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ABSTRACT 
 

 

In order to convert ellipsoidal heights obtained by the Global Navigation Satellite System (GNSS)
to orthometric heights, it is necessary to know the distance between the ellipsoidal and geoid
surface, called the geoid undulation. The geoid undulation can be predicted using emerging 
mathematics tools and algorithms. The objective of this study was to develop a model for
predicting the geoid undulation using Gaussian Process Regression (GPR), one of the soft machine
learning algorithms having different covariance functions. This method was then compared with
the radial basis function neural network (RBFNN), generalized regression neural network
(GRNN), and the interpolation method of inverse distance to a power (IDP) with the power of 1,
2, 3, 4, and 5. First, 70 % of GNSS/leveling data (422 points) were used in the training phase. The
remaining 185 points were used as testing data to check the effectiveness of the constructed model.
In the GPR modeling, ten covariance functions (Materniso d= 1, 3, 5; Maternard d= 1, 3, 5; SEiso; 
SEard; RQiso; and RQard) were tested for prediction on this dataset. The GPR based on the
Materniso (d = 1) covariance function model was introduced as an effective method for predicting
geoid undulation and provided the best results (RMSE = 8.32 cm, MAE = 5.51 cm, R2 = 0.98968) 
when compared with the other developed GPR models. In addition, the statistical findings showed
that the accuracy of all the GPR models was also better in predicting geoid undulation than the
RBFNN, GRNN, and IDP with the power of 1, 2, 3, 4, and 5. 
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1. INTRODUCTION 

The use of the Global Navigation Satellite 
System (GNSS) can provide geocentric coordinates 
(𝑋, 𝑌, 𝑍) or geodetic coordinates (𝜑, 𝜆, ℎ) for any 
point on earth, based on the WGS84 ellipsoid. In 
geodetic applications, elevation is measured with 
reference to the surface of a geoid as orthometric 
heightሺ𝐻). Hence, GNSS-derived ellipsoidal heights 
must be transformed into orthometric heights. The 
mathematical relation between these heights is as 
follows (Heiskanen and Moritz, 1967):  
 

𝐻 ൌ ℎ െ 𝑁                            (1) 

where ℎ is the ellipsoidal height, 𝐻 is the orthometric 
height, and 𝑁 is the geoid undulation or geoid height. 
The geoid undulation determined by the 
GNSS/leveling technique can also be used as data in 
the determination of the geoid via various estimation 
techniques such as the interpolation, least-squares 
collocation (LSC) and geophysical gravity data 
inversion (GGI) methods (Kotsakis and Sideris, 1999; 
Tscherning et al., 2001; Erol et al., 2008; Trojanowicz, 
2012, 2015; Doganalp and Selvi, 2015; Doganalp, 
2016; Karaaslan et al., 2016; Tusat and Mikailsoy, 
2018; Trojanowicz et al., 2020). Several soft-

computing methods have been applied as alternative 
techniques to produce accurate results in the 
prediction of geoid undulation, including the artificial 
neural network (ANN), least square support vector 
machines (LS-SVM), and adaptive neuro-fuzzy 
inference systems (ANFIS). Among these methods, 
the ANN has been adopted by the geodetic 
community. An important characteristic of ANNs is 
their ability to learn from a dataset (training data). 
When the network is trained with a sufficient number 
of training data, predictions can be made based on 
previous learning. A few studies have used the ANN 
with a different network topology in the modeling of 
a local GNSS/leveling geoid surface (Lin, 2007; 
Akcin and Celik, 2013; Erol and Erol, 2013; Albayrak 
et al., 2020). For example, Kavzoglu and Saka (2003) 
predicted geoid undulation for Istanbul, Turkey using 
a feed-forward ANN learning algorithm for the 
application. The derived results were compared with 
polynomial surface fitting and least-squares 
collocation (LSC). The prediction accuracy was 
evaluated using the root mean square error (RMSE). 
The results stated that the ANN was capable of 
yielding results that were as accurate as the 
polynomial surface fitting and LSC methods. Stopar et 
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al. (2006) proposed a method of geoid undulation 
approximation that coupled the LSC and the ANN 
(ANN–LSC). It was concluded from this research that 
the ANN-LSC method could be considered as an 
alternative to the existing geoid or quasi-geoid models, 
especially for areas where correct models are not 
available. Veronez et al. (2011) developed an ANN 
model (trained using the Levenberg-Marquardt 
training algorithm) to estimate the geoid of the state of 
São Paulo, Brazil. The results of the model indicated 
that the ANN had improved the geoid undulation 
prediction accuracy by 40 % and that it could be used 
in predicting geoid undulation. Cakir and Yilmaz 
(2014) compared multi-layer perceptron neural 
network (MLPNN) estimates with polynomials and 
radial basis functions (RBFs) including multiquadric 
(MQ) and thin plate spline (TPS). Based on the results 
of this research, the MLPNN model was found to be 
more accurate than the other methods tested. Another 
soft-computing method is represented by the least 
square support vector machine (LS-SVM), which is 
the least squares formulation of the support vector 
machine (SVM) and has been applied to detect a geoid 
model (Zaletnyik et al., 2008; Kao et al., 2014; Kaloop 
et al., 2018). In addition to ANN and LS-SVM 
methods, the ANFIS approach has also been used by 
geodesy researchers in geoid modeling (Akyilmaz et 
al., 2008; Yilmaz, 2010; Yılmaz and Arslan, 2013). 

