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ABSTRACT 
 

 

The prediction of total solar irradiance (TSI) time series holds significant importance in the study 

of solar activity and the assessment of solar energy resources. The variational mode 

decomposition-based long short-term memory (VMD-LSTM) model is a hybrid deep learning 
model that demonstrates high prediction accuracy on long-term time series. To address the 

information leakage issue faced by hybrid models based on VMD and other data preprocessing 

methods, this study proposes a prediction method for hybrid deep learning models called dual-
fusion variational mode decomposition (DFVMD), which modifies the VMD decomposition 

approach. The DFVMD-LSTM model utilizes multiple TSI datasets as model features, and 

multisource datasets and multiple model comparison experiments are employed to verify the 
applicability and robustness of the model. The experimental results show that the DFVDM-LSTM 

model significantly reduces the periodic TSI prediction deviation introduced by the LSTM model. 

Furthermore, regardless of the training period or prediction horizon, the DFVMD-LSTM model 

exhibits an average root mean square error (RMSE) reduction of 14.79 % and an average mean 

absolute error (MAE) decrease of 21.50 %, demonstrating the superior predictive performance and 

improved reliability of the DFVDM-LSTM method. 
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1. INTRODUCTION 

Solar radiation is the primary external energy 

source and the fundamental driver of the Earth's 

climate (Beer et al., 2007). Total solar irradiance 

(TSI), defined as the total amount of electromagnetic 

radiation energy derived from all solar spectral bands 

that reaches the Earth per unit time, is a crucial 

parameter in solar energy utilization and global 

meteorological research (Almorox et al., 2021; 

Mishchenko et al., 2007). As global energy demand 

continues to increase and environmental concerns 

become more pressing, solar energy, as a renewable, 

abundant, and clean energy source, is increasingly 

being adopted by human societies (Wan et al., 2015; 

Shatat et al., 2013). TSI time series forecasting has 

significant implications for solar activity research, 

solar energy resource assessment, meteorology, and 

environmental science (Herrera et al., 2015). 

Currently, research on solar irradiance mainly 

focuses on predicting solar irradiance at the Earth's 

surface. Zang et al. (2020) (employed different hybrid 

deep learning models to predict solar irradiance in 

Texas, USA, and demonstrated that the hybrid long 

short-term memory (LSTM) convolutional neural 

network (CNN) model yielded higher prediction 

accuracy than the other tested models. Majumder et al. 

(2018) fused variational mode decomposition (VMD) 

with the extreme learning machine (ELM) algorithm 

to predict solar irradiance in India, and it was found 

that the hybrid model achieved significantly improved 

accuracy over the original model. Gao et al. (2020) 

combined complete ensemble empirical mode 

decomposition-based adaptive noise (CEEMDAN) 

with the hybrid CNN-LSTM model to predict hourly 

solar irradiance, and the results showed that the hybrid 

model outperformed the CNN-LSTM model in terms 

of prediction accuracy. These studies provide feasible 

prediction methods for solar irradiance time series and 

confirm that hybrid models have higher prediction 

accuracy than their initial models. However, the solar 

irradiance reaching the Earth's surface can be affected 

by the Earth's rotation and the atmosphere, resulting in 

inaccurate TSI data observed at ground-based 

platforms (Huang, 2008). To reduce the interference 

of environmental factors in ground-based monitoring, 

this paper selects fused long-term continuous TSI time 

series data from multiple satellite platforms for 

prediction purposes (Montillet et al., 2022; Dudok et 

al., 2017; Gueymard et al., 2018; Ball et al., 2012). 

VMD is a signal processing method that 

decomposes nonstationary signals into multiple 

intrinsic mode functions (IMFs) and a residue (Wang 
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 et al., 2015). LSTM is a recurrent neural network that 

is widely used for processing sequence data in natural 

language processing, speech recognition, time series 

prediction, and other fields (Hochreiter and 

Schmidhuber, 1997). Recently, many researchers have 

combined VMD with LSTM, which has resulted in 

high prediction accuracy for cases involving time 

series data, such as wind speed and photovoltaic power 

prediction (Han et al., 2019; Sun et al., 2019; Lv et al., 

2021; Shi et al., 2018; Zhou et al., 2022; Chen et al., 

2023). However, most researchers typically 

decompose their testing and training datasets together 

using VMD, which can result in information leakage 

and inflated prediction results. Furthermore, the IMFs 

obtained through VMD have low correlations with the 

original data, making them unsuitable for research 

fields with high correlations. 

