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 ABSTRACT 
 

 

Empirical Mode Decomposition (EMD) is suitable to process the nonlinear and non-stationary 

time series for filtering noise out to extract the signals. The formal errors are provided along with 

Global Navigation Satellite System (GNSS) position time series, however, not being considered 

by the traditional EMD. In this contribution, we proposed a modified approach that called weighted 

Empirical Mode Decomposition (weighted EMD) to extract signals from GNSS position time 

series, by constructing the weight factors based on the formal errors. The position time series over 

the period from 2011 to 2018 of six permanent stations (SCBZ, SCJU, SCMN, HLFY, FJPT, 

SNXY) were analyzed by weighted EMD, as well as the traditional EMD. The results show that 

weighted EMD can extract more signals than traditional EMD from original GNSS position time 

series. Additionally, the fitting errors were reduced 14.52 %, 12.25 % and 8.06 % for North, East 

and Up components for weighted EMD relative to traditional EMD, respectively. Moreover, 100 

simulations of four stations are further carried out to validate the performances of weighted EMD 

and traditional EMD. The mean Root Mean Squared Errors (RMSEs) are reduced from traditional 

EMD to weighted EMD with the reductions of 9.08 %, 9.63 % and 6.84 % for East, North and Up 

components, respectively, which highlights the necessity of considering the formal errors. 

Therefore, it reasonable to conclude that weighted EMD can extract the signals more than 

traditional EMD, which can be suggested to analyze GNSS position time series with formal errors. 

 

ARTICLE INFO 
 

Article history:  

Received 23 March 2021 

Accepted 22 July 2021 

Available online 31 July 2021 
 

 

Keywords: 

GNSS Position Time Series 

Empirical Mode Decomposition  

Formal Errors  

Signal Extraction  

Weighted Empirical Mode Decomposition 

 

Cite this article as: Qiu X, Wang F, Zhou Y, Zhou S: Weighted empirical mode decomposition for processing GNSS position time series 

with the consideration of formal errors. Acta Geodyn. Geomater., 18, No. 3 (203), 397–408, 2021. 

   DOI: 10.13168/AGG.2021.0028 

1. INTRODUCTION 

The GNSS position time series can provide 

valuable basic data for Geodesy and Geodynamics 

research. Therefore, position time series have been 

used in nonlinear change, crustal deformation, 

post- glacial rebound and geocentric movement widely 

(Zhu et al, 2017; Li et al., 2020; Peltier et al., 2015; 

Tobita et al., 2016). Moreover, position time series not 

only reflect the linear tectonic movement of 

permanent stations, but also reveal the nonlinear 

movement of reference stations due to various 

geophysical phenomena. It is very important to study 

the nonlinear variation characteristics of position time 

series for establishing and maintaining dynamic 

Eearth reference frame. 

Due to the influence of the external environment, 

the error of observation technology and reference 

frame of the station, various signals and noise are 

included in GNSS position time series (Bogusz and 

Klos, 2016; Chen et al., 2020), such as trend term, 

seasonal signals, offsets and noise (Qian et al., 2015; 

Ming et al., 2016). A linear trend, annual and semi-

annual oscillations, and offsets can be estimated from 

GNSS position time series by using suitable method 

(Nikolaidis, 2002). The method of maximum 

likelihood estimation of Create and Analyze Time 

Series (CATS) software was normally used to analyze 

the noise characteristic of position time series, which 

obtained the type of noise at North, East and Up 

components are not consistent (Huang et al., 2014). It 

is found that different complicated noise models 

would influence station’s linear velocity and its 

uncertainty with maximum discrepancy larger than 

1 mm/a (Li et al., 2012). The effective separation of 

noise and signal has a great influence on obtaining 

accurate noise variance and determining the 

uncertainty of linear and non-linear motion parameters 

estimation (Ma, 2019). Therefore, it is very important 

to choose an appropriate signal extraction method. 