Gaussian Process Regression (GPR) is a non-
parametric probabilistic kernel-based approach for 
regression problems. Handling modeling problems 
with noisy data is the main advantage of GPR. The 
GPR has been utilized in predicting total electron 
content (TEC) values (Ackermann et al., 2011; Albert 
et al., 2020; Inyurt et al., 2020). However, few studies 
have been carried out on the use of GPR in estimating 
geoid undulation. Kaloop et al. (2019) used GPR for 
the first time in modeling geoid undulation. The 
authors utilized the GPR model for the prediction of 
geoid undulation and compared this model with the 
least square support vector regression (LSSVR), 
kernel ridge regression (KRR), and multivariate 
adaptive regression splines (MARS) methods. 
Subsequently, the accuracy of these models was 
compared with a local gravity geoid model and global 
geopotential models (GGMs) that had been applied in 
Kuwait. The results revealed that the KRR model was 
the best for estimating the geoid undulation of Kuwait. 
The GPR method also gave acceptable results, 
whereas the MARS yielded the worst results. To date, 
no study has been found in the literature comparing the 
GPR technique with any of the ANN or classical 
interpolation methods in order to verify its reliability 
in predicting geoid undulation. Hence, in order to fill 
this gap, this study aimed to compare the GPR model 
with the radial basis function neural network 
(RBFNN), generalized regression neural network 
(GRNN), and one interpolation method including 
inverse distance to a power (IDP) with the power of 1, 
2, 3, 4, and 5.  

The structure of this paper is as follows. In 
Section 2 a brief description of the study area and the 
data used in this study are given and the basic 
theoretical aspects of GPR, RBFNN, GRNN and IDP 
are provided. Section 3 presents a description of the 
statistical indicators used in this study to evaluate the 
prediction performance of the models. Section 4 
provides the results and discussion. Finally, the 
conclusions of this study are presented in Section 5. 

 
2. MATERIAL AND METHODS 

2.1. DESCRIPTION OF DATA 

This study was carried out in the province of 
Ardahan, which is located in northeastern Turkey at 
the latitude of 41°6′46.62″N and longitude of 
42°42′8.21″E using GNSS/leveling data. The 
topography is irregular with orthometric height 
changes between 1306.49 m and 2959.81 m and geoid 
undulations between 23.46 m and 26.54 m. The 
orthometric heights of the points were determined 
using the geometric levelling method in the datum of 
Turkey National Vertical Control Network 1999 
(TNVCN99). The geographic coordinates including 
ellipsoidal heights (h) were determined in static 
positioning mode and referred to the Turkish National 
Fundamental GPS Network (TNFGN). The GNSS 
coordinates of the points were derived in the ITRF96 
datum. The accuracies of the orthometric and 
ellipsoidal heights were ±2 cm and ±3.4 cm, 
respectively. The 607 C3 (third order densification) 
points covering the entire area of Ardahan measured 
by the Erzincan XXIV Regional Directorate of the 
Turkish Land Registry and Cadastre were used for the 
determination of the local geoid surface in Ardahan, as 
presented in Figure 1. The distribution of the points, 
with a density of 1 point per 13 km2, demonstrates 
a good characterization of the topography. 

For training, 422 GNSS/leveling points (i.e., 
train points) were used, remaining 185 GNSS/leveling 
points (~ 30 % of the data) were used for testing the 
performance.  