Based on these issues, this paper proposes 

a dual- fused VMD-LSTM (DFVMD-LSTM) model 

that avoids information leakage by modifying the 

VMD method. The dual-fusion approach extracts 

valuable information from the original signal, and the 

LSTM stores the state of each time step in multiple 

memory cells to achieve high-precision TSI 

prediction. Experiments are conducted by dividing 

two TSI time series into different training and 

prediction periods, and different datasets are used as 

features to compare the prediction accuracies of the 

LSTM, VMD-LSTM, and DFVMD-LSTM models. 

The results demonstrate the prediction accuracy 

improvement and the applicability and robustness of 

the DFVMD-LSTM model under different datasets. 

The structure of this paper is as follows: In 

Section 2, ANN, VMD and LSTM algorithm 

principles and accuracy evaluation indexes are 

introduced, and DFVMD-LSTM model principles and 

specific processes are elaborated. In Section 3, the TSI 

data and data preprocessing strategies are introduced, 

and the prediction accuracy of DFVMD-LSTM model 

under different K values is analyzed. Section 4 focuses 

on the prediction results and accuracy of ANN model, 

LSTM model and DFVMD-LSTM mixed model, and 

analyzes the prediction results of the DFVMD-LSTM 

model under different accuracy evaluation indexes. 

The conclusion and prospect are given in Section 5. 
 

2. MODELS AND EVALUATION INDICES 

2.1. VMD 

VMD is a completely non-recursive method for 

solving modal variation problem (Dragomiretskiyk 

and Zosso, 2014; ur Rehman and Aftab, 2019). The 

core principle of this method is to decompose 

a multicomponent signal into multiple 

single- component amplitude-modulated and 

frequency-modulated signals, thereby solving the 

endpoint effect and modal component overlap 

problems that exist in empirical mode decomposition 

(EMD). The main idea is to construct and solve 

a variational problem. The specific decomposition 

process is as follows (Wang et al., 2022; Zhang et al., 

2017). 

1. For each modal component, its corresponding 

analytic signal is computed through Hilbert 

transformation, and a one-sided frequency 

spectrum is accordingly obtained. 
 

[𝛿(𝑡) +
𝑗

𝜋𝑡
] ∗ 𝜇𝐾(𝑡) (1) 

 

In the above equation,  𝑗2 = −1, and 𝛿 is the 

Dirac distribution. 
 

2. To estimate the center frequencies of individual 

modes and modulate their spectral components to 

the corresponding fundamental frequency bands, 

an exponential term is incorporated into the mode 

shape. 
 

[(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝜇𝐾(𝑡)] 𝑒−𝑗𝜔𝐾𝑡 (2) 

 

3. The bandwidth of 𝜔𝐾  can be estimated by the 

smoothness of the H1 demodulated signal. This 

leads to a constrained variational problem. 
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In the above equation, 𝑓 represents the original 

signal, {𝜇𝐾} represents the decomposed modal 

functions, and {𝜔𝐾} represents the corresponding 

central frequency of each mode. 

4. Based on this, we introduce a quadratic penalty 

factor 𝛼 and a Lagrange multiplier 𝜆𝑡 to transform 

the problem into a non-constrained variational 

problem. The extended Lagrange expression is 

given below. 
 

