
 

Acta Geodyn. Geomater., Vol. 19, No. 4 (208), 291–306, 2022 
DOI: 10.13168/AGG.2022.0014 

 

journal homepage: https://www.irsm.cas.cz/acta 
   
 

ORIGINAL PAPER 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 

AN IMPROVED STACKING FILTERING FOR EXTRACTING THE COMMON-MODE 
ERRORS ON GNSS COORDINATE TIME SERIES IN SHANXI 

Wei LI 1, 2, 3, 4), Xiaotong LI 1, 2, 3) *, Jianfei ZANG 5), Zhemin SUI 1, 2, 3), Chuang SONG 6),  
Xukang XIE 1, 2, 3), Yutong HUANG 1, 2, 3), Tengxu ZHANG 7) and Haowen YAN 1, 2, 3) 

 
 

1) Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China 
2) National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou, 

Gansu 730070, China 
3) Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou, Gansu 730070, China 

4) Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede 7514 AE, Netherlands 
5) College of Oceanography and Space Informatics, China University of Petroleum, Qingdao 266580, China 

6) School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK 
7) College of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning, Hubei 437100, 

China 
 

*Corresponding author‘s e-mail: 11200854@stu.lzjtu.edu.cn 
 

 

ABSTRACT 
 
 

The presence of common mode error (CME) in the coordinate displacement time series of the 
Global Navigation Satellite System (GNSS) affects geophysical studies using GNSS observations. 
In order to investigate the effect of CME on the time series in GNSS networks in Shanxi, this paper 
proposes an improved superposition filtering method by introducing single-day solution accuracy, 
correlation coefficient, and spherical distance between stations as weights. The filtering effect is 
evaluated using the GNSS data in Shanxi. By using the improved stacking filtering method, the 
root mean square (RMS) values for N, E, U are reduced by approximately 27.8 %, 29.0 %, and 
46.0 %, respectively. And compared to the traditional stacking filter, our improved method can 
achieve better results with CME extraction. We investigate the CME spatial-temporal 
characteristics and its relationship with environmental loading. The results show that the CME 
between stations decreases as the distance between stations increases. In addition, we analyze the 
effect of CME on the noise component and velocity estimates. Results show that removing the 
CME refines the velocity and leads to a significant reduction in the magnitude of noise, indicating 
that the CME is dominated by the flicker noise in Shanxi Province. 
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1. INTRODUCTION 
Since establishing the Crustal Movement 

Observation Network of China (CMONOC), a large 
amount of observational data has been accumulated, 
including coordinate time series data of continuously 
operating reference stations (Li et al., 2012; Hein, 
2020; Zhou et al., 2022). The coordinate time series 
are defined as a set of coordinates of a reference 
station arranged in chronological order. Currently, 
coordinate time series and their products have been 
applied to various fields, such as geodetic, earth 
science, and atmospheric science. In combination with 
other spatial geodetic tools (such as very long baseline 
interferometry and satellite laser ranging), these fields 
can be used to establish and maintain global or 
regional coordinate reference frames and provide 
applications for geodesy (Dmitrieva et al., 2015; 
Altamimi et al., 2016; Jiang et al., 2016, 2018; Ding et 
al., 2019; Qiu et al., 2022). The horizontal and vertical 
linear velocities estimated from coordinate time series 
can be used to study geodynamic phenomena such as 
plate motion and post-ice rebound (Xu et al., 2010; 
Trubienko et al., 2013; Yadav et al., 2013; Bogusz et 

al., 2019; Lu et al., 2022; Yang et al., 2022). 
Combining coordinate time series with altimetric 
satellite and tide gauge station observations can be 
used to monitor global sea level height changes (Ming 
et al., 2017). The coupling between monsoon climate 
and drought can be studied by combining vertical 
displacement data and precipitable water from 
reference stations (Jiang et al., 2017). The seasonal 
signal and geophysical signals from the coordinate 
time series can be used to study the role of large-scale 
atmospheric and hydrological mass loads on the 
elastic Earth and the effects of the mass load on the 
Earth (Barani et al., 2021). 

The GNSS coordinate time series are subjected 
to a variety of errors, for example, Wdowinski et al. 
(1997) found a spatially correlated error in the 
coordinate time series, known as common mode error 
(CME) in their analysis of the Southern California 
GPS network coordinate time series. Many 
researchers have analyzed the sources of CME. Sheng 
et al. (2014) identified terrestrial water loading as the 
main component causing CME in the Sichuan and 
Yunnan regions. Yuan et al. (2013) pointed out that 
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 surface mass loading could explain about 3 mm of the 
vertical annual variation in the CME series of 12 
stations in the Hong Kong region. The presence of 
CME tends to obscure the internal motion 
characteristics of the reference station, which in turn 
affects the accurate and reliable estimation of the 
position and velocity of the reference station (Dong et 
al., 2006; Fernandes et al., 2020). By analyzing the 
time series of approximately 7 years of observations in 
the Canary Islands, Arnoso et al. (2020) showed that 
extracting the CME from the time series of each 
station can effectively improve the signal-to-noise 
ratio to retrieve high-precision geodetic velocities. 
Yuan et al. (2013) also presented this conclusion after 
analyzing the coordinate time series of 12 
continuously operating reference stations in Hong 
Kong. 