 
2.2. GAUSSIAN PROCESS REGRESSION (GPR) 

Gaussian Process Regression (GPR) is a flexible 
non-parametric method that uses the prior of 
a Gaussian process to perform regression of data 
(Yuan et al., 2008). The kernel function based on 
Bayes linear regression is adopted instead of a linear 
kernel function. This model can be used to solve 
complex, nonlinear regression problems and 
classification problems (Lin et al., 2019). The 
statistical characteristics of the Gaussian process is 
characterized by its mean and covariance function. 
Here, we define the mean function 𝑚ሺ𝑥ሻ and 
covariance function 𝑘ሺ𝑥, 𝑥ᇱሻ of a real process 𝑓ሺ𝑥ሻ as 
follows: 

 

𝑚ሺ𝑥ሻ ൌ 𝐸ሾ𝑓ሺ𝑥ሻሿ                                                (2) 
   

𝑘ሺ𝑥, 𝑥ᇱሻ ൌ 𝐸ൣ൫𝑓ሺ𝑥ሻ െ 𝑚ሺ𝑥ሻ൯൫𝑓ሺ𝑥ᇱሻ െ 𝑚ሺ𝑥ᇱሻ൯൧     (3) 
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Fig. 1 The distributions of the train and test points in the study area (map produced using ArcGIS). 

 

where 𝑥 and 𝑥ᇱϵ 𝑅 are independent variables, and 
𝐸[.] denotes the expectation. The Gaussian process 
can be written as below 
 

𝑦 ൌ 𝑓ሺ𝑥ሻ~𝐺𝑃൫𝑚ሺ𝑥ሻ , 𝑘ሺ𝑥, 𝑥′ሻ൯             (4) 
 

The general regression model with noise can be 
expressed as follow: 
 

𝑦 ൌ 𝑓ሺ𝑥ሻ  𝜀, 𝜀~𝑁ሺ0,𝜎ଶሻ             (5) 
 

where 𝑥 is the input vector, 𝑓 is the function value, 
and 𝑦 represent the noisy observations. It is assumed 
that the additive white noise 𝜀 is independent and 
subjected to a Gaussian distribution with a mean of 
zero and a variance of 𝜎ଶ (Lin et al., 2019). 

Given  a  training  set 𝐷 ൌ ሺ𝑋,𝑦ሻ,  the  target is 
to  predict  the function values 𝑓∗ given inputs 𝑋∗. 
Being  a linear  combination  of  Gaussian  variables, 

𝑦 is also Gaussian, with distribution 
𝑦~𝑁ሺ𝑚ሺ𝑋ሻ and,𝐾ሺ𝑋,𝑋ሻ  𝜎ଶ𝐼ሻ, where 𝐼 is the 
identity matrix. The data-set is generally preprocessed 
with a mean value of zero (𝑚ሺ𝑋ሻ ൌ 0) (Rasmussen 
and Nickisch, 2010; Chen et. al., 2013). The joint 
Gaussian prior distribution of the training data and the 
predicted output is given using Equation (6) (Williams 
and Rasmussen, 2006). 

 

ቂ
𝑦
𝑓∗
ቃ~𝑁 ൬0, 

𝑚ሺ𝑋ሻ
𝑚ሺ𝑥∗ሻ

൨ , 
𝐾ሺ𝑋,𝑋ሻ  𝜎ଶ𝐼 𝐾ሺ𝑋, 𝑥∗ሻ
𝐾ሺ𝑥∗,𝑋ሻ 𝐾ሺ𝑥∗, 𝑥∗ሻ

൨൰  

(6) 
 

where 𝐾ሺ𝑋,𝑋ሻ is the covariance matrix of N×N, 
 𝐾ሺ𝑥∗,𝑋ሻ is the covariance matrix of 1 × N, and 
ሾ𝐾ሺ𝑥∗,𝑋ሻሿଵ ൌ 𝑘൫𝑥∗, 𝑥൯; 𝐾ሺ𝑋, 𝑥∗ሻ is the covariance 
matrix of   N × 1 and ሾ𝐾ሺ𝑋, 𝑥∗ሻሿଵ ൌ 𝑘൫𝑥 , 𝑥∗൯ is the 
covariance of the test input vector 𝑥∗. 
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The principle of joint Gaussian distributions 
allows the prediction results for the target to be 
inferred from the mean function 𝑦∗ഥ  and the covariance 
function 𝑐𝑜𝑣ሺ𝑦∗ ሻ given by Equations (7) and (8), 
respectively. 