𝐿({𝜇𝐾}, {𝜔𝐾}, 𝜆) = 𝛼 ∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
)

𝐾

∗ 𝜇𝐾(𝑡)] 𝑒−𝑗𝜔𝐾𝑡‖
2

2

+ ‖𝑓(𝑡) − ∑ 𝜇𝐾(𝑡)

𝐾

‖

2

2

+ ⟨𝜆(𝑡),𝑓(𝑡) − ∑ 𝜇𝐾(𝑡) ⟩

𝐾

 

(4) 
 

In this equation, 𝛼 is the quadratic penalty factor, 

and 𝜆𝑡 is the Lagrange multiplier. The unconstrained 

variational problem is then solved using the 

alternating direction method of multipliers, and the 

"saddle point" of the extended Lagrange expression, 

which is the optimal solution of the constrained 

variational model in Equation (3), is sought by 

alternately updating 𝜇𝐾
𝑛+1, 𝜔𝐾

𝑛+1, and 𝜆𝑛+1. 

 
2.2. ANN 

An artificial neural network (ANN) is a complex 

network structure that abstracts, simplifies, and 
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Fig. 1 Basic structure of an ANN. 

 
simulates the neural network of the human brain. It is 

one of the main tools in machine learning (Zupan, 

1994). An ANN is a nonlinear, versatile tool that is 

stable in applications such as classification and time 

series prediction. As a result, ANNs are widely used 

in fields that require mathematical and statistical 

analysis, such as statistics, metrology, medicine, and 

economics. As the most used prediction model in solar 

irradiance time series forecasting, an ANN serves as 

the baseline model for conducting a comparative 

analysis with the model proposed in this study 

(Pazikadin et al., 2020). This ANN is composed of 

interconnected layers of neurons or nodes. 

Information is transmitted between the neurons 

through weighted connections. In this study, the TSI 

time series is utilized as the training feature input to 

the ANN. The ANN then performs forward 

propagation to calculate the output values. 

Subsequently, the loss is computed, and 

backpropagation is employed to calculate the loss 

function. The Adam optimization algorithm is utilized 

to update the parameters. Afterward, the optimal 

model parameters are selected based on the validation 

set, and the final predictions are conducted. The neural 

structure of the ANN is illustrated in Figure 1. 

As shown in Figure 1, X1, X2, ..., Xn represent the 

input values, while W1j, W2j, ..., Wnj correspond to 

their respective weights. The input signals are summed 

up in the unit   to obtain the weighted sum 𝑢𝑗.  
  

𝑢𝑗 = ∑ 𝑤𝑘𝑗𝑥𝑘
𝑛
𝑘=1  (5) 

 

Subsequently, the weighted sum, after 

thresholding in 𝜃𝑗, is input into the non-linear 

activation function 𝜑 to obtain the output activation 

state 𝑂𝑗. 
  

𝑣𝑗 = 𝑛𝑒𝑡𝑗 = 𝑢𝑗 − 𝜃𝑗 (6) 

 
𝑂𝑗 = 𝜑(𝑣𝑗) (7) 

2.3. LSTM 

LSTM is an optimized variant of recurrent neural 

networks (RNN) that can better store and access 

historical data through memory modules, effectively 

avoiding the "gradient vanishing" and "gradient 

explosion" problems that often occur in RNNs 

(Sherstinsky, 2020; Yu et al., 2019). Compared to 

traditional methods, LSTM has strong advantages in 

modeling and predicting long time series and is widely 

used in time series prediction and fault detection tasks 

(Sagheer and Kotb, 2019; Yadav et al., 2020). The 

LSTM network structure in this paper consists of an 

input layer, 128 hidden layers, and an output layer. 

Each hidden layer is composed of memory blocks, as 

shown in Figure 2. Each memory block is composed 

of three gate structures: a forget gate, an input gate, 

and an output gate. 

As depicted in the Figure2, LSTM handles high-

temporal data concerning sea surface elevation and the 

previous moment's hidden state output via 

the operation of three gates. The core procedure can be 

summarized as follows:  

1. Within the LSTM framework, the decision of 

whether to discard or preserve information 

pertaining to 𝑋𝑡 and ℎ𝑡−1 is made by the forget 

gate, marked as 𝑓𝑡. This choice is regulated by the 

activation function   associated with the forget 

gate. 
  

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓) (8) 

 

In the equations, 𝑊 signifies the weight matrices, 

while 𝑏 corresponds to the biases. 𝑓𝑡 is a vector with 

elements ranging from 0 to 1, where each element in 

the vector signifies the extent of information 

preservation in the cell state 𝐶𝑡−1. A value of 

0 indicates no preservation, whereas a value of 

1 indicates complete preservation. 