In recent years, researchers have proposed 
various methods to extract CME, mainly including 
principal component analysis (Jackson and Yong, 
2004; Abdi et al., 2010; Ji and Herring, 2013; He et 
al., 2015, 2017a, 2019; Zhou et al., 2018; Li et al., 
2020; Tan et al., 2020), Karhunen-Loeve (KLE) 
expansion (Dong et al., 2006), independent 
component analysis (Ming et al., 2017), and stacking 
filter method. Among them, the stacking filtering 
method is one of the effective methods to extract CME 
(Bian et al., 2021). Wdowinski et al. (1997) proposed 
the extraction of CME using the regional 
superimposed filtering method and pointed out that the 
application of this method is premised on the 
assumption that the CME is uniformly distributed in 
the regional network. The limitation of this method is 
that it cannot accurately reflect the spatial response 
among the CME of each station, and the extraction 
effect weakens as the spatial extent increases. 
Nikolaidis (2002) considered the single-day solution 
accuracy of each station when extracting the CME, but 
ignored the correlation between stations. Scripps Orbit 
and Permanent Array Center (SOPAC) divided the 
whole network into several sub-regions in order to 
accurately extract the CME in the Plate Boundary 
Observation (PBO) network, and performs 
superimposed filtering on each sub-region separately. 
However, this method lacks the basis of regional 
division and the CMEs at the junction of sub-regions 
vary greatly (Tian and Shen, 2016). 

The traditional stacking filtering method is 
suitable for observation networks with approximately 
uniform distribution of CME, while ignoring the fact 
that the "commonality" of the CME decreases as the 
spatial extent increases. Therefore, its extraction effect 
is greatly influenced by the number of stations and 
spatial distribution. This research proposes an 
improved superposition filtering method by 
introducing single-day solution accuracy, the 
correlation coefficient and the spherical distance 
between stations as weights. The topography of 
Shanxi is complex, but it can still be clearly divided 
into three main parts: the eastern mountainous region, 

the western mountainous region and the central basin, 
fertilizing it a good testing ground for studying the 
crustal movements. However, some studies have only 
considered the effect of noise terms in the time domain 
when extracting regional geophysical signals, without 
considering CME in the spatial domain (Zhang et al., 
2012; Cheng et al., 2021; Sui et al., 2022). Therefore, 
we use the raw coordinate time series data provided by 
the GNSS data products of China Earthquake 
Administration (ftp.cgps.ac.cn) for eight continuous 
observation reference stations in Shanxi province from 
2016 to 2020. We fit and remove the trend terms and 
periodic terms in the raw coordinate time series data 
to obtain the residual time series, and then use the 
improved stacking filter method proposed in this 
research for CME extraction. we also carry out spatial 
characterization of the extracted CME and study the 
effect of environmental loading on CME. Finally, the 
noise and velocity of the time series before and after 
the elimination of CME is analyzed, providing 
references for future researches on regional 
deformation monitoring in Shanxi Province. 

 
2. DATA AND METHODS 
2.1. DATA  

CMONOC has accumulated a large amount of 
time series. 10 stations were set up in the region of 
Shanxi Province, China, and due to the high level of 
missing data at SXCH and SXCZ, we selected eight 
stations (SXDT, SXGX, SXKL, SXLF, SXLQ, 
SXTY, SXXX, and SXYC) for the study after 
selection (the location of stations is shown in 
Figure 1). 

The  CMONOC time series data used in this 
paper are  from  the  GNSS  Data Product Service 
Center of the China Earthquake Administration 
(data.earthquake.cn), and the processing software used 
for its data interpretation is GAMIT/GLOBK (Zhou et 
al., 2018), developed by Massachusetts Institute of 
Technology (MIT) (Herring et al., 2010), as used in 
the solution for geodetic measurements (Li, 2021). It 
takes into account the effects of various factors such 
as tides, atmospheric loading and nutation, and 
considers earth orientation parameter (EOP) in 
adjustment estimation, enabling highly accurate 
baseline solutions to be obtained (Herring, 2003; 
Herring et al., 2010; Iqbal et al., 2021). As the 
CMONOC time series data were already tidally 
corrected at the GAMIT data processing, in the study 
of the effect of environmental load on the common 
mode error，we chose the non-tidal atmospheric 
loading (NTAL), non-tidal oceanic loading (NTOL) 
and the hydrological loading (HYDL) of the global 
hydrological model LSDM from the Helmholtz 
Centre-Potsdam-German Research Centre for 
Geosciences (GFZ, http://esmdata.gfz-potsdam) to 
work out the effects of environmental loading on the 
CME (Information of environmental loading is in 
Table 1).   
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Fig. 1 Distribution of CMONOC stations in Shanxi. 
 

Table 1 Environmental loading product provided by GFZ. 
 

Organizations  Type Model Spatiotemporal Resolution Time Span 
 
GFZ 

NTAL ECMWF 0.5×0.5/3h 1976-present 
NTOL EMPIOM 0.5×0.5/3h 1976-present 
HYDL LSDM 0.5×0.5/24h 1976-present 

 
2.2. METHODS 

After obtaining the raw time series from these 
GNSS stations, the time series need to be pre-
processed with outlier elimination, step term 
correction, interpolation and least squares fitting to 
remove the trend and period terms (annual and 
semi- annual). In this paper, outlier elimination is 
carried out using the interquartile range method (Bos 
et al., 2013), interpolation of missing values is carried 
out using GMIS software (Liu et al., 2018), and least 
squares fitting is used to remove the periodic and trend 
terms from the original time series to obtain the 
residual time series for subsequent CME extraction. 
The exact flow of this paper can be seen in Figure 2. 

