,
2018). 

We achieved promising results for identifying 
seismic events in seismograms. We focused on AE 
events from loading experiments that, for our task, 
could be considered as laboratory earthquakes. The 
investigated data set was relatively simple and limited. 
That was advantageous for method development and 
testing and necessary before analyzing more complex 
input data. The successful identification of seismic 
signals within a seismogram opens the door to its more 
sophisticated (automatic) processing, such as onset 
interpretation, a crucial task that can more effectively 
be performed if event occurrence is successfully 
pre-indicated. Since our results for a limited set of AE 
events are promising, further development will 
include (i) the enlargement of the Acoustic Emission 
data sets and (ii) the inclusion of natural seismic 
events.  

The method has a potential to deal with 
continuous AE signals that are becoming a standard 
with the increasing power of registration apparatus. 
Here, the reliable and effective AE event recognition 
is a crucial task necessary for any further processing 
and interpretation. 

Fig. 7 Example of a particular event identification for event 
number 8; PTF1 (above) and its corresponding 
seismogram (down). A significant PTF increase 
(red/sick line on the background for other event 
probabilities) was delayed. When seismograms were 
inspected, the first triggering event was clearly 
followed by the second event (namely on channels: 1, 
5, 8, 12, and 14). The CNN preferred to identify the 
second, more pronounced, event. For our task, it was 
not (now) important whether or not the event was a 
real second event or only a reflection of the first event.

Fig. 8 Example of a particular event identification for event 
number 9. Onset of the event was identified by an 
PTF that came earlier than expected (above). When 
the corresponding seismogram was inspected 
(down), it was evident that the record was triggered 
by the second arrival (channel 4) instead of the first 
occurrence (channel 3). 
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Fig. 9 Example of a particular event identification for event 
number 28. Noise class indication by the PTF (above) 
was not constant for the record. When the seismogram 
(below) was inspected (here zoomed vertically), 
a signal mainly occurred in channel 11 (but also in 
channels 7, 12, and 13).  
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