2. The cell state undergoes an update process 

facilitated by the input gate. This involves passing 

two components, 𝑋𝑡 and ℎ𝑡−1, through an 
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Fig. 2 Basic structure of LSTM.  

 activation function   to ascertain the information 

update. 𝑋𝑡 and ℎ𝑡−1 are further processed through 

a hyperbolic tangent (tanh) function to generate 

a new candidate value vector, 𝐶′𝑡 (where 𝐶′𝑡 is 

a vector with values in the range of -1 to 1), and 

the output from the tanh operation is then scaled 

by the multiplication factor 𝜎. 
  

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖) (9) 
  

𝐶′𝑡 = 𝑡𝑎𝑛ℎ( 𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐) (10) 
 

3. The cell state from the preceding layer is 

subjected to an element-wise multiplication with 

the forget vector, followed by an element-wise 

addition to the output of the input gate. This 

process yields the updated cell state.  
  

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶′𝑡 (11) 
 

In the equations, the component 𝑓𝑡 ∗ 𝐶𝑡−1 

determines the extent to which information in the 

previous memory cell state 𝐶𝑡−1 is forgotten, while 

 𝑖𝑡 ∗ 𝐶′𝑡 determines the extent to which the 

information in 𝐶′𝑡 is added to the new memory cell 

state 𝐶𝑡. 
 

4. By means of the output gate 𝑂𝑡, the value of the 

subsequent hidden state ℎ𝑡 is established, and this 

hidden state incorporates information from prior 

inputs.  
  

𝑂𝑡 = 𝜎(𝑊𝑂 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑂) (12) 
  

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ( 𝐶𝑡) (13) 

 
2.4. DUAL-FUSION VARIATIONAL MODE 

DECOMPOSITION-BASED LONG SHORT-TERM 

MEMORY NETWORK (DFVMD-LSTM) MODEL 

As a classic hybrid model, the VMD-LSTM 

model has been widely used in time series prediction 

cases, such as photovoltaic prediction and wind speed 

prediction (Han et al., 2019; Sun et al., 2019; Lv et al., 

2021; Shi et al., 2018; Zhou et al., 2022; Liao et al., 

2021; Jin et al., 2020). However, most researchers 

currently directly decompose the training set, 

validation set, and test set together through VMD in 

hybrid algorithms and then use the decomposed modal 

components as model inputs for prediction, adding up 

the predicted results of each component to obtain the 

final prediction result. However, this approach has two 

shortcomings (Wang et al., 2016; Qian et al., 2014). 

(1) When using traditional hybrid deep learning 

algorithms for decomposition, all data, including the 

relevant data to be predicted, are decomposed. 

However, when VMD decomposes the entire dataset, 

it can result in test set decompositions being 

influenced by the training set data, leading to a certain 

degree of information leakage. (2) Traditional hybrid 

deep learning methods for time series prediction 

typically involve autoregressive prediction of the 

IMFs obtained after VMD decomposition. However, 

the IMFs and residuals obtained after VMD 

decomposition often have weaker correlations with the 

original data. This may result in poorer prediction 

performance for some less applicable models, which 

is not conducive to multi-feature forecasting.  

If the training and validation sets are separated 

for VMD, it is necessary to establish N prediction 

models (N = number of validations sets) due to the 

sliding nature of prediction to address the information 

leakage issue. However, this approach significantly 

increases the computational complexity of the model, 

as the gradient is steepened (Wang et al., 2016; Qian 

et al., 2014). 

The proposed DFVMD-LSTM model solves 

information leakage and the other problems that exist 

in the VMD-LSTM model, and the fused time series 

have high correlations with the original time series. 
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Fig. 3 Hybrid DFVMD-LSTM model prediction process. 

 

The specific process is shown in Figure 3. 

DFVMD-LSTM model prediction process: 

Step 1: The input TSI time series is linearly 

interpolated to fill in missing values. The resulting 

time series is divided into a training set, a validation 

set, and a test set for experimentation. 