 
2.2.1. FITTING OF THE TIME SERIES 

Before extracting the CME, it is necessary to 
obtain the residual time series of each station by fitting 

the raw time series of each station with least squares 
(Blewitt and Lavallée, 2002; Jiang et al., 2016). The 
fitting model considering the period and trend terms 
is: 
 
𝑣𝑣𝑖𝑖  = 𝑦𝑦(𝑡𝑡𝑖𝑖) − 𝛼𝛼 − 𝑏𝑏 • 𝑡𝑡𝑖𝑖 − 𝑐𝑐 • sin(2𝜋𝜋𝑡𝑡𝑖𝑖) − 𝑑𝑑 • cos(2𝜋𝜋𝑡𝑡𝑖𝑖) − 

− 𝑒𝑒 • 𝑠𝑠𝑠𝑠𝑠𝑠(4𝜋𝜋𝑡𝑡𝑖𝑖) − 𝑓𝑓 • 𝑐𝑐𝑐𝑐𝑠𝑠(4𝜋𝜋𝑡𝑡𝑖𝑖) − 𝐻𝐻(𝑡𝑡𝑖𝑖)             (1) 
 

where, 𝑣𝑣𝑖𝑖  represents the residuals between the 
observed and modelled time series; 𝑦𝑦(𝑡𝑡𝑖𝑖) is the time 
series of station coordinates; 𝑡𝑡𝑖𝑖 represents the solved 
calendar element in years; 𝛼𝛼 is the initial coordinates 
of the station; 𝑏𝑏 is the linear rate; 𝑐𝑐 and 𝑑𝑑 are the 
coefficients of the annual cycle term; 𝑒𝑒 and 𝑓𝑓 are the 
coefficients of the semi-annual cycle term; 𝐻𝐻(𝑡𝑡𝑖𝑖) 
represents the Heaviside step function. A least square 
fit of the raw time series by the above equation yields 
the base data for subsequent extraction of the CME. 
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2.2.2. IMPROVED STACKING FILTERING 

Stacking filtering is a weighted average 
algorithm for small-scale observation networks with 
uniform CME distribution, as a widely used method 
for CME extraction. Wdowinski et al. (1997) first 
proposed the use of stacked filtering to extract the 
CME in time series, which defined the CME value 
𝜀𝜀(𝑘𝑘, 𝑠𝑠) for the 𝑘𝑘𝑡𝑡ℎ station on the 𝑠𝑠𝑡𝑡ℎ day as: 

 

𝜀𝜀(𝑘𝑘, 𝑠𝑠) = ∑ 𝑣𝑣𝑘𝑘,𝑖𝑖
𝑆𝑆
𝑘𝑘=1
𝑆𝑆

                                                      (2) 
 

where, 𝑆𝑆 is the number of stations in the network 
participating in the CME extraction; 𝑣𝑣𝑘𝑘,𝑖𝑖 is the residual 
of the position for the 𝑘𝑘𝑡𝑡ℎ station on the 𝑠𝑠𝑡𝑡ℎ day, when 
𝑆𝑆 = 1, the CME is the residual series of this station. 
On the basis, Nikolaidis (2002) took the single-day 
solution accuracy into account, and defined the CME 
as: 

 

𝜀𝜀(𝑘𝑘, 𝑠𝑠) =
∑

𝑣𝑣𝑘𝑘,𝑖𝑖
𝜎𝜎𝑘𝑘.𝑖𝑖
2

𝑆𝑆
𝑘𝑘=1

∑ 1
𝜎𝜎𝑘𝑘.𝑖𝑖
2

𝑆𝑆
𝑘𝑘=1

                                                      (3) 

 

where, 𝜎𝜎𝑘𝑘.𝑖𝑖
2  is the standard deviation of the 𝑘𝑘𝑡𝑡ℎ station 

on the 𝑠𝑠𝑡𝑡ℎ day. 

The above traditional regional stacking filtering 
methods are applied with the assumption that the CME 
is uniform in a certain region and are suitable for the 
case where the CME of GNSS stations is 
approximately homogeneous. When the spatial extent 
of the GNSS network increases, the commonality of 
stations will decrease, which limits the use of these 
methods. Through experiments, we found that to 
achieve a better extraction effect, different weighting 
factors can be introduced in different directions. 
Therefore, we propose an improved filtering method, 
through preliminary data analysis, we found that the 
common mode error is best extracted by introducing 
the correlation coefficients, distance factors and 
single-day solution accuracy in the E direction, and 
correlation coefficients and distance factors in the N 
and U directions. Our method defines the CME 𝜀𝜀(𝑗𝑗, 𝑠𝑠) 
in the E direction for 𝑠𝑠𝑡𝑡ℎ day of the 𝑗𝑗 station as: 

 

 𝜀𝜀(𝑗𝑗, 𝑠𝑠) =
∑

𝑣𝑣𝑘𝑘,𝑖𝑖 •𝛾𝛾𝑗𝑗,𝑘𝑘
𝜎𝜎𝑘𝑘.𝑖𝑖
2 •𝑑𝑑𝑗𝑗.𝑘𝑘

𝑆𝑆
𝑘𝑘=1

∑
𝛾𝛾𝑗𝑗,𝑘𝑘

𝜎𝜎𝑘𝑘.𝑖𝑖
2 •𝑑𝑑𝑗𝑗.𝑘𝑘

𝑆𝑆
𝑘𝑘=1

                                               (4) 

 

And the CME 𝜀𝜀(𝑗𝑗, 𝑠𝑠) in the N and U directions is 
defined as 

Fig. 2 The flow of this paper. 
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𝜀𝜀(𝑗𝑗, 𝑠𝑠) =

∑
𝑣𝑣𝑘𝑘,𝑖𝑖 •𝛾𝛾𝑗𝑗,𝑘𝑘

𝑑𝑑𝑗𝑗.𝑘𝑘
𝑆𝑆
𝑘𝑘=1

∑
 𝛾𝛾𝑗𝑗,𝑘𝑘
 𝑑𝑑𝑗𝑗.𝑘𝑘

𝑆𝑆
𝑘𝑘=1

                                               (5) 

 

where, 𝑣𝑣𝑘𝑘,𝑖𝑖 is the residual value of the 𝑘𝑘𝑡𝑡ℎ station on 
the 𝑠𝑠𝑡𝑡ℎ day; 𝜎𝜎𝑘𝑘.𝑖𝑖

2  is the standard deviation of the 𝑘𝑘𝑡𝑡ℎ 
station on the 𝑠𝑠𝑡𝑡ℎ day; the spherical distance factor 𝑑𝑑𝑗𝑗.𝑘𝑘 
between station 𝑗𝑗 and station 𝑘𝑘 is defined as: 
 