Several studies have been carried out to extract 

signals from GNSS position time series, such as 

Wavelet Analysis (WA), Singular Value 

Decomposition (SVD), Singular Spectrum Analysis 

(SSA), etc. (Wei et al, 2019; Ma et al., 2020a; Ma et 

al., 2020b; Dai et al., 2021; Tufts et al., 1982). 

However, these approaches have some limitations to 

deal with the nonlinear time series. The denoising 

performance of WA is easily affected by wavelet 

basis, decomposition level and threshold, what’s 

more, the useful information will be eliminated in the 
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 process of threshold processing (Song et al., 2017). 

The key issue of SVD is to determine the reconstructed 

order of singular values for reconstructing signal 

accurately. Normally, it is difficult to determine the 

reconstructed order especially when the singular value 

difference spectrum criterion is used to handle the time 

series with strong trend (Liu and Chen, 2019; Lei and 

Zhong, 2013). Similarly, the window length and 

reconstructed order are two key parameters for SSA to 

process time series. If the parameters are not selected 

accurately that some signals will be overwhelmed or 

part of noise will be treated as signal (Golyandina and 

Zhigljavsky, 2013; Dai et al., 2021). Huang et al. 

(1998) first proposed an adaptive time-frequency 

analysis approach named Empirical Mode 

Decomposition (EMD). Zhang et al. (2018) 

successfully applied EMD to separate signal and noise 

from the original time series, and extracted the 

periodic signals from GNSS time series accurately. 

The traditional EMD processes the GNSS time 

series without taking the formal errors into account, 

which assuming that all epochs of the position time 

series with equal weight for different epochs. This is 

unreasonable because the precision of GNSS position 

time series at different epoch are varied (Li et al., 

2015; Wang et al., 2018). Therefore, the formal errors 

should be considered when using EMD to extract 

signals from GNSS position time series. Li et al. 

(2015, 2018) considered the formal errors in 

spatiotemporal filtering by using Principal Component 

Analysis (PCA) to extract common mode error from 

regional GNSS position time series. Ji et al. (2020) 

proposed weighted wavelet analysis to extract signals 

from GNSS position time series, in which the weight 

factors are constructed based on the formal errors. To 

the best of our knowledge, almost all EMD approaches 

did not take the formal errors into account when 

analyzing the GNSS position time series. Therefore, 

we propose a modified EMD named weighted EMD. 

The rest of this paper is organized as follows: the 

methodology of traditional EMD and weighted EMD 

are presented in Section 2. Signal extraction from real 

position time series of six stations from the Crustal 

Movement Observation Network of China 

(CMONOC) during the period from 2011 to 2018 is 

analyzed in Section 3. Synthetic time series analysis is 

carried out in Section 4. Conclusions are given in 

Section 5. 
 

2. METHODOLOGY 

2.1. TRADITIONAL EMPIRICAL MODE 

DECOMPOSITION 

EMD is an adaptive time-frequency analysis 

approach which has advantages in dealing with 

nonlinear and non-stationary time series. The specific 

methodology of traditional EMD is as follows: 

The position time series 𝑥(𝑡) can be decomposed 

into several Intrinsic Mode Function (IMF) 

components with frequency from high to low and 

a residual term by using EMD (Huang et al., 1998). 

Noise reduction can be realized by reconstructing the 

residual term and some low-frequency IMF 

components. Generally, high frequency IMF 

components are mainly related to noise information, 

while low frequency IMF components and residual 

term contain characteristic information and trend of 

the time series, being recognized as signals. For EMD, 

two conditions should be satisfied with each IMF 

component (Huang et al., 1998): 

① In the whole sequence, the number of 

extrema and the number of zero crossings must either 

equal or differ at most by one;  

② All the local maxima are connected by 

a cubic spline line as the upper envelope. Repeat the 

procedure for the local minima to produce the lower 

envelope. The mean value of upper envelope and 

lower envelope is zero. However, IMF components 

are difficult to strictly meet the second condition in the 

actual time series decomposition process. The 

threshold expression for stopping filtering of each 

IMF component is expressed as: 

SD = ∑ [
|ℎ𝑘−1(𝑡)−ℎ𝑘(𝑡)|2

ℎ𝑘−1
2 (𝑡)

]𝑁
𝑡=1                                         (1) 

where ℎ𝑘-1(𝑡) and ℎ𝑘(𝑡) are two adjacent data 

sequences in the screening process of each IMF 

component, N denotes the length of time series. SD 

represents the threshold for each IMF component to 

stop filtering, which is usually taken as 0.2-0.3 (Huang 

et al., 1998).  