 

𝑓∗ഥ ൌ 𝑚ሺ𝑥∗ሻ  𝐾ሺ𝑥∗,𝑋ሻሾ𝐾ሺ𝑋,𝑋ሻ  𝜎ଶ𝐼ሿିଵ൫𝑦 െ
     െ𝑚ሺ𝑋ሻ൯               (7) 
 

𝑐𝑜𝑣ሺ𝑓∗ሻ ൌ 𝐾ሺ𝑥∗, 𝑥∗ሻ െ 𝐾ሺ𝑥∗,𝑋ሻሾ𝐾ሺ𝑋,𝑋ሻ 
                𝜎ଶ𝐼ሿିଵ𝐾ሺ𝑋, 𝑥∗ሻ                 (8) 
 

where 𝑓∗ഥ  is the mean value of 𝑓∗, and cov(𝑓∗) is the 
covariance of 𝑓∗. If the noise ε is considered, the 
posterior distribution of 𝑦∗ is as follows: 
 

𝑦∗|𝑋 , y, 𝑥∗ ∼ N (𝑓∗ഥ , 𝑐𝑜𝑣ሺ𝑓∗ሻ +𝜎ଶ             (9) 
 

The appropriate covariance function 𝑘ሺ𝑥, 𝑥ᇱሻ 
plays an important role in the modeling process and 
should be chosen carefully because the covariance 
function affects the smoothness, length, scale, 
amplitude, etc. Under the Gaussian process view, the 
covariance function is used to measure nearness or 
similarity among the input observations. It is 
a fundamental similarity assumption that input points 
are likely to have similar target values, and thus, the 
training points that are close to a test point should 
provide informative about the prediction. There are 
several common covariance functions available in the 
literature; however, the squared exponential (SE) is 
the one most frequently utilized. This covariance 
function is basically of two types: the squared 
exponential covariance function with isotropic 
distance measure (covSEiso) and the squared 
exponential covariance function with automatic 
relevance detection (covSEard), respectively, as 
expressed in Equations (10) and (11) (Williams and 
Rasmussen, 2006): 

 

𝑘ௌா௦ሺ𝑥, 𝑥ᇱሻ ൌ 𝜎
ଶ𝑒𝑥𝑝 െ

൫௫ି௫ᇲ൯

൫௫ି௫ᇲ൯

ଶమ
൨          (10) 

 

and 
 

𝑘ௌாௗሺ𝑥, 𝑥ᇱሻ ൌ 𝜎
ଶ𝑒𝑥𝑝 െ

൫௫ି௫ᇲ൯

Ʌషమ൫௫ି௫ᇲ൯

ଶమ
൨         (11) 

 

where 𝜎
ଶ, 𝛼, Ʌ, and 𝑙 are the signal variance and the 

shape parameter for the rational quadratic covariance 
and Ʌ is 𝑙 times the unit matrix and the characteristic 
length scale, respectively. 

Similarly, for the covariance functions, in 
addition to the basic two above, four different forms 
were fitted: the Matérn covariance function with 
automatic relevance detection (covMaternard), the 
Matérn covariance function with isotropic distance 
measure (covMaterniso), the rational quadratic 
covariance function with automatic relevance 
detection (covRQard), and the rational quadratic 
covariance function with isotropic distance measure 
(covRQiso). These additional four covariance 
functions were used in this study as follows 
(Rasmussen and Nickisch, 2010): 

 Matérn covariance function with automatic 
relevance detection (covMaternard) 

 

𝑘ெ௧ௗሺ𝑥, 𝑥ᇱሻ ൌ 𝜎
ଶ𝑓ௗሺ𝑟ௗሻ𝑒𝑥𝑝ሺെ𝑟ௗሻ, 

𝑟ௗ ൌ ඥ𝑑ሺ𝑥 െ 𝑥ᇱሻ்Ʌିଶሺ𝑥 െ 𝑥ᇱሻ          (12) 
 

where 𝑓 is a function of 𝑟ௗ, 𝑑 ൌ 1, 2, 3. 
 

 Matérn covariance function with isotropic 
distance measure (covMaterniso) 

 

𝑘ெ௧௦ሺ𝑥, 𝑥ᇱሻ ൌ 𝜎
ଶ𝑓ௗሺ𝑟ௗሻ𝑒𝑥𝑝ሺെ𝑟ௗሻ,                    

𝑟ௗ ൌ ටௗ

మ
ሺ𝑥 െ 𝑥ᇱሻ்ሺ𝑥 െ 𝑥ᇱሻ          (13) 

 

 Rational quadratic covariance function with 
automatic relevance detection (covRQard) 

 

𝑘ோொௗሺ𝑥, 𝑥ᇱሻ ൌ 𝜎
ଶ ൬1 

ଵ

ଶ
ሺ𝑥 െ 𝑥ᇱሻ்Ʌିଶሺ𝑥 െ 𝑥ᇱሻ൰  

         (14) 
 

where 𝛼 is the shape parameter for the rational 
quadratic covariance. 
 