𝑑𝑑𝑗𝑗,𝑘𝑘 = 𝑅𝑅 × arccos[cos𝛽𝛽1 cos𝛽𝛽2 cos(𝛼𝛼1 − 𝛼𝛼2) +
+sin𝛽𝛽1 sin𝛽𝛽2]                                                   (6) 

 

where, 𝛽𝛽1 is the latitude angle of station 𝑗𝑗, 𝛼𝛼1 is the 
longitude angle; 𝛽𝛽2 is the latitude angle of station 𝑘𝑘, 
𝛼𝛼2 is the longitude angle; 𝑅𝑅 is the radius of the earth, 
taken as 6378.13 km. 𝛾𝛾𝑗𝑗,𝑘𝑘 is the correlation coefficient 
between station 𝑗𝑗 and station 𝑘𝑘, which is calculated as 
follows: 
 

𝛾𝛾𝑗𝑗,𝑘𝑘 =
∑ �𝜈𝜈𝑗𝑗,𝑖𝑖−𝜈𝜈𝚥𝚥�⃐����∙�𝜈𝜈𝑘𝑘,𝑖𝑖−𝜈𝜈𝑘𝑘�⃐�����
𝑛𝑛
𝑖𝑖=1

�∑ �𝜈𝜈𝑗𝑗,𝑖𝑖−𝜈𝜈𝚥𝚥�⃐����
2𝑛𝑛

𝑖𝑖=1 ∙∑ �𝜈𝜈𝑘𝑘,𝑖𝑖−𝜈𝜈𝑘𝑘�⃐�����
2𝑛𝑛

𝑖𝑖=1

                            (7) 

 
2.2.3. SPECTRAL INDEX ESTIMATION 

The noise of many phenomena in nature has 
a power-law property, meaning that the power spectral 
density of the noise is related to the frequency of the 
noise in a power series (Bos et al., 2013), that is: 

 

𝑃𝑃(𝑓𝑓) = 𝑃𝑃0(𝑓𝑓
𝑓𝑓0

)𝛼𝛼              (4) 
 

where, 𝑃𝑃(𝑓𝑓) means the power spectral density, f stands 
for the frequency of the noise, 𝑓𝑓0 is the frequency at 
normality in the time series, and α means the spectral 
index. For noise, the different spectral indices 
represent different noise characteristics. The spectral 
indices of most noise in nature are concentrated in the 
range of [-3, 1], where white noise corresponds to 
a spectral index of 𝛼𝛼 = 1, flicker noise of 𝛼𝛼 = −1, and 
Random Walk Noise (RWN) of 𝛼𝛼 = −2. For noise 
with a spectral index between [-1,0], it can be 
described by the white noise (WN) + flicker noise 
(FN) model (Langbein, 2004, 2012; Montillet et al., 
2012), from which it can be seen that obtaining the 
spectral index is the key to the determination of 
the noise model. 

 
2.2.4. BAYESIAN INFORMATION CRITERIA (BIC) 

ANALYSIS 
The spectral index estimation method can only 

roughly estimate the optimal noise model based on the 
interval in which the spectral index is located. In order 
to determine the optimal noise model more accurately, 
this paper uses Hector software (Bos et al., 2013), 
which is faster in data processing in terms of noise 
analysis. The following five combinations of noise 
models provided by Hector are used: (i) White noise 
(WN), (ii) Power-law noise (PL) + White noise (WN), 
(iii) Flicker noise (FN) + White noise (WN), (iv) 
Generalised Gaussian Markov noise (GGM) + White 

noise (WN) and (v) Random walk noise (RWN) + 
Flicker noise (FN) + White noise (WN). This software 
uses the Bayesian information criterion to select the 
best model, considers the log-likelihood as a starting 
point and adds parameters to increase the penalty to 
avoid overfitting. The log-likelihood function (Bos et 
al., 2013) is defined as: 

 

𝑙𝑙𝑠𝑠(𝐿𝐿) = −0.5[𝑙𝑙𝑠𝑠(𝑑𝑑𝑒𝑒𝑡𝑡𝑑𝑑) + 𝑣𝑣�𝑇𝑇𝑑𝑑−1𝑣𝑣� + 𝑁𝑁 𝑙𝑙𝑠𝑠( 2𝜋𝜋)] 
 (5) 

 
where, 𝑑𝑑𝑒𝑒𝑡𝑡𝑑𝑑 represents the determinant of covariance 
matrix 𝑑𝑑, 𝑁𝑁 is the length of the time series and 𝑣𝑣� is the 
residuals time series after trend fitting. The Bayesian 
Information Criterion (BIC) is defined as: 

 

𝐵𝐵𝐵𝐵𝑑𝑑 = 𝑘𝑘 𝑙𝑙𝑠𝑠(𝑁𝑁) + 2 𝑙𝑙𝑠𝑠( 𝐿𝐿)                (6) 
 

The number of parameters k is the sum of 
parameters in the design matrix and the noise models 
and the variance of the driving white noise process. 
For instance, estimating a linear trend using the power-
law + white noise model consists of five parameters: 
nominal bias, linear trend, distribution of variances 
between power-law and white noise, spectral index of 
the power-law and the variance of the driving white 
noise process (𝑘𝑘 = 2 + 2 + 1 = 5). The smaller the 
value of BIC means the chosen noise model is better, 
and vice versa. 