The steps of traditional EMD for processing the 

position time series 𝑥(𝑡) are presented as follows:  

① All the maxima points and minima points are 

extracted in original position time series, and then 

upper envelope and lower envelope are obtained by 

using cubic spline interpolation, which is generated 

mean sequence  𝑚1(𝑡) by their average value. 

Differences between the original position time series 

and mean sequence can be expressed as 
 

ℎ1(𝑡) = 𝑥(𝑡) − 𝑚1(𝑡)                                               (2) 

② Repeat k times of step ①, if ℎ𝑘(𝑡) satisfied 

the conditions of IMF component, which considered 

as the first IMF component (IMF1).  
 

③ The first IMF component is subtracted from 

original position time series to generate a new data 

series, 
 

𝑥2(𝑡) = 𝑥(𝑡) − 𝐼𝑀𝐹1( 𝑡)                                           (3) 
 

④ Take 𝑥2(𝑡) as original data series and repeat 

the above steps to obtain m IMF components and 

a residual term only when the residual term satisfies 

the monotonic condition. Therefore, the original data 

series can be expressed as: 
 

𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑖
𝑚
𝑖=1 + 𝑟(𝑡)                                         (4) 

where m and i denote the number of IMF component 

and the index of IMF component, 𝑟(𝑡) represents the 

residual term. 
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 For traditional EMD, the boundary IMF 

component between signal and noise should be 

determined. Generally, the signal and noise are 

separated by using correlation coefficient criterion, by 

which the IMF component with minimum correlation 

coefficient for the first time is the boundary IMF 

component. The correlation coefficient between 

simple IMF component and original time series is 

computed as follows (Zhang et al., 2018) 
 

𝑅(𝑥, 𝐼𝑀𝐹) =
∑ (𝑥(𝑡)−�̄�)(𝐼𝑀𝐹𝑖(𝑡)−𝐼𝑀𝐹𝑖̅̅ ̅̅ ̅̅ ̅)𝑁

𝑡=1

√∑ (𝑥(𝑡)−�̄�)2𝑁
𝑡=1 √∑ (𝐼𝑀𝐹𝑖(𝑡)−𝐼𝑀𝐹𝑖̅̅ ̅̅ ̅̅ ̅)2𝑁

𝑡=1

         (5) 

 

where 𝑥(𝑡) and 𝐼𝑀𝐹𝑖( 𝑡) represent the original time 

series and the i-th IMF component; �̄� =
1

𝑁
∑ 𝑥(𝑡)𝑁

𝑡=1 ; 

𝐼𝑀𝐹̅̅ ̅̅ ̅̅
𝑖 =

1

𝑁
∑ 𝐼𝑀𝐹𝑖( 𝑡)𝑁

𝑡=1 . 

The boundary IMF component is incorporated 

into noise, the low frequency IMF components after 

the boundary IMF component and residual term are 

used to reconstructed the signal as follows: 

 

�̂�(𝑡) = ∑ 𝐼𝑀𝐹𝑘
𝑚
𝑘=𝐾+1 + 𝑟(𝑡)                                     (6) 

 

where �̂�(𝑡) is the reconstructed signal; 𝐾 is the index 

of boundary IMF component. In other words, the IMF 

components before index 𝐾 are recognized as noise.  