 Rational quadratic covariance function with 
isotropic distance measure (covRQiso) 

 

𝑘ோொ௦ሺ𝑥, 𝑥ᇱሻ ൌ 𝜎
ଶ ൬1 

ଵ

ଶమ
ሺ𝑥 െ 𝑥ᇱሻ்ሺ𝑥 െ 𝑥ᇱሻ൰ (15) 

 

The hyper parameters in the covariance function 
can be compressed into a matrix denoted by ϕ. These 
parameters are all unknown and can be obtained from 
the training data by inference. In order to get the 
appropriate hyper parameters, optimization with the 
maximization of the log-likelihood function can be 
utilized (Rasmussen and Nickisch, 2010). 

 

log 𝑝ሺ𝑦|𝑋,𝜃ሻ ൌ 

     ൌ െ
ଵ

ଶ
𝑦்𝐾ሺ𝑋,𝑋ሻିଵ𝑦 െ

ଵ

ଶ
 log|𝐾ሺ𝑋,𝑋ሻ| െ



ଶ
 logሺ2π) 

      (16) 
 

2.3. RADIAL BASIS FUNCTION NEURAL NETWORK 

The radial basis function neural network 
(RBFNN) was proposed by D. S. Broomhead and D. 
Lowe in the late 1980s. It has three layers consisting 
of an input layer, one hidden layer, and an output layer. 
A non-linear RBF activation function is used in the 
hidden layer. As with the multi-layer perceptron 
neural network (MLPNN), the RBFNN has the 
advantage of not suffering from local minima (Haykin, 
1999). In addition, the RBFNN is good at modeling 
nonlinear data and can be trained in one stage rather 
than using an iterative process as with MLPNN. It also 
learns the given application quickly (Venkatesan and 
Anitha, 2006). The Gaussian function used in this 
study is one of the most popular activation functions 
in the literature (Bishop, 1995). The mathematical 
formulation of this function can be found in Kisi 
(2009). For more details about the RBFNN, see Kisi et 
al. (2015).  
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2.4. GENERALIZED REGRESSION NEURAL 
NETWORK 

The generalized regression neural network 
(GRNN), as a modified form of the RBFNN, was 
proposed by Specht (1991). The GRNN approximates 
any arbitrary function between the input and output 
variables, drawing the function estimate directly from 
the training data (Zounemat-Kermani, 2014). Like the 
RBFNN, this network does not require an iterative 
procedure. It has four layers including the input layer, 
pattern layer, summation layer, and output layer 
(Specht, 1993). The GRNN has the advantages of fast 
training, simple structure, and global convergence 
(Yuan et al., 2019). The main parameter in the GRNN 
training process is the spread parameter (σ), which 
directly affects the prediction accuracy. This 
parameter is often chosen by trial-and-error 
experiments (Haidar et al., 2011). Further details 
regarding the GRNN can be found in Kisi (2008) and 
Ladlani et al. (2012). 

 
2.5. INVERSE DISTANCE TO A POWER 

The inverse distance to a power (IDP) method 
predicts the value for any test point by interpolating 
the measured values in the neighboring reference 
location (Franke and Nielson, 1980). The weight of 
a reference point is a function of the horizontal 
distance from the test point (Yanalak, 2004). The 
weighting function is assigned to the data using 
the weighting power (k). This value is chosen by the 
user (i.e., k = 1, 2, 3, 4, or 5) (Karaaslan et al., 2016). 
More descriptive information can be found in the 
article by Yanalak and Baykal (2003). 

 
3. PERFORMANCE EVALUATION OF MODELS 

The performance of the GPR, RBFNN, GRNN, 
and IDP models was assessed based on three statistical 
indicators: the root means square error (RMSE), mean 
absolute error (MAE), and the coefficient of 
determination (R2). The equations for the statistical 
indicators are given as follows:  

 

RMSE ൌ ට∑ ሺைିሻమ

సభ


               (17) 

 

MAE ൌ ଵ


∑ |𝑂 െ 𝑃|

ୀଵ             (18) 

 

R2 ൌ ቌ
∑ ሺைିைതሻ

సభ ሺିതሻ

ට∑ ሺைିைതሻమ ∑ ሺିതሻమ

సభ


సభ

ቍ

ଶ

           (19) 

 

where n is the number of samples, 𝑂 are the observed 
geoid undulation values, 𝑃 are the predicted geoid 
undulation values, 𝑂ത is the mean of the observed geoid 
undulation values, and 𝑃ത is the mean of the predicted 
geoid undulation values. Low RMSE and MAE values 
indicate good prediction, whereas the coefficient of 
determination (R2) value closest to one (1) indicates 
the best prediction.   
 