 
3. RESULTS 
3.1. TIME SERIES OF GNSS STATION 

COORDINATES RESIDUALS 
In this study, the CMONOC time series data used 

are from the GNSS Data Product Service Center of the 
China Earthquake Administration. The residual time 
series of each station can be obtained by fitting the 
time series using Equation (1) in Section 2.2.1. Taking 
the station SXYC as an example, the raw time series 
and the residual time series of this station are given in 
Figure 3 (other stations are in Figure S2-S15), it can 
be seen that there are obvious periodic and trend terms 
in the raw time series, which are effectively eliminated 
after the least squares fitting. From the residual time 
series, we can see that the amplitudes of N and E are 
small, within ±5 mm, while the amplitude of U is 
larger and can reach ±20 mm, this multiplicative 
relationship is consistent with White et al. (2022). 
Tregoning and Watson (2009) explain that the 
horizontal deformation is smaller because the station 
is subject to multiple loading in the horizontal 
direction from the surrounding area, resulting in the 
station being pulled in different directions at the same 
time. 

 
3.2. EXTRACTION OF CME 

There is a significant regional common 
component of CME in the continuous GPS positions 
based on the global reference frame, which cannot be 
removed in the stage of GPS raw data processing due 
to its unknown origin so it is usually eliminated in the 
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Fig. 3 Raw and residual time series of SXYC.  
 

Fig. 4 Residual time series before and after removing CME of SXYC. The dashed line 
indicates the approximate range of the displacement. 

  
 

post-processing stage using stacking filtering. We 
have modified the traditional regional stacking filter 
method of calculating CME by adding correlation 
coefficients and distance factors as weights to 
participate in the calculation of single station CME 
(Section 2.2.2). Figure 4 shows the residual time series 
of the station before and after removing the CME. 

It can be seen that after removing the CME, the 
time series in the N, E and U directions all tend to be 
smooth. Although there are slight fluctuations, the 
overall magnitude of the fluctuations is reduced, by 
accounting for the mean of the amount of change, we 
found that 2mm reduction in amplitude in the N and E 
and 5mm in the U direction, indicating that the CME 
can be effectively removed by our improved stacking 
filter, which in turn enhances the robustness of the 
coordinate time series. We use the inter-station 
correlation coefficient and RMS to evaluate the 
effectiveness of extracting CME. The inter-station 
correlation coefficient can describe the correlation 
between the residual time series times of each station, 

while the change in RMS can be used to represent the 
effect of our CME extraction (Li et al., 2018; Percival 
et al., 2022). Figure 5 shows the RMS statistics of the 
residual time series before and after CME removal. 

As can be seen, before removing the CME, the 
mean RMS values of the coordinate time series for the 
N, E and U are 1.71 mm, 1.74 mm and 6.32 mm, 
respectively, and after the removal of the CME which 
are reduced to 1.22 mm, 1.21 mm and 3.42 mm, 
respectively. The average improvements of RMS in 
the N, E and U directions were 27.8 %, 29.0 %, and 
46.0 %. We use the correlation coefficient to 
characterize the degree of similarity between the time 
series of different stations. The range of the correlation 
coefficient is between [0,1], with 0 representing 
independence and larger values indicating stronger 
correlation. The CME is a multiple spatial and 
temporal correlation error set that exists at most 
stations in the region. After removing the common 
mode errors, the correlation between the benchmark 
stations is weakened and the correlation coefficient is 
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Fig. 5 RMS changes before and after removing the CME in the N, E and U. 
 

Fig. 6 Interstation correlation coefficients before and after removal of CME from the residual time. 

reduced accordingly (Gruszczynski et al., 2016; Zhou 
et al., 2020, 2022). Figure 6 shows the interstation 
correlation coefficients before and after removal of 
CME from the residual time series for the north (left 
panel), east (middle panel) and up (right panel) 
components, where the lower triangle indicates the 
correlation coefficient between stations before CME 
removal and the upper triangle indicates the 
correlation coefficient between stations after CME 
removal. As we can see, after removing the CME, the 
correlation coefficients present obvious reduction, 
demonstrating that our improved CME extraction 
method can effectively remove the "similar parts" 
between stations. 

Meanwhile, in order to verify whether our 
proposed improved method has a better CME 
extraction effect compared with the traditional 
stacking filter, we processed the data by using the two 

methods separately, and the RMS comparison of the 
residual time series of each station after CME 
extraction using the two methods is given in Table 2. 

Meanwhile, in order to verify whether our 
proposed improved method has a better CME 
extraction effect compared with the traditional 
stacking filter, we processed the data by using the two 
methods separately, and the RMS comparison of the 
residual time series of each station after CME 
extraction using the two methods is given in Table 2. 

 
4. DISCUSSION 
4.1. THE SPATIAL AND TEMPORAL DISTRIBUTION 

CHARACTERISTICS OF CME 
CME is a spatial correlation error, thus the spatial 

correlation between stations is intrinsically linked to 
the spatial distribution of CME. As shown in Figure 5, 
the correlation coefficient between stations is large 
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Table 2 Comparison of RMS after CME extraction using two different methods. 
 

Station N E U 
Traditional Improved Traditional Improved Traditional Improved 

SXDT 1.52  1.39  2.05  1.26  5.67  4.79  
SXGX 1.55  1.04  1.91  0.96  6.64  3.55  
SXKL 1.15  1.04  1.26  1.15  4.58  3.96  
SXLF 1.54  1.11  1.24  1.09  4.25  3.92  
SXLQ 1.64  1.48  2.18  1.78  4.11  1.84  
SXTY 1.52  1.30  0.99  1.28  4.92  4.07  
SXXX 1.57  1.04  1.11  1.11  4.99  2.85  
SXYC 1.87  1.25  1.31  1.03  3.47  3.37  

 
Table 3 Correlation coefficient of SXTY with stations at different distances. 
 