 
2.2. WEIGHTED EMPIRICAL MODE 

DECOMPOSITION BY CONSIDERING THE 

FORMAL ERRORS 

For traditional EMD, the Equations (1) ~ (6) are 

usually applied to analyze the GNSS position time 

series without taking formal errors into account, which 

assuming that all epochs of observations have equal 

weights. Normally, the position time series 𝑥(𝑡) (𝑡 =
1,2, ⋯ , 𝑁) can be expressed by the signal 𝑠(𝑡) and the 

noise 𝑒(𝑡) as follows 

 

𝑥(𝑡) = 𝑠(𝑡) + 𝑒(𝑡)(𝑡 = 1, 2, ⋯ , 𝑁)                         (7) 
 

Considering that the formal errors derived from 

daily GNSS solutions are varied for different epochs 

due to the different surrounding. Consequently, it is 

unreasonable to directly treat all epochs of 

observations with unit weight when processing the 

position time series. Similar to Li et al. (2018), we just 

weight the noise term mainly due to that the formal 

errors are related to the noise (Dong et al., 2006), the 

generated time series is expressed as follows 

 

𝑥′(𝑡) = 𝑠(𝑡) +
𝜎0

𝜎(𝑡)
𝑒(𝑡)   (𝑡 = 1, 2, ⋯ , 𝑁)                (8) 

 

where 𝑥′(𝑡) represents the generated time series, 𝜎0 is 

a constant denoting the standard deviation of unit 

weight of the formal errors, 𝜎(𝑡) denote the formal 

error of the original time series at t-th epoch. 

According to the definition of weight, we have 
 

𝑝(𝑡) =
𝜎0

2

𝜎2(𝑡)
                                                               (9) 

 

 

𝑝(1)𝜎2(1) = 𝑝(2)𝜎2(2) = ⋯ = 𝑝(𝑁)𝜎2(𝑁) = 𝜎0
2  

                 (10) 
 

Therefore, processing the generated time series 

with traditional EMD is equivalent to processing the 

original time series by introducing a weight factor. In 

order to keep the total energy of the generated time 

series unchanged, the sum of weights for all epochs 

should be equal to the number of available epochs (Li 

and Shen, 2018; Ji et al., 2020; Dong et al., 2006; Shen 

et al., 2018), which can be expressed as follows 
 

∑ 𝑝(𝑡)𝑁
𝑡=1 = 𝑁                                                         (11) 

 

According to Equations (10) and (11), the 

standard deviation of unit weight 𝜎0 can be derived as 
 

𝜎0 = √𝑁/ ∑
1

𝜎2(𝑡)
𝑁
𝑡=1                                                (12) 

 

Once 𝜎0 is determined, it is easy to obtain the 

weight factors 𝜎0/𝜎(𝑡) by Equation (9). Firstly, the 

traditional EMD is used to obtain the initial signal and 

noise. Secondly, we can update 𝑒(𝑡) by subtracting 

𝑠(𝑡) from Equation (7) and form the generated time 

series with Equation (8). Lastly, the generated time 

series is iteratively processed by EMD to extract signal 

and noise, and compared with traditional EMD. 

Considering that with the number of iterations 

increases, the accuracy of the extracted signals is not 

improved much, but iterative procedure needs more 

time. Therefore, the number of iterations is equal to 2 

in this study. The flow of weighted EMD is shown in 

Figure 1. 
 

3. REAL GNSS POSITION TIME SERIES 

ANALYSIS 

To verify the performance of weighted EMD, the 

position time series of six permanent stations of 

CMONOC were analyzed with the comparison of 

traditional EMD and their corresponding locations are 

presented in Figure 2. There are few missing data at 

these stations. There are three stations (SCBZ, SCJU, 

SCMN) in the Sichuan province, while the others 

(HLPY, FJPT, SNXY) in different provinces. Since 

the observations of part stations started in July 2010, 

the time span was from 2011 till 2018 in this study. 

Together with the position time series, formal errors 

were downloaded from the GNSS data products of 

China earthquake administration, which the website is 

http://www.cgps.ac.cn/. Formal errors were different 

for the observations at different epoch (Li et al., 2015). 

Outliers were eliminated by Interquartile Range (IQR) 

statistic (Langbein and Bock, 2004), once outliers 

were found in one component, the other two 

components were also discarded. The epochs of whose 

formal errors are larger than 10 mm, 10 mm and 20 

mm for East, North and Up components, were also 

removed, respectively (Li et al., 2018). 