Step 2: The daily TSI data in the training and 

validation sets are decomposed into different IMFs 

and a residual term r1 using VMD with different K 

values. 

Step 3: The decomposed IMFs are added 

together to obtain a fused IMF, Fuse-IMF1. The 

residual term r1 is then decomposed again using VMD 

with different K values to obtain a new set of IMFs and 

a residual term r2. 

Step 4: The residual r1 obtained after performing 

decomposition is added to the individual mode 

components to obtain Fuse-IMF2. Then, Fuse-IMF1 

and Fuse-IMF2 are added together to obtain the dual-

fuse VMD results. 

Step 5: The dual fuse VMD results are used as 

the model feature values and input into the LSTM 

model for training. The optimal LSTM model is 

obtained through iterative optimization. 

Step 6: The optimal LSTM model is selected to 

predict the data in the test set. The predicted results 

obtained from the LSTM model represent the 

predictions of the DFVMD-LSTM model. 

The predicted results are then evaluated for accuracy. 

 
2.5. PRECISION EVALUATION INDICES 

This study primarily utilizes three performance 

evaluation metrics to assess the accuracy of the 

models: Root Mean Squared Error (RMSE) (Chai and 

Draxler, 2014), Mean Absolute Error (MAE) 

(Willmott and Matsuura, 2005), and the Pearson 

correlation coefficient (R) (Adler and Parmryd, 2010). 

The RMSE, MAE and R are calculated using the 

following formulae, respectively. 

(1) Root Mean Squared Error (RMSE) 
  

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  (14) 

 

(2) Mean Absolute Error (MAE) 
  

𝑀𝐴𝐸 =
1

𝑛
∑ |(𝑦𝑖 − �̂�𝑖)|𝑛

𝑖=1  (15) 
 

According to the above formula, we consider the 

actual values of TSI denoted as 𝑦𝑖 and the predicted 

values from various models denoted as �̂�𝑖, where n 

represents the number of TSI data points. For RMSE 

and MAE, smaller values indicate higher prediction 

accuracy of the model, while larger values indicate 

lower accuracy. The applicability of these metrics may 

decrease in time series analysis. 

(3) Pearson correlation coefficient (R) 
  

𝑅YŶ =
𝐸(𝑌�̂�)−𝐸(𝑌)𝐸(�̂�)

𝜎𝑌𝜎�̂�

 (16) 

 

In the above equation, 𝑌 represents the original 

time series, while �̂� represents the time series resulting 

from applying the DFVMD method or the predicted 

time series. The Pearson correlation coefficient has 

a range of -1 to 1.A positive value of 𝑅𝑌�̂� implies 

a direct correlation between the two temporal 

sequences, whereas a negative value of 𝑅𝑌�̂� signifies 

an inverse relationship. 
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Fig. 4 C1 and C2 data distributions. 

 

To more intuitively demonstrate the degree of 

improvement exhibited by the model, this paper 

determines the magnitude of the improvement 

achieved for each accuracy evaluation index. The 

calculation formula is as follows (Li et al., 2023): 
 

𝐼𝑦�̂� =
𝑦−�̂�

𝑦
 (17) 

 

In the above equation, 𝑦 and �̂� represent the three 

accuracy evaluation indicators: the RMSE, the MAE, 

and R. 𝑦 represents the accuracy evaluation indicators 

of the initial model prediction results, while �̂� 

represents the accuracy evaluation indicators of the 

mixed model prediction results. The larger 𝐼𝑦�̂� is, the 

greater the improvement yielded by the mixed model 

in the corresponding evaluation indicator, and vice 

versa. 

 
3. DATA AND EXPERIMENTS 

3.1. DATA PREPROCESSING 

This study uses two sets of TSI data, one from 

the Physikalisch-Meteorologisches Observatorium 

Davos/World Radiation Center 
(https://www.pmodwrc.ch/en/research-development/solar-

physics/tsi-composite/) and another from the 

International Space Science Institution 

(http://www.issibern.ch/teams/solarirradiance) (Montillet 

et al., 2022; Dudok et al., 2017). Since the data are 

obtained from a mixture of multiple sources, they are 

referred to as Composite 1 (C1) and Composite 2 (C2) 

in this study. C1 includes 14,601 daily data points 

from 1981 to 2021, with a missing data rate of 

0.068 %. C2 includes 13,559 daily data points from 

1978 to 2015, with no missing data. Since the data 

missing rate is small, linear interpolation is used in this 

study to handle missing values. The processed data is 

shown in Figure 4. 

