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ABSTRACT 
 

 

The Global Navigation Satellite System (GNSS) can provide the daily position time series for the 
geodesy and geophysical studies. However, due to various unpredictable factors, such as receiver 

failure or bad observation conditions, missing data inevitably exist in GNSS position time series. 

Most traditional time series analysis methods require the time series should be completed. 
Therefore, filling the missing data is a valuable step before analyzing the GNSS time series. In this 

study, a new method named Iteration Empirical Mode Decomposition (Iteration EMD) is proposed 

to fill the missing data in GNSS position time series. The simulation experiments are performed 
by randomly removing different missing percentages of the synthetic time series, with the added 

different types noise. The results show that Iteration EMD approach performs well regardless of 

high  or  low missing percentage. When the missing percentage increases from 5 % to 30 % with 
a step of 5 %, all the Root Mean Square Errors (RMSE) and Mean Absolute Errors (MAE) of 

Iteration EMD are smaller than Interpolation EMD. The relative improvements at different 

percentages of Iteration EMD relative to Interpolation EMD are significant, especially for the high 

missing percentage. The real GNSS position time series of eight stations were selected to further 

evaluate the performance of Iteration EMD with an average missing percentage 8.15 %. Principal 

Component Analysis (PCA) was performed on the filled time series, which is used to assess the 
interpolation performance of Iteration EMD and Interpolation EMD. The results show that 

Iteration EMD can preserve variance 75.9 % with the first three Principal Components (PC), more 

than 66.5% of interpolation EMD. Therefore, we can conclude that Iteration EMD is an efficient 
interpolation method for GNSS position time series, which can make full use of available 

information in existing time series to fill the missing data. 
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1. INTRODUCTION 

With the continuous development of GNSS, 

high-precision GNSS position time series can provide 

valuable basic data for the geodesy and geodynamics 

studies. GNSS observations have been widely used in 

different fields, such as region crustal deformation, 

global plate tectonic movement, post-glacial 

rebounded and other geophysical phenomena (Wang 

and Gu, 2013; Uzel et al., 2013; Chen et al., 2013; 

Jiang et al., 2018). In all these applications, certain 

geophysical signal components can be extracted from 

GNSS position time series using the parametric or 

non-parametric model. However, most of these 

modeling methods such as Wavelet Transform (Miller 

and Shirzaei, 2015), Independent Component 

Analysis (ICA) (Feng et al., 2021) and PCA (He et al., 

2015), require the GNSS position time series should 

be completed without missing data. Unfortunately, 

due to a range of reasons, such as equipment changes 

or failures, bad observation conditions and gross errors 

detection, missing data are very common in GNSS 

position time series (Xu, 2016). Therefore, it is 

important to find a suitable approach to process the 

GNSS position time series with missing data. 

There exist some studies for processing the 

incomplete GNSS position time series, which can be 

divided into three categories: 1) Filling the missing 

data before analyzing the incomplete time series; 

2) Directly using an improved time series analysis 

method for processing the incomplete time series 

without interpolating the missing data (Wang et al., 

2016); 3) Filling the data gaps iteratively with zero or 

mean value as the initial values (Kondrashov and Ghil, 

2006). Utilizing some interpolation approaches to fill 

the missing data is normally more considered (Zhang 

and Long, 2021), which is an important pre-processing 

step before analyzing the time series. There exist some 

conventional interpolation methods, such as nearest 

neighborhood interpolation, linear interpolation and 

cubic spline interpolation (Goudarzi et al., 2013). 

However, the performance of filling data gaps using 

these interpolation approaches is basically depend on 

the lengths of time series and gaps and availability of 

neighboring data (Wang et al., 2021). Recently, some 
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 new interpolation methods are adopted to fill the 

missing data, which include Expectation 

Maximization (EM) (Nguyen, 2021), regularized EM 

(RegEM) (Schneider, 2001), Kriged Kalman Filter (Li 

et al., 2018) and missForest (Emmanuel et al., 2021; 

Zhang et al., 2021). The performance of EM, RegEM 

and Kriged Kalman Filter usually depends on the 

tuning parameters or specification of a parametric 

model and makes assumptions about the data 

distribution, such as uniform or normal distribution 

(Zhang et al., 2021). MissForest is computationally 

expensive to implement in high dimensions (Tang and 

Ishwarm, 2017).  