Station Distance 
(km) 

Correlation coefficient 
N E U 

SXTY-SXDT   280.3  0.665  0.559  0.440 
SXTY-BJFS   367.4  0.447  0.318  0.163 
SXTY-WUHN   796.4  0.114  0.012  0.066 
SXTY-JFNG   800.8  0.014  0.118  0.000 
SXTY-TWTF 1577.6  0.008  0.000  0.007 
SXTY-AIRA 1597.2  0.000  0.000  0.015 
SXTY-GMSD 1877.5  0.000 -0.172 -0.023 
SXTY-SMST 2060.2  -0.003  0.000  0.012 
SXTY-URUM 2376.8   0.000 -0.104 -0.003 
SXTY-STK2 2385.3  -0.003   0.011  0.035  
SXTY-NVSK 2885.2  -0.220 -0.283  0.286  
SXTY-CCJ2 2994.1  -0.185 -0.014 -0.130  

 
before the CME is removed, while the correlation 
between stations is significantly reduced after the 
CME is removed. Therefore, the correlation 
coefficient can be used to characterize the degree of 
correlation between the stations. 

While the spatial correlation between the residual 
coordinate time series of the stations is caused by the 
environmental factors of the reference stations and the 
data processing strategy, this correlation gradually 
decreases as the distance between the reference 
stations increases. In order to analyses the distribution 
characteristics of CME in a large regional range, we 
take SXTY station as a reference and determine 
correlation coefficients from within 400 km to within 
3,000 km. The obtained distances and correlation 
coefficients (Table 3) show that the overall trend of the 
correlation coefficients in the N, E, and U directions 
tend to decrease with increasing distance between 
stations, while the mean value is gradually 
approaching zero when the spatial scale reaches 
1,600 km. This is consistent with the conclusion from 
Gong et al. (2016). Interestingly, we found that not all 
stations follow the inversely proportional rule between 
the correlation coefficient and distance, and there are 
cases where the correlation coefficient is close to 0.3 
when the stations are far away. This is similar to the 
finding of Xie et al. (2014), which revealed that a more 
significant correlation still existed when the distance 
between some stations exceeded 5,000 km. 

Here we draw out the spatial distribution pattern 
of CME based on the above analysis and previous 
studies. In the small-scale regional, the correlation 
between the stations is strong, and the CME in the 
coordinate time series is approximately uniformly 
distributed, as the scale increases and the distance 
between stations increases, the correlation coefficient 
gradually decreases, and the CME no longer shows the 
characteristics of uniform distribution, and its spatial 
distribution is related to the magnitude of the 
correlation between stations (Gong et al., 2016; Wang 
et al., 2018). 

In addition to the spatial distribution pattern, we 
also studied the temporal characteristics of the CME. 
Taking the SXYC station as an example, we extracted 
the CME time series of the station, as shown in 
Figure 7. 

We find that the magnitude of change in the 
CME time series is about 3 mm in the N and E 
directions and about 13 mm in the U direction. The 
CME time series plots of the remaining stations were 
similar to those of SXYC station. In order to 
investigate whether the CME time series are periodic 
and given that the Fast Fourier Transform is very 
sensitive to missing data, we chose to use serial 
correlation to further analyses the periodicity, which is 
more accurate and less sensitive to missing data. The 
extremes in Figure 8 are periods, and we can see that 
there is no obvious periodicity in CME series in the N, 
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Fig. 7 CME time series of SXYC. 
 

Fig. 8 Autocorrelation function of the CME time series. 
 
E and U directions. We consider that the annual period 
term in the time series was deducted thoroughly when 
fitting the raw time series in Section 3.1, resulting in 
no obvious periodicity in the common part of the 
residual time series of each station, and Lei et al. 
(2022) used the independent component method to 
extract the CME of Xinjiang, and performed ensemble 
empirical modal decomposition and fast Fourier 
transform on the CME time series to find that there 
were annual periodic terms in the CME that were not 
completely removed in the fit of each station. 

 
4.2. POTENTIAL GEOPHYSICAL INTERPRETATION 

OF THE CME 
In previous studies, many scholars have 

demonstrated that CME may be related to geophysical 
factors  such as loading including atmospheric 
pressure loading, hydrological loading, and non-tidal 
ocean  loading (Jiang et al., 2013; Bian et al., 2021; 
Ma et al., 2021). There are three main aspects of 
environmentally induced surface deformation: 
(1) changes in atmospheric loading due to a drop in 
atmospheric pressure; (2) changes in non-tidal ocean 
loading due to changes in atmospheric pressure and 
wind; and (3) increases in land hydrological loading 
due to heavy rainfall (Yao et al., 2020; He et al., 

2017b). The environmental loading data provided by 
GFZ, including NTAL, NTOL and HYDL, were 
chosen. Figure 9 shows the time series of the total 
environmental loading (average all load series 
displacements into the daily results) in the U direction 
at SXYC, from the figure we can see that the 
amplitude of the environmental loading time series in 
the U direction is 15 mm. 

If the environmental loading series has a similar 
trend and a degree of correlation with the CME time 
series, then the amplitude of the CME should decrease 
after the environmental loading correction. Then the 
environmental loadings are considered to be one of 
the potential sources of CME. Table 4 shows the 
correlation coefficient between environmental loading 
and CME. 

In general, if the absolute value of the correlation 
coefficient is between 0 and 0.1, it is a negligible 
correlation, between 0.1 and 0.39 is a weak correlation 
and between 0.4 and 0.6 means a moderate correlation 
(Schober et al., 2018). The correlation coefficients in 
the N and E directions are concentrated but the 
correlation can be ignored, with average correlation 
coefficients of -0.002 and 0.013 respectively; in the U 
direction, there is some correlation, with a maximum 
correlation coefficient of 0.331 and an average 
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Fig. 9 Loading time series for SXYC. 
 

Table 4 Correlation coefficient between environmental loading and CME. 
 