As shown in Figure 4, the TSI data used in this 

study exhibit significant fluctuation characteristics 

with clear amplitudes and periods. Based on this, deep 

learning models can capture the underlying patterns of 

these fluctuations, thereby achieving better prediction 

results. 

 
3.2. DFVMD-LSTM MODEL ANALYSIS 

In theory, the VMD can capture all frequency 

components present in different datasets and 

decompose them into various mode components. The 

residual term should ideally contain only random 

signals without any oscillatory characteristics. 

However, in practical applications, due to limitations 

in the VMD algorithm or the characteristics of the 

signal itself, VMD may not fully decompose the data, 

and the residual term may still retain certain 

oscillatory features. (Li et al., 2017; Li et al., 2022). 

Unlike the EMD method, VMD allows the number of 

IMFs to be fixed for decomposing the original data, 

making it particularly important to determine 

a suitable number of IMFs, which is denoted as K. In 

theory, any positive integer can be selected as K. 

However, when K is too large, the generation of virtual 

components will cause the sum of the energies of each 

component to be too high, and a large K value will 

result in gradient ascent for the model load. Therefore, 

in practice, K should not be too large. When K is too 

small, too much important information in the original 

signal will be filtered out, resulting in signal under 

decomposition and affecting the prediction accuracy 

of the model. 

In reference (Han et al., 2019), experiments were 

conducted with VMD using K values of 3 and 5, and 

it was found that excessive decomposition layers 

could lead to certain issues. In reference (Sun et al., 

2019), VMD was performed on wind speed time series 

with K set to 5, followed by subsequent experiments. 

In reference (Lv et al., 2021), VMD experiments were 

conducted using K values ranging from 5 to 12, and 

the optimal parameter was determined to be 7 through 

the center frequency method. 

Considering that the setting of the crucial 

parameter K in VMD can significantly affect the data 

decomposition results, this paper conducts the 
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Fig. 5 Residual Terms of FVMD and DFVMD with Different K Values (The blue curve represents TSI time 

series C1. The black curves depict the residual terms obtained from FVMD with different values of K, 

where FVMD4 indicates VMD decomposition with K set to 4. The red curves represent the residual terms 

obtained from DFVMD with different values of K, where DFVMD8-4 indicates the first VMD 

decomposition with K set to 8 and the second VMD decomposition with K set to 4. The units in the figure 

are all W.m-2). 

 
decomposition of the C1 dataset using different values 

of K. The aim is to investigate and discuss the 

oscillatory characteristics present in the residual terms 

under different K values for both the Fusion 

Variational Mode Decomposition (FVMD) and the 

DFVMD methods. The oscillatory features in 

the residual terms obtained by decomposing the C1 

dataset with different K values are shown in Figure 5. 

The figure shows that "FVMD" refers to the 

single fusion variational mode decomposition, which 

means that after a single VMD decomposition, the 

residual term is removed, and the IMFs are directly 

summed with equal weights to obtain the FVMD 

result. As shown in Figure 5, it is evident that different 

values of K used in VMD decomposition exhibit 

certain oscillatory trends, and these trends are 

consistent with the original time series. For FVMD, 

the residual values show little variation with 

increasing K, with only a slight decrease observed at 

the peaks. In the case of DFVMD4-4, it exhibits 

a certain level of reduction in numerical values 

compared to FVMD, but it still retains strong 

oscillatory characteristics. On the other hand, 

DFVMD8-4 shows a significant decrease in numerical 

values, and the oscillatory features are noticeably 

weakened when compared to FVMD. DFVMD can 

reduce the impact of inadequate VMD decomposition 

to a certain extent. These observations indicate that 

different values of K have a considerable impact on 

DFVMD, making the selection of an appropriate K 

value crucial for achieving meaningful results with 

DFVMD. 