4. RESULTS AND DISCUSSION 

In this study, Gaussian Process Regression 
(GPR) was used to predict the geoid undulation. The 
optimum GPR model was then compared to those of 
the RBFNN, GRNN, and IDP and the best model was 
determined. The geodetic latitudes (φ) and longitudes 
(λ) of the points were chosen as inputs, while the geoid 
undulation (N) was selected as the output of the 
models. Gaussian Processes for Machine Learning 
(GPML) program that enables users to construct 
a GPR model.  In addition, a computer code for 
developing the RBFNN and GRNN models was 
written in MATLAB software by the authors. Surfer 
software was utilized for the interpolation-based 
computation (IDP). Before training the models, it was 
necessary to normalize data to avoid reduction in 
network speed and accuracy. In this present work, the 
GNSS/leveling data were normalized between 0 and 1. 

 
4.1. GPR MODEL RESULTS BASED ON DIFFERENT 

COVARIANCE FUNCTIONS 

During the GPR model development stage, it was 
necessary to select a covariance function. Determining 
the optimum covariance function is vital in producing 
reliable predictions close to actual true values. Thus, 
in this study, when developing the GPR models to 
predict the geoid undulation based on the 
GNSS/leveling data, different covariance functions 
were considered, including the Matérn covariance 
function with automatic relevance detection 
(covMaternard) (d = 1, 3, 5), the Matérn covariance 
function with isotropic distance measure 
(covMaterniso) (d = 1, 3, 5), the rational quadratic 
covariance function with automatic relevance 
detection (covRQard), the rational quadratic 
covariance function with isotropic distance measure 
(covRQiso), the squared exponential covariance 
function with automatic relevance detection 
(covSEard), and the squared exponential covariance 
function with isotropic distance measure (covSEiso). 
The hyper parameters were obtained by maximizing 
the value of the log-likelihood function. The 
prediction results of the developed GPR models using 
different covariance functions are given in Table 1. 
Table 1 shows that the covariance functions utilized 
gave similar predictive results. However, the 
developed GPR model based on the Materniso (d = 1) 
covariance function performed the best (RMSE = 
8.32 cm, MAE = 5.51 cm, R2 = 0.98968) compared to 
the other covariance functions. This can also be 
confirmed by Figures 2 and 3, which show the 
correlation between the measured geoid undulation 
and the prediction from the GPR models. In contrast, 
the same figures show that the GPR based on the 
SEard covariance function model was found to be the 
worst (RMSE = 14.68 cm, MAE= 10.74 cm, R2 = 
0.97004) compared to the other covariance function 
models. From a comprehensive perspective, the 
Matérn-based GPR models performed slightly better 
in their RMSE, MAE, and R2 values than the SE-based 
and RQ-based GPR models.  
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Table 1 Performance of GPR models based on different covariance functions in predicting geoid undulation. 

Covariance functions RMSE (cm) MAE (cm) R2 
Materniso (d=1) 8.32 5.51 0.98968 
Materniso (d=3) 11.60 7.85 0.98131 
Materniso (d=5) 9.28 6.08 0.98790 
Maternard (d=1) 9.53 6.26 0.98735 
Maternard (d=3) 9.25 5.61 0.98781 
Maternard (d=5) 12.32 8.58 0.97870 
SEiso 13.99 10.68 0.97357 
SEard 14.68 10.74 0.97004 
RQiso 11.49 7.75 0.98140 
RQard 13.30 9.42 0.97519 

 

RMSE: root mean square error; MAE: mean absolute error; R2: coefficient of determination; Boldface: the best results 

Fig. 2 Scatter  plots of the observed geoid undulation values versus the predicted values of geoid undulation: 
(a)  Materniso d=1,  (b)  Materniso d=3,  (c)  Materniso d=5,  (d)  Maternard d=1,  (e)  Maternard d=3, 
(f) Maternard d=5. 
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Fig. 3 Scatter  plots of the observed geoid undulation values versus the predicted values of geoid undulation: 
(a) SEiso, (b) SEiso, (c) RQiso, (d) RQard. 

Table 2 Comparison of the best GPR model with several other models. 