Station N E U 
SXDT 0.0038 0.0074 0.2445 
SXGX -0.0082 0.0187 0.2312 
SXKL 0.0026 0.0129 0.3308 
SXLF -0.0074 0.0227 0.2974 
SXLQ -0.0042 0.0035 0.3141 
SXTY -0.0039 0.0133 0.3276 
SXXX 0.0059 0.0185 0.2288 
SXYC -0.0056 0.0119 0.3175 

 
correlation coefficient of 0.278, which is generally 
more evenly distributed. The correlation analysis 
between environmental loading time series and CME 
time series indicates that environmental loading has 
some similarity with the trend of CME series in the 
U- direction, and environmental load is likely to be 
one of the causes of CME and possibly be the cause of 
the vertical deformation in Shanxi. This estimate is 
consistent with the results obtained by combining 
GRACE and GPS to compare vertical surface 
deformation in Shanxi Province by Jiang et al. (2013). 
We corrected the time series for environmental 
loading and Figure 10 shows the CME time series 
before (red) and after (blue) correction for SXYC 
station. It can be seen that the amplitude of CME 
before and after the correction in the N and E 
directions is not obvious, but the amplitude of the 
CME period term is reduced after the environmental 
load correction in the U direction, from ±15 mm (blue) 
to ±13 mm (red), which is consistent with the results 
of the study in the Hong Kong, by analyzing time 
series of 12 stations, suggesting that environmental 

loading can explain about 3 mm of the vertical 
variation in the CME series (Yuan et al., 2013). 

In this paper, we are considering NTAL, NTOL 
and HYDL together to study the effect of 
environmental loadings on CME, while the effect of 
different load models on CME in Shanxi can be 
studied separately in subsequent studies. Previous 
studies using CME from GNSS data in northwest of 
Yunnan, and have shown that the combination of 
HYDL, NTAL and NTOL time series provided by 
GFZ has better agreement with CME from GPS 
vertical time series compared to HYDL (Zhang et al., 
2020) and non-tidal ocean load vertical deformation is 
greater than atmospheric load deformation (Yao et al., 
2020). On the other hand, hydrological models are also 
limited by their poor representation of groundwater 
storage (Riddell et al., 2020). Since we did not have 
access to groundwater data for this area, we did not 
consider groundwater, although it is known that 
extraction and recharge signals can contribute 
significantly to vertical land movement signals, e.g., 
in the Perth Basin (Featherstone et al., 2015). 
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Fig. 10 The CME time series before (red) and after (blue) loading correction for SXYC. 
 

Fig. 11 Velocity field after the CME correction. The left is the horizontal direction and the 
right is the vertical direction. 

 
Hydrological loading could be studied accordingly in 
subsequent studies in conjunction with gravity 
recovery and climate experiment (GRACE) and 
interferometric synthetic aperture radar (InSAR) 
(Tang et al., 2018; Li et al., 2022). 

 
4.3. EFFECTS OF CME ON GPS TIME SERIES 

To further explore the effect of CME on GPS 
time series, we investigated the effect of CME on the 
velocity estimation and the noise component 

separately. Figure 11 shows the horizontal and vertical 
velocity fields of the stations after the CME correction. 
The Shanxi region in general shows a near-SE 
directional motion, with an average rate of 33 mm/a in 
the corrected horizontal direction, and in the vertical 
direction, the maximum uplift is SXKL, which reaches 
3.5 mm/a, this is consistent with previous studies in 
this area (Cheng et al., 2021). 

The velocities in the N direction at all stations are 
in the range of 9-12 mm/a, and the velocities in the E 
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Fig. 12 Change in velocity uncertainty before and after CME removal. 
 

Table 5 Spectral indices of the stations in the N, E and U. 
 

Station N E U 
SXDT -1.33 -1.11 -0.83 
SXGX -1.12 -1.39 -0.62 
SXKL -0.96 -1.06 -0.75 
SXLF -1.37 -1.13 -0.82 
SXLQ -1.18 -1.29 -0.71 
SXTY -1.25 -1.20 -0.68 
SXXX -1.16 -1.32 -0.63 
SXYC -1.37 -1.17 -0.58 

 
direction are in the range of 31-34 mm/a. The 
difference between stations is less than 3 mm/a, 
indicating a relatively uniform spatial distribution of 
horizontal velocities. Figure 12 shows the change of 
velocity uncertainty before and after filtering. Before 
CME correction, the mean velocity uncertainties in the 
N, E and U directions were 0.25 mm/a, 0.18 mm/a and 
0.74 mm/a, respectively. After CME correction, they 
were reduced by 46.28 %, 21.40 % and 43.65 % 
respectively. This proves that the removal of CME can 
reduce the uncertainty of the station time series and 
thus improve the reliability of the GNSS coordinates. 

Meanwhile, we conducted a noise analysis of the 
time series. Using the spectral index estimation 
method, the spectral index of the coordinate 
directional components of each station can be 
obtained, thus roughly determining the type of noise. 
Williams et al. (2004) analyzed 414 sites. Using 
spectral index analysis of power law noise models for 
SOPAC global solutions, they summarized that 
96.6 % of them could be described by white noise plus 
flicker noise. In this section, we use the spectral index 
analysis in section 2.2.3 to perform noise analysis on 
the Shanxi Province data, Table 5 shows the results of 

the spectral indices for each station on the three 
components N, E and U. It can be seen that the spectral 
indices on the N, E and U components are all between 
[-2,0], indicating that the components contain not only 
white noise but also contains coloured noise. 

From the results in Table 5, we can then 
approximately determine that the data studied in this 
paper is dominated by white noise and scintillation 
noise. For further verification and obtain the optimal 
noise model, we use five noise models of Hector 
software to solve the data of the three directional 
components of the eight stations, and the optimal noise 
model for the stations in Shanxi Province was obtained 
by using the BIC analysis method based on maximum 
likelihood estimation, the results of the optimal noise 
models in the N, E and U directions for all stations as 
a percentage (%) are shown in Table 6. From the 
results of the BIC analysis, it can be learned that for 
most of the stations in Shanxi, flicker noise (FN) + 
white noise (WN) is the optimal noise model, and for 
a small number of stations, power-law noise (PL) + 
white noise (WN) is a better noise model. This is 
consistent with previous studies that white noise plus 
flicker noise is generally preferable to white noise plus 
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Table 6 Proportion of the optimal noise model of N, E and U. 
 