Many researchers focus on processing the 

incomplete time series without interpolation, 

probabilistic PCA (pPCA) (Gruszczynski et al., 2018) 

and Variational Bayesian PCA (VBPCA) (Li et al., 

2020) are used to estimate and extract Common Mode 

Error (CME) from the incomplete multiple-station 

GNSS time series. Shen et al. (2015) developed an 

improved Singular Spectrum Analysis (SSA) for 

processing the incomplete time series and obtained 

a satisfactory performance. Choi et al. (2018) 

considered an improvement of Variational Mode 

Decomposition (VMD) in the presence of missing 

data. Though the above-mentioned methods perform 

well for analyzing the incomplete time series, there 

still exist the problem that some significant 

information may be missed (Wang et al., 2016). PCA 

is applicable to large networks, not for a single station 

(Shen et al., 2014). SSA has a phase shift phenomenon 

and is easily affected by the problem of window length 

and reconstruction order parameter (Vautard and 

Yiou, 1992). VMD presets the number of mode 

functions and quadratic penalty factors based on 

experience, so it is difficult to achieve better 

decomposition effect for the measured GNSS time 

series (Chen et al., 2021). 

Empirical Mode Decomposition (EMD) is 

suitable to process the nonlinear and non-stationary 

time series for extracting signals (Huang et al., 1998). 

The traditional EMD cannot directly process the 

incomplete time series. Self-consistency is an 

effective method for filling the missing data, which 

combined with EMD to analyze the incomplete time 

series produces stable decomposition results (Kim and 

Oh, 2016; Tarpey and Flury, 1996). As a non-

parameter decomposition method, EMD can 

decompose the original time series into a range of 

Intrinsic Mode Functions (IMF) based on the time 

domain characteristics of original time series (Ma et 

al., 2022). Each IMF represents an independent 

component (Nelsen et al., 2018), which includes 

various signals, such as seasonal signals and trend 

term (Qiu et al., 2021). EMD, a spectrum analysis 

method, is more in line with the characteristics of 

signal for low frequency and noise for high frequency. 

Considering that missing data can be interpolated with 

iteration methods, we proposed a new approach to fill 

the missing data, which we have named Iteration EMD 

in this contribution. In addition, the performance of 

this method for interpolating the missing data is 

assessed with the comparison to Interpolation EMD, 

which performs the traditional EMD method after 

filling the missing data using the cubic spline (Dyer, 

2001). 

The remaining sections of this paper are 

organized as follows, the details of Iteration EMD are 

presented in Section 2. Simulation experiments of 

missing data interpolation efficiency are presented in 

Section 3. The Iteration EMD for filling the missing 

data in real position time series are presented in 

Section 4. The conclusions are summarized in Section 

5. 

 
2. METHODOLOGY 

2.1. TRADITIONAL EMPIRICAL MODE 

DECOMPOSITION 

EMD is an adaptive time-frequency analysis 

method, which is mainly used for nonlinear and non-

stationary time series. The basic principle of EMD is 

to decompose the time series into several IMFs and 

a residual sequence. An IMF should satisfy two 

conditions: (1) For the whole data set, the number of 

extrema and the number of zero crossings must either 

equal or differ at most by one; (2) At any point, the 

mean value of the envelope defined by the local 

maxima and the envelope defined by the local minima 

is zero. Essentially, the solution process of EMD is 

a “sieve” process, from which the IMFs with 

frequencies from high to low are obtained, and finally 

a monotonic residual sequence that can’t be 

decomposed remains. The detailed procedures of 

EMD are presented as follows: 

1. Find out all the local maxima points and local 

minima points of the original time series ( )x t and 

use the cubic spline interpolation to obtain the 

upper envelopes 
max ( )t  and lower envelopes 

min ( )v t . The mean series 
1( )m t  is generated by 

averaging the upper envelopes and lower 

envelopes. 

max min

1

( ) ( )
( )=

2

t v t
m t

 +
                                          (1) 

2. The difference between the original time series 

and 
1( )m t  can be expressed: 

1 1( ) ( ) ( )h t x t m t= −                                                   (2) 

3. Judging whether 
1( )h t  satisfies the two basic 

conditions of IMF. If it is satisfied, set 
1( )h t  as 

the first IMF component of the original time 

series. If not, repeat steps 1 and 2, until it satisfies 

the two conditions of IMF. The first IMF 

component is denoted as 
1( )c t . However, in 

actual time series decomposition, it is difficult to 

strictly satisfy the condition that the average of 

upper envelope and lower envelope equals zero 

for the IMF components. The threshold 
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 expression for IMF component to stop 

filtering is as follows: 

2

1

2
1 1

( ) ( )

( )

N
k k

t k

h t h t
SD

h t

−

= −

 −
=  

  
                              (3) 

where 
1( )kh t−

 and ( )kh t  are the two adjacent 

data sequences in the screening process of each 

IMF component, N  denotes the length of time 

series, SD is the threshold for stopping 

filtering of each IMF component, which 

usually set 0.2 ~ 0.3 (Huang et al., 1998). 