Types of models RMSE (cm) MAE (cm) R2 
GPR (Materniso (d=1)) 8.32 5.51 0.98968 
RBFNN 28.02 19.18 0.89095 
GRNN 18.30 7.42 0.95244 
IDP (k=1) 15.18 10.65 0.97033 
IDP (k=2) 13.12 7.66 0.97605 
IDP (k=3) 14.48 7.19 0.96996 
IDP (k=4) 17.24 7.58 0.95762 
IDP (k=5) 20.33 8.27 0.94188 

 

RMSE: root mean square error; MAE: mean absolute error; R2: coefficient of determination; Boldface: the best results

Figure 2 illustrates the scatter plots of the 
observed geoid undulation versus the predicted 
outputs of the GPR based on the Matérn covariance 
function model with automatic relevance detection 
(covMaternard) (d = 1, 3, 5) and the GPR based on the 
Matérn covariance function model with isotropic 
distance measure (covMaterniso) (d = 1, 3, 5); 
Figure 3 depicts the scatter plots of the measured geoid 
undulation versus the predicted outputs of the GPR 
based on the rational quadratic covariance function 
model with automatic relevance detection 
(covRQard), the rational quadratic covariance 
function model with isotropic distance measure 
(covRQiso), the squared exponential covariance 
function model with automatic relevance detection 
(covSEard), and the squared exponential covariance 

function model with isotropic distance measure 
(covSEiso). 

The relation of the observed and predicted geoid 
undulation values can be seen in the points scattered 
around the dotted red line. For each scatterplot, the 
slope of the line reaches closer to the value 1 and 
the intercept moves closer to the value 0, indicating 
that the predicted values follow their corresponding 
observed ones very closely. It is clear from Figure 2 
that the predictions provided by the GPR based on the 
Materniso (d = 1) covariance function model were 
highly correlated and less scattered than the other GPR 
predictions based on the Matérn covariance function 
models, whereas the predictions produced by the GPR 
based on the Maternard (d = 5) covariance function 
model were less correlated and more highly scattered 
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Fig. 4 Scatterplots  of  the  different models in predicting geoid undulation:  (a) Materniso d=1,  (b) RBFNN, 
(c) GRNN, (d) IDP k=1, (e) IDP k=2, (f) IDP k=3, (g) IDP k=1, (h) IDP k=5. 
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Fig. 5 Residuals versus number of samples in GPR based on the Materniso (d=1), RBFNN and GRNN models. 

than the other GPR predictions based on the Matérn 
covariance function models. In addition, from 
Figure 3, it can be seen that the predictions provided 
by the GPR based on the RQiso covariance function 
model were highly correlated and less scattered than 
the other GPR predictions based on the RQ and SE 
covariance function models, whereas the predictions 
produced by the GPR based on the SEard covariance 
function model were less correlated and more highly 
scattered compared to the other RQ and SE covariance 
function models. In general, the slope and intercept 
ratios of the Matérn-based GPR models were closer to 
1 and 0, respectively,  compared to the RQ- and 
SE- based GPR models. 

 
4.2. COMPARISON OF BEST GPR MODEL 

AND OTHER INVESTIGATED MODELS 

For prediction, the GNSS/leveling dataset was 
used in the GPR as well as in the RBFNN, GRNN, and 
IDP models. The RBFNN has three layers: input, 
hidden, and output. In the RBFNN, the spread 
parameter (σ) and the number of neurons in the hidden 

layer are the parameters that must be determined 
during the training phase. The spread parameter and 
the number of neurons were selected using the results 
giving the lowest RMSE and MAE, and the highest R2 
values. As a result of the experiments, the optimum 
RBFNN model led to a structure with 2 inputs, 10 
hidden neurons and 1 output, i.e., [2-10-1]. Unlike the 
structure of the RBFNN, a basic GRNN has four 
layers: input, pattern, summation, and output. Before 
training the GRNN model, we needed to determine the 
optimal spread parameter (σ), which affects the fitness 
in the GRNN model.  The optimal spread parameter 
(σ) was found to be 0.032, with the lowest RMSE and 
the highest R2, as in the RBFNN. The error statistics 
for the predicted geoid undulation were calculated 
using different weighting power (k) parameter choices 
(i.e., 1, 2, 3, 4, and 5) in order to identify the optimal 
weighting power parameter. A summary of the results 
of the best GPR model developed compared with those 
of the other investigated models based on the RMSE, 
MAE, and R2 is presented in Table 2.  
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 Fig. 6 Residuals versus number of samples in IDP models (k=1, 2, 3, 4, and 5). 
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Fig. 7 Residuals between the observed and the predicted values a) GPR based on Materniso (d=1), b) RBFNN, 
c) GRNN. 