Dir 
PL+WN FN+WN GGM+WN 

Before After Before After Before After 
N 20 % 20 % 80 % 70 % 0 % 10 % 
E 30 % 20 % 70 % 80 % 0 % 0 % 
U 30 % 30 % 70 % 60 % 0 % 0 % 

 
Table 7 Change in noise component before and after removal of CME. 
 

Station       
Dir 

WN FN RWN 
Before After Percentage* Before After Percentage* Before After Percentage* 

(mm) (mm) (%) (mm) (mm) (%) (mm) (mm) (%) 

SXDT 
N 0.68  0.56  +17.65  3.47  2.03  +41.50  0.00  0.00  0.00  
E 0.85  0.74  +12.94  2.41  1.73  +28.22  4.51  3.82  +15.30  
U 2.70  1.65  +38.89  15.99  6.57  +58.91  3.23  1.91  +40.87  

SXGX 
N 0.99  0.62  +37.37  2.66  1.80  +32.33  1.43  1.64  -14.69  
E 0.91  0.80  +12.09  3.09  2.08  +32.69  2.41  2.54  -5.39  
U 3.23  2.48  +23.22  17.65  8.07  +54.28  0.00  0.00  0.00  

SXKL 
N 0.62  0.44  +29.03  3.88  2.30  +40.72  0.00  0.00  0.00  
E 0.70  0.47  +32.86  3.00  2.02  +32.67  1.31  1.50  -14.50  
U 2.65  1.76  +33.58  15.67  8.01  +48.88  0.00  0.00  0.00  

SXLF 
N 0.78  0.52  +33.33  2.87  1.90  +33.80  0.00  0.00  0.00  
E 0.86  0.50  +41.86  2.78  1.74  +37.41  1.97  2.05  -4.06  
U 3.09  2.26  +26.86  15.35  6.36  +58.57  0.00  0.00  0.00  

SXLQ 
N 0.90  0.66  +26.67  3.23  2.04  +36.84  0.00  0.00  0.00  
E 0.88  0.67  +23.86  2.69  1.46  +45.72  0.00  2.42  0.00  
U 2.99  1.75  +41.47  16.73  9.02  +46.08  0.00  4.37  0.00  

SXTY 
N 0.73  0.45  +38.36  4.91  2.74  +44.20  2.32  1.20  +48.28  
E 0.87  0.64  +26.44  5.27  3.77  +28.46  0.00  0.00  0.00  
U 2.80  1.55  +44.64  16.19  8.67  +46.45  0.00  0.00  0.00  

SXXX 
N 0.81  0.56  +30.86  3.19  1.26  +60.50  2.63  1.76  +33.08  
E 0.94  0.68  +27.66  2.86  1.74  +39.16  2.79  2.93  -5.02  
U 3.45  1.95  +43.48  14.71  6.97  +52.62  0.00  0.00  0.00  

SXYC 
N 0.75  0.55  +26.67  3.04  1.74  +42.76  0.00  0.00  0.00  
E 0.79  0.53  +32.91  2.92  1.93  +33.90  1.14  1.11  +2.63  
U 2.98  2.24  +24.83  15.79  6.54  +58.58  0.00  0.00  0.00  

*: '+' indicates RMS decrease after filtering; '-' indicates RMS increase after filtering. 
 

random walk noise or WN model in GPS position time 
series (Zhang et al., 1997; Mao et al., 1999; Williams 
et al., 2004). 

To investigate the effect of CME on the time 
series noise analysis in Shanxi Province, the time 
series noise analysis after removing the CME was 
re- analyzed using BIC analysis and compared with the 
noise analysis results before removing the CME. 
The comparative results of the BIC numerical analysis 
are shown in Table 6. The results of each noise 
component in N, E and U directions before and after 
removing the CME are shown in Table 7. 

It can be seen that the noise levels have been 
significantly reduced after filtering, with WN, FN and 
RWN being reduced by 30.31 %, 43.14 % and 4.02 % 
respectively. It is inferred that the flicker noise 
dominates the CME component in Shanxi. In other 
words, the CME in Shanxi has a mixture of WN and 

FN. This echoes Li's research, in which he indicates 
that a significant amount of the colored noise in the 
unfiltered time series is attributed to the common 
physical basis with some spatial extent, such as 
common mode signature (Li et al., 2018). 

 
5. CONCLUSION 

This study used the raw coordinate time series 
data of eight continuously observed reference stations 
in Shanxi Province from 2016-2020. The trend term 
and period terms (annual and semi-annual) was 
removed to obtain the residual time series, then we 
extracted the CME using our proposed improved 
stacking filtering method and verified its extraction 
effect, and finally performed the analysis on the time 
series before and after removing the CME to obtain the 
following observation. 
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 This study improved the stacking filter method 
by considering the correlation coefficient and distance 
factor (spherical distance between stations), and 
compared with the traditional method. Our results 
showed that the improved stacking filter method could 
extract CME more accurately. 

Environmental loading may be one of the main 
sources of CME in the vertical direction. CME 
correction of the time series can make the estimated 
velocities and their uncertainties more accurate, which 
is important for the study of tectonic motion. 

The noise analysis of the time series was carried 
out using the spectral index estimation and BIC 
analysis, and the noise models of the coordinate time 
series of the stations were found to be dominated by 
flicker noise (FN) + white noise (WN). It is also found 
that while power-law noise (PL) + white noise (WN), 
and random walk noise (RWN) also existed in some 
stations. The optimal noise model for Shanxi is FN + 
WN. After removing the CME, the magnitude of each 
noise component drops significantly, with the largest 
dropping of FN by 56.76 %, indicating that the CME 
contains a large amount of noise, especially flicker 
noise, which confirmed the importance of removing 
the CME. 
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