4. 
1( )c t  is separated from the original time series 

to generate a new series. 
 

1 1( ) ( ) ( )r t x t c t= −                                                   (4) 

5. Treat 
1( )r t  as a new time series and repeat the 

above steps to obtain n  IMF components and 

a residual sequence only when the residual 

sequence satisfies the monotonic condition. 

Hence, the original time series can be 

expressed as: 

1

( ) ( )+ ( )
n

i n

i

x t c t r t
=

=                                             (5) 

where n  denotes the number of IMF 

components, i  is the index of IMF 

component, ( )nr t  represents the residual 

sequence. 
 

2.2. ITERATION EMPIRICAL MODE 

DECOMPOSITION FOR FILLING THE 

MISSING DATA 

Normally, there exist some missing data in 

GNSS position time series due to some reasons 

such as bad receiver, power failures and other 

aspects. For the EMD method, how to fill the 

missing data accurately is valuable for analyzing 

the GNSS position time series. In this study, we 

propose a new method named Iteration EMD to 

analyze the GNSS position time series. For the 

GNSS position time series, we assume that the 

complete time series ( ), 1,2, ,t t N=x  consists of 

observed data and missing data. The specific steps 

of Iteration EMD algorithm are as follows, 

1. All the missing epochs are first filled with the 

mean value of the observed epochs to 

construct a new complete time series ( )x t . 

2. According to Equations (1)-(5), traditional 

EMD can decompose ( )x t  into a series of 

IMF components with frequency from high to 

low and one residual term. Generally, the 

boundary IMF component is determined by 

using correlation coefficient criterion during 

the process of noise reduction (Jia et al., 

2015). When the correlation coefficient 

between the IMF component and the time 

series ( )x t  gets the minimum value for the first 

time, the corresponding IMF component is the 

boundary IMF component. Then the signals ˆ ( )x t  

are reconstructed by summing the IMF 

components after the boundary IMF component 

and residual term. 

1

ˆ ( ) ( )+ ( )
n

i n

i k

x t c t r t
= +

 =                                               (6) 

 

where k  denotes the index of boundary IMF 

component. 

3. The epochs of missing data are replaced by the 

corresponding part of reconstructed signals ˆ ( ).x t  

The difference of the filled missing data 
miss

ˆ ( )x t  

between two following iterations should satisfy 

the following condition. 
 

miss
ˆ ( )x t                                                      (7) 

 

where   denotes a small value, which is used to 

terminate the iterative procedure. Through 

experimental comparison, it is suggested to be 

chosen as 0.2 in this study. 

If the condition of Equation (7) is not met, then 

update the missing data of the time series ( )x t . 

 

4. The steps 2-3 are iteratively processed using 

traditional EMD until meet the condition of 

Equation (7). Considering that with the number of 

iterations increases, the interpolation accuracy is 

not improved much, but the iteration procedure 

needs more time. Therefore, if the condition of 

Equation (7) does not satisfy, we will terminate 

the iteration procedure when the iteration number 

reaches 10. 

5. Appropriate evaluation indexes are used to test 

the performance of Iteration EMD and 

Interpolation EMD. 

3. SIMULATION EXPERIMENTAL ANALYSIS  

To test and verify the performance of the 

Iteration EMD approach, simulation experiments were 

carried out. The observation model of synthetic 

position time series without nonlinear changes, such 

as offsets, co-seismic or post-seismic, can be 

expressed as follows, 
 

( ) sin(2 ) cos(2 )

sin(4 ) cos(4 )

s t a bt c t d t

e t f t

 

 

= + + + +

+ +
              (8) 

 

where, ( )s t  represents the position at epoch t  (unit of 

year), a  is the initial position constant, b  is the linear 

trend, c  and d  are the coefficients of annual periodic 

motion, e  and f  are coefficients of semi-annual 

periodic motion (Zhou et al., 2022). Then the time 

series are generated as follows, 
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( ) ( ) ( )x t s t e t= +                                                      (9) 

 

where, ( )e t  is the simulated different types noise. 