Table 2 shows that the GPR based on the 
Materniso (d = 1) model had the best results (i.e., 
RMSE = 8.32 cm, MAE = 5.51 cm,  R2 = 0.98968) 
and thus was better than the other models, with the IDP 
(k = 2)   ranking  second-best.  On  the  other  hand, 
the   RBFNN   model   yielded   the   worst  results 
(i.e.,  RMSE = 28.02 cm,  MAE = 19.18 cm,  and, 
R2 = 0.89095). When the ANN models were compared 
with each other, the GRNN predicted better than the 
RBFNN.  A  comparison  of  the  IDP models with 
each   other   demonstrated   that  the  IDP (k = 2) 
model  achieved  the  highest RMSE (13.12 cm) and 
R2 (0.97605)  values,  whereas  the  IDP (k = 2),  IDP 
(k = 3) and IDP (k = 4) models gave very similar 
results in terms of MAE. 

Figure 4 illustrates the comparisons of the 
predicted results of all the different models with 
the actual values of geoid undulation. It can be seen 
immediately from this figure that the IDP produced 
better results compared to the RBFNN and GRNN. 
The selection of the weighting power (k) parameter 
significantly influenced the results of the IDP. The 
IDP (k = 2) model produced results that were closer to 
the true geoid undulation values than the other IDP 

models. In general, the best straight line in the scatter 
plots showed that the slope and intercept coefficients 
for the GPR based on the Materniso (d = 1) model 
were, respectively, closer to 1 and 0 than those of the 
other models.  

The residual values specifying the prediction 
limitations of the developed models were calculated 
by subtracting the predicted geoid undulation values 
from their corresponding observed geoid undulation 
values. Histogram graphics were drawn of the GPR 
based on the Materniso (d = 1) covariance function, 
the RBFNN, GRNN, and IDP (k = 1, 2, 3, 4, and 5). 
Figure 5 shows the histogram of the frequency against 
the residual values for GPR based on the Materniso 
(d = 1) covariance function, the RBFNN, and GRNN; 
Figure 6 indicates the distribution of geoid undulations 
for the IDP models (k=1, 2, 3, 4, 5). 

Looking at the histograms, these figures confirm 
that the GPR based on the Materniso (d = 1) 
covariance function model had a higher predictive 
capacity than the other models. The RBFNN model 
performed the worst since the residual values were 
much greater than in the other models. 
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Fig. 8 Residuals  between  the  observed  and  the predicted values a) IDP (k=1), b) IDP (k=2), c) IDP (k=3), 
d) IDP (k=4), e) IDP (k=5). 

Figures 7 and 8 also show maps of residuals 
between the observed and the predicted values by all 
models.  

Compared the maps of residuals given in 
Figures 7 and 8, it is clearly seen that, for GPR based 
on the Materniso (d = 1) covariance function model, 
the residuals are much smaller over the whole study 
area (Fig. 7a). This conclusion confirms once again 

the superior performance of the GPR based on the 
Materniso (d = 1) covariance function model in 
predicting geoid undulation among the all tested 
models. 

 
5. CONCLUSION  

In this study, the GPR was successfully applied 
to predict geoid undulation. The zero mean function 
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was simultaneously modeled with ten different 
covariance functions: the Matérn covariance function 
with automatic relevance detection (Maternard d = 1, 
3, 5), the Matérn covariance function with isotropic 
distance measure (Materniso d = 1, 3, 5), the rational 
quadratic (RQ) covariance function with automatic 
relevance detection, the RQ function with isotropic 
distance measure, the squared exponential (SE) 
covariance function with automatic relevance 
detection, and the SE covariance function with 
isotropic distance measure. In this way, ten GPR 
models were developed to predict geoid undulation. 
Among these models, the GPR based on the Materniso 
(d = 1) covariance function model gave the best 
results, based on the lowest RMSE and MAE and the 
highest R2 values. The prediction results of the GPR 
models constructed with the Matérn covariance 
functions were better than the results obtained with 
GPR models using other covariance functions (i.e., 
RQ and SE). The performance of the best GPR model 
was then compared with the ANN models (RBFNN 
and GRNN), and the interpolation method of inverse 
distance to a power (IDP). By assessing the results of 
the models, it was concluded that the GPR based on 
the Materniso (d = 1) model was capable of providing 
more accurate geoid undulation predictions in 
comparison to the RBFNN, GRNN, and IDP. The 
RBFNN model provided the worst geoid undulation 
estimates. The GPR model may be tested using 
different data. In the present work, the zero mean 
function was used and therefore, this had no effect on 
the prediction output. Thus, the prediction depended 
solely on the covariance function. If other means 
functions (constant mean and linear mean) had been 
used, the GPR models might have produced even 
better results. This may be the subject of another study. 
Improper division of data may cause predicted results 
to deviate from observed values. This leads to reduced 
accuracy of results for the predictive performance of 
models. To overcome this problem, the cross-
validation technique for evaluating predictive models 
(e.g., k-fold) can be used. This issue will be addressed 
in a future work. 
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