Here taking the SCMN station as an example, 

traditional EMD and weighted EMD are compared in 

processing details specifically. The position time 

http://www.cgps.ac.cn/
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Fig. 1 The flow of weighted EMD approach. 

 

series and formal errors of SCMN station over the 

period from 2011 till 2018 are presented in Figures 3 

and 4, respectively. From Figure 4, it is obviously to 

find that the precision of time series varies from epoch 

to epoch. Besides, we can see that the precision of 

North and East components is obviously better than 

Up component.  

EMD can decompose the GNSS position time 

series of SCMN station into several IMF components 

with frequency from high to low and one residual term 

(consider as IMF component). The correlation 

coefficient criterion is used to determine the boundary 

between signal and noise, and the first local minimum 

of correlation coefficient is taken as the boundary of 

IMF component. According to Equation (5), the 

correlation coefficients of all IMF components and 

original position time series are presented in Table 1. 

From Table 1, we can find that the boundary between 

signal and noise components are all IMF4 for North, 

East and Up component, respectively.  

According to boundary IMF component, we 

extract the signals from the position time series of 

SCMN station. The traditional EMD choose the IMF 

components after boundary IMF component to 

reconstruct signal. Traditional EMD deals with the 

GNSS position time series without considering formal 

errors, which is unreasonable. Therefore, weighted 

EMD calculate the weight factors of each station at 

different epochs by formal errors. The formal errors 

standard deviations of unit weight were 1.86 mm, 

1.62 mm and 6.20 mm for East, North and Up 

components that based on Equation (12). The 
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Fig. 2 Locations of the selected six stations. 

 

Fig. 3 Position time series of SCMN station. 

. 

Fig. 4 Formal errors of SCMN station. 

. 
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Table 1 Correlation coefficients of all IMF components and original position time series. 

 
IMFi

 𝑅(𝒙, 𝐼𝑀𝐹𝑖) 

North East Up 

IMF1 0.0351 -0.0158 0.3959 

IMF2 0.0156 -0.0063 0.2837 

IMF3 0.0150 -0.0086 0.2006 

IMF4 0.0113 -0.0178 0.1591 

IMF5 0.0281 0.0214 0.1733 

IMF6 0.0113 0.0898 0.1156 

IMF7 0.9996 0.9999 0.5334 

IMF8   0.1130 

IMF9   0.5883 

 

Fig. 5 Weight factors of position time series for SCMN station. 

 

corresponding weight factors of epochs are showed in 

Figure 5, weight factors varied in different epoch. The 

generated time series is reconstructed by Equation (8), 

then we analyzed and extracted signals from the 

generated time series by using weighted EMD. The 

difference of signal extraction between weighted 

EMD and traditional EMD with red line are presented 

in Figure 6. We can find that there exit some 

differences between the two approaches in extracting 

signals, with the mean absolute differences are 

0.42 mm, 0.29 mm and 0.87 mm for North, East and 

Up components, respectively. After the signal being 

extracted from GNSS position time series, the fitting 

errors were calculated with Equation (13) for weighted 

EMD and Equation (14) for traditional EMD as 

follows 
 

�̂�𝑊𝐸𝑀𝐷 = √∑ �̂�𝑊𝐸𝑀𝐷
2 (𝑡)𝑝(𝑡)/𝑁𝑁

𝑡=1                          (13) 
 

�̂�𝐸𝑀𝐷 = √∑ �̂�𝐸𝑀𝐷
2 (𝑡)/𝑁𝑁

𝑡=1                                     (14) 
 

where �̂�𝑊𝐸𝑀𝐷 and �̂�𝐸𝑀𝐷 are the residual time series by 

weighted EMD and traditional EMD, 𝑝 is the weight 

factor for each epoch and 𝑁 is the length of residual 

time series. The fitting errors can be used to evaluate 

the performance of signal extraction because of the 

total weights are same for weighted EMD and 

traditional EMD. For SCMN station, the fitting errors 

Fig. 6 The difference between weighted EMD and traditional EMD for three components. 