The parameters presented in Table 1 are used to 

generate the synthetic GNSS position time series 

based on the Equations (8)-(9). The missing data are 

generated by randomly removing some epochs from 

the synthetic at different missing percentages. By this 

way, we evaluate the performance of Iteration EMD 

for filling the simulated incomplete time series. Since 

the true values of missing data are known, the RMSE 

and MAE of the difference between the true values and 

filled data gaps are computed to evaluate the 

performance of Iteration EMD and Interpolation 

EMD. The smaller RMSE and MAE are, the better the 

method filled the missing data. 

To understand the performances of two 

approaches for filling the gaps at different missing 

percentages, we randomly remove (1) 5 %, (2) 10 %, 

(3) 15 %, (4) 20 %, (5) 25 %, (6) 30 % of the original 

time series as missing data to perform the simulation 

experiments. To avoid the contingency of the 

experimental results, we repeated the simulation 

experiment 300 times. The missing data are filled by 

Iteration IEMD and Interpolation EMD for each 

simulation. Besides, when adopting different missing 

percentages, the same processing procedure was 

adopted. 
 

3.1. WHITE NOISE 

In this section, we only add the white noise to the 

simulated signals to generate the synthetic time series, 

and then use Iteration EMD and Interpolation EMD to 

fill the missing data, respectively. Here we take 

a missing percentage of 15 % as an example for the 

detailed description, the results of one simulation 

experiment are shown in Figure 1. From Figure 1, it is 

found that the filled missing data of Iteration EMD 

were closer to the true signal than Interpolation EMD. 

The mean RMSEs and MAEs of 300 simulations at 

different missing percentages are presented in 

Figure 2. As can be seen from Figure 2, all mean 

RMSEs and MAEs of Iteration EMD are smaller than 

Interpolation EMD regardless of what the missing 

percentages is, indicating that Iteration EMD 

outperforms than Interpolation EMD for filling the 

missing data. Besides, the RMSE and MAE will be 

larger with the increasing missing percentage. When 

the missing percentage is up to 30 %, the mean RMSE 

and MAE of Interpolation EMD are 2.4 mm and 

1.7 mm, obviously larger than 1.7 mm and 1.3 mm of 

Iteration EMD, with the relative improvements 

of 30.3 % and 20.1 %, respectively. Figure 3 presents 

the relative improvements of all RMSEs and MAEs at 

the different missing percentages. The mean relative 

improvements of RMSE and MAE for Iteration EMD 

with respect to Interpolation EMD are 19.5 % and 

12.7 %, respectively. Therefore, it is reasonable to 

conclude that Iteration EMD can better filling the 

missing data than Interpolation EMD, mainly due to 

that cubic spline is basically dependent on the lengths 

of time series and gaps, availability of neighboring 

data, and so on (Semiromi and Koch, 2019). 

 

Table 1 Simulated time series parameters (mm). 

 
a  b  c  d  e  f  

5 2 10 10 5 5 

 

Fig. 1 The reconstructed signals from all available data and filled the missing data by Iteration 

EMD and Interpolation EMD at the missing percentage of 15 % (White noise). 
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Fig. 2 Mean RMSEs and MAEs of 300 simulations at different missing percentages. 

 

Fig. 3 The relative improvements of RMSE and MAE for Iteration EMD with respect to 

Interpolation EMD. 

 

3.2. WHITE NOISE AND POWER LAW NOISE 

COMBINATION 

Many studies found that there exists not only 

white noise, but also colored noise in GNSS position 

time series (Bogusz and Klos, 2016), and that white 

noise plus power law noise model is common (Bos et 

al., 2020). Therefore, the combination of white noise 

and power law noise was employed to generate the 

original time series. Here we randomly remove 15 % 

of the original time series as missing data, and fill them 

using the Iteration EMD and Interpolation EMD, 

shown in Figure 4. It can be found that the filled 

missing data of Iteration EMD are closer to the true 

signals than Interpolation EMD. The RMSE of 

Interpolation EMD and Iteration EMD are 2.7 mm, 

2.0 mm, respectively. Figure 5 shows the mean 

RMSEs and MAEs of 300 simulations at different 

missing percentages when adding the mixed noise 

including white noise and power law noise, which is 

similarly to those of Figure 2. Figure 6 presents the 

relative improvements of RMSE and MAE for 

Iteration EMD relative to Interpolation EMD. 

Consequently, all results suggest similar conclusion 

that Iteration EMD filling the missing data more 

accurately than Interpolation EMD. 
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Fig. 4 The reconstructed signals from all available data and filled the missing data by Iteration 

EMD and Interpolation EMD at the missing percentage of 15 % (Mixed noise). 

 

Fig. 5 Mean RMSEs and MAEs of 300 simulations at different missing percentages. 

 

Fig. 6 The relative improvements of RMSE and MAE for Iteration EMD with respect to 

Interpolation EMD.  

. 
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4. REAL POSITION TIME SERIES ANALYSIS 

To further evaluate the performance of Iteration 

EMD with comparison of Interpolation EMD, the up 

component of GNSS position time series of eight 

stations over the period from 2017 to 2019 were 

selected to analyze, which contained missing data in 

each station. The position time series used in this study 

were downloaded from data products of National 

Earthquake Data Center (https://www.eqdsc.com). 

Outliers were eliminated by Interquartile Range (IQR) 

criterion (Langbein and Bock, 2004) and the missing 

percentages of eight stations were shown in Figure 7. 

From Figure 7, we can see that SXTY station has the 

highest missing percentage, and the missing 

percentages of most stations are less than 10 %. The 

average missing percentage of eight stations in the up 

component is 8.15 %. 

Then the Iteration EMD and Interpolation EMD 

are used to fill the missing data of the position time 

series. Since the true values of missing data in real 

position time series are unknown, it is impossible to 

use the two above used evaluation indexes to verify 

the interpolation effect when analyzing the real GNSS 

position time series of eight stations. Similar to that the 

time series after interpolation should keep the original 

variance maximization direction as much as possible 

to extract the CME of the observation network 

accurately. We will evaluate the performance of 

Iteration EMD and Interpolation EMD by comparing 

the variance derived from the filled time series of eight 

stations using the PCA method (Ming et al., 2016). 

The equation for calculating the variance in each 

principal direction is as follows (Tripathi and 

Govindaraju, 2008). 
 

T

j j jv w w= S                                                               (10) 

 

where 
jw  denotes the j-th principal direction, 

T / (Nrows 1)= −S XX  is the covariance matrix, 

1 2 8[ ( ), ( ), , ( )]x t x t x t  =X  represents the complete time 

series after interpolation for eight stations, Nrows  is 

the number of rows of the matrix X . 

To determine the interpolation efficiency of the 

two methods, we perform the PCA approach on 

the filled time series without missing data of eight 

stations. Table 2 shows the proportion of variance of 

the first three PCs in the filled time series for Iteration 

EMD and Interpolation EMD approaches. The first 

three PCs of Iteration EMD can preserve 75.9 % of 

total variance, more than 66.5 % of Interpolation 

EMD, indicating that Iteration EMD has better 

interpolation ability. The improvement of Iteration 

EMD relative to Interpolation EMD is 14.1 % for the 

sum of the variances with the first three PCs. 

 
5. CONCLUSIONS 

Filling the missing data is a crucial 

pre-  processing step in GNSS time series analysis. We 

proposed a new approach named Iteration EMD to fill 

the missing data of position time series, with the 

comparison of Interpolation EMD. The simulation 

results show that all the RMSEs and MAEs of Iteration 

EMD are smaller than those of Interpolation EMD, 

indicating that Iteration EMD can fill the missing data 

closer to the true signal than Interpolation EMD 

regardless of the missing percentage. Besides, the 

relative improvements will increase especially for the 

high missing percentage. For the real GNSS position 

time series of eight stations, PCA approach was used 

to evaluate the filled position time series by Iteration 

EMD and Interpolation EMD. The results show that 

the first three leading PCs of Iteration EMD can obtain 

Fig. 7 The statistics missing percentages of eight stations. 

 

Table 2 The proportion of the variance of the first three PCs of two interpolation methods (%). 

 Method PC1 PC2 PC3 Sum  

Iteration EMD 46.8 16.6 12.5 75.9 

Interpolation EMD 37.5 15.0 14.0 66.5 
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75.9 % of total variance, 9.4 % larger than 66.5 % of 

Interpolation EMD. Therefore, it is reasonable to 

believe that Iteration EMD can fill the missing data 

more accurately and obtain more signal information 

than Interpolation EMD, which is beneficial to the 

subsequent analysis of GNSS position time series. 
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