. 
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Fig. 7 The standard deviations of unit weight of formal errors (grey bar) and standard deviations of weight 

factors (blue line) for six stations. 

. 

. 

 

Fig. 8 Fitting errors (color bar) and relative improvements (blue line) for stations. 

. 

 
are 0.79 mm, 0.99 mm and 3.29 mm for weighted 

EMD and 0.99 mm, 1.11 mm and 3.71 mm for 

traditional EMD in North, East and Up components, 

respectively. Therefore, we can conclude that 

weighted EMD can extract more signals than 

traditional EMD. 

To further testify the performance of weighted 

EMD with the comparison of traditional EMD, 

position time series of six permanent stations are 

adopted to analysis. The standard deviations of unit 

weight of formal errors derived from Equation (12) in 

grey bar for six stations are showed in Figure 7. We 

can see from Figure 7 that the corresponding standard 

deviations of unit weight for Up components are 

obviously larger than North and East components. 

Moreover, for the formal errors of same coordinate 

component, the standard deviations of unit weight are 

different in different stations and the mean values for 

six stations are 2.05 mm, 2.15 mm and 7.25 mm for 

North, East and Up components, respectively. Figure 

7 also presents the standard deviations of weight 

factors with blue line, which indicated the variation of 

weight factors in different station. The mean standard 

deviations of weight factors are 0.170 mm, 0.182 mm 

and 0.183 mm for North, East and Up components, 

respectively. We can see that weight factors have the 

largest variation in Up component, while North 

component is the smallest. Additionally, both the 

formal errors of standard deviations of unit weights 

and the standard deviations of weight factors are very 

similar in the three components of all stations. 

According to Equations (13) and (14), the fitting 

errors for weighted EMD and traditional EMD are 

calculated for six stations. Compared with traditional 

EMD, the relative improvement of weighted EMD is 

calculated as follows 
 

𝐼𝑚𝑝�̂� =
�̂�𝐸𝑀𝐷−�̂�𝑊𝐸𝑀𝐷

�̂�𝐸𝑀𝐷
× 100 %                               (15) 

 

where 𝐼𝑚𝑝�̂� represents the relative improvements. 

The fitting errors (color bar) and the improvements of 

weighted EMD relative to traditional EMD (blue line) 

are shown in Figure 8. As we can be seen from 

Figure 8, the fitting errors of weighted EMD are all 

smaller than traditional EMD, which shows that 

weighted EMD performs better than traditional EMD 

in extracting signals from position time series. For the 

same station, the improvement of different 

components is varied. The mean improvements of 

weighted EMD relative to traditional EMD for six 

stations are 14.52 %, 12.25 % and 8.06 % for North, 

East and Up components, respectively. Additionally, 
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Table 2 The average RMSEs (mm) and Imps of weighted EMD relative to traditional EMD. 

 

Station 
SCMN BJGB 

E N U E N U 

Traditional EMD 0.8203 0.7078 1.8538 0.7790 0.7342 1.0804 

Weighted EMD 0.7040 0.6261 1.7194 0.7434 0.6796 1.0118 

Imp（%） 14.1800 11.5400 7.2500 4.5700 7.4400 6.3500 

Station 
SCJU SCBZ 

E N U E N U 

Traditional EMD 0.7236 0.6449 1.3049 0.6994 0.5340 1.2439 

Weighted EMD 0.6576 0.6096 1.1983 0.6403 0.4589 1.1744 

Imp（%） 9.1200 5.4700 8.1700 8.4500 14.0600 5.5900 

 

the mean improvement of horizontal component is 

better than vertical component and North component 

performs best.  

 
4. SYNTHETIC TIME SERIES ANALYSIS 

The simulation experiments were further carried 

out in this section to test and verify the performance of 

weighted EMD. The position time series of four 

permanent stations (SCMN, BJGB, SCJU, SCBZ) 

were randomly selected. In this section, the extracted 

signal by traditional EMD is regarded as true signal 𝒔 

and 𝒆 is the normally distributed noise with zero mean 

and variance 𝜎2(𝑡). Therefore, the simulated time 

series 𝒙 can be generated as follows 
 

𝒙 = 𝒔 + 𝒆                                                                (16) 
 

As a result of the true signal is known, the root 

mean square error (RMSE) of the extracted signal can 

be calculated as follows 
 

𝑅𝑀𝑆𝐸 = √∑ (𝑠(𝑡)−�̂�(𝑡))2𝑁
𝑡=1

𝑁
                                        (17) 

 

where, 𝑠(𝑡) and �̂�(𝑡) represent the true signal and the 

extracted signal at t  epoch, N is the length of true 

signal. RMSE reflects the difference between the 

extracted signal and the true signal, the smaller 

the RMSE computed from Equation (17), the more 

accurate the extracted signal. The RMSE 

improvement of weighted EMD relative to traditional 

EMD is computed as follows 
 

𝐼𝑚𝑝 =
𝑅𝑀𝑆𝐸𝐸𝑀𝐷−𝑅𝑀𝑆𝐸𝑊𝐸𝑀𝐷

𝑅𝑀𝑆𝐸𝐸𝑀𝐷
× 100 %                      (18) 

 

where 𝑅𝑀𝑆𝐸𝐸𝑀𝐷 and 𝑅𝑀𝑆𝐸𝑊𝐸𝑀𝐷 represent the 

RMSE of traditional EMD and weighted EMD, 

respectively. Imp denotes the RMSE improvement of 

weighted EMD relative to traditional EMD. 

For the sake of obtaining statistically reliable 

results, the simulation experiments are repeated 100 

times. The same processing strategies are adopted to 

deal with all simulation time series of SCBZ, BJGB, 

SCJU and SCMN stations as those used in Section 3. 

Average RMSEs are calculated for 100 simulation 

experiments, and Equation (18) is applied to compute 

the relative improvements of weighted EMD with 

respect to traditional EMD at the same time. From 

Table 2, we can see that each station has a certain 

degree of relative improvement for three components. 

The mean relative improvements of all stations are 

9.08 %, 9.63 % and 6.84 % for East, North and Up 

components, respectively. The improvement for the 

North component is the highest, followed by East 

component, and Up component performed worst, 

which are consistent with the results of real position 

time series analysis in Section 3, indicating weighted 

EMD performs better than traditional EMD in 

extracting signals from GNSS position time series. 
 

5. CONCLUSIONS 

Considering the formal errors are provided along 

with GNSS position time series available, traditional 

EMD did not make full use of the formal errors. 

Weighted EMD is proposed in this paper for extracting 

signals from noisy GNSS position time series, in 

which formal errors are applied to construct weight 

factors. The traditional EMD and weighted EMD were 

adopted to process the real GNSS position time series 

of six permanent stations from 2011 to 2018. The 

results show that weighted EMD performs better than 

traditional EMD in filtering noise and extracting 

signals. The fitting errors of weighted EMD are 

smaller than those of traditional EMD for all six 

stations, which means that weighted EMD can extract 

more signals. The corresponding improvements of 

weighted EMD relative to traditional EMD are 

14.52 %, 12.25 % and 8.06 % for North, East and Up 

components, respectively. Among three components, 

the corresponding improvement of North component 

is the highest, East component rank second, Up 

component at last. Furthermore, the corresponding 

improvement of horizontal component is better than 

vertical component. To further validate the advantage 

of weighted EMD relative to traditional EMD, 100 

simulation experiments were performed using four 

stations separately that based on simulated time series. 

The results show that the signal extracted by weighted 

EMD was closer to true signal in comparison with 
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traditional EMD. The improvements of mean RMSEs 

are 9.62 %, 9.08 % and 6.84 % for North, East and Up 

components, respectively. Overall, both real and 

synthetic experiments highlight the effectiveness of 

weighted EMD in signal extraction. Therefore, formal 

errors should be considered when using EMD to 

extract signal from GNSS position time series.  
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