Due to the absence of a direct relationship 

between the residual terms and the prediction accuracy 

of the model, and the fact that smaller residual terms 

may indicate the presence of more noise in the data, 

this study aims to conduct an in-depth investigation of 

the influence of the K value in the DFVMD-LSTM 

model on the predictive results. To achieve this, the 

DFVMD-LSTM model is compared and evaluated 

with the FVMD-LSTM model using different values 

of K for predicting the TSI time series C1. The 
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Table 1 Prediction accuracy of the DFVMD-LSTM model under different K values. 

 
Model R1 I (%) RMSE 

(W.m-2) 

I (%) MAE 

(W.m-2) 

I (%) 

LSTM 0.9644 / 0.0581 / 0.0496 / 

FVMD4-LSTM 0.9709 0.67 0.0401 30.98 0.0288 41.96 

FVMD5-LSTM 0.9652 0.08 0.0417 28.20 0.0293 40.92 

FVMD6-LSTM 0.9678 0.35 0.0402 30.89 0.0287 42.17 

FVMD7-LSTM 0.9680 0.37 0.0400 31.23 0.0284 42.78 

FVMD8-LSTM 0.9664 0.21 0.0442 23.96 0.0338 31.93 

DFVMD4-4-LSTM 0.9698 0.56 0.0383 34.05 0.0273 44.87 

DFVMD4-5-LSTM 0.9720 0.79 0.0374 35.63 0.0268 45.92 

DFVMD4-6-LSTM 0.9682 0.39 0.0410 29.37 0.0304 38.73 

DFVMD4-7-LSTM 0.9684 0.41 0.0401 30.94 0.0291 41.39 

DFVMD4-8-LSTM 0.9686 0.44 0.0400 31.18 0.0291 41.26 

DFVMD5-4-LSTM 0.9722 0.81 0.0372 35.93 0.0267 46.25 

DFVMD6-4-LSTM 0.9696 0.54 0.0392 32.48 0.0283 42.86 

DFVMD7-4-LSTM 0.9694 0.52 0.0400 31.10 0.0292 41.09 

DFVMD8-4-LSTM 0.9669 0.26 0.0419 27.94 0.0308 37.86 

 
predictive accuracy of the models under different K 

values is then compared and assessed. 

In this study, the C1 dataset is divided into 

a training set from 1981 to 2013, a validation set from 

2013 to 2017, and a test set from 2017 to 2021 for 

experimentation. The experiments involve grid 

searching for the K value, with the FVMD-LSTM 

model using K values ranging from 4 to 8 for VMD. 

For the DFVMD-LSTM model, two sets of 

experiments were conducted. In the first set, the K 

value for the first VMD decomposition was fixed at 4, 

and the K value for the second VMD decomposition 

was varied from 4 to 8. In the second set, the K value 

for the second VMD decomposition was fixed at 4, 

while the K value for the first VMD decomposition 

was varied from 4 to 8. The experimental results, 

including accuracy metrics and improvement rates, are 

presented in Table 1. 

In Table 1, FVMD4-LSTM represents the 

FVMD-LSTM model with TSI data decomposed 

using VMD with K=4 for prediction. DFVMD4-n-

LSTM (n=4~8) represents the DFVMD-LSTM model 

with the first VMD of TSI data using K=4 and the 

second VMD of the residual r using K=n for 

prediction. DFVMDm-4-LSTM (m=4~8) represents 

the DFVMD-LSTM model with the first VMD of TSI 

data using K=m and the second VMD of the residual r 

using K=4 for prediction. "I" represents the prediction 

accuracy improvement yielded by the FVMD-LSTM 

and DFVMD-LSTM models over the LSTM model. 

"R1" represents the correlation between the model's 

predicted results and the actual data. 

From Table 1, it can be observed that the LSTM 

model exhibits a high correlation of 0.9644 with the 

original data, indicating a strong alignment between 

the predicted fluctuation trends and the actual data. 

However, the LSTM model still shows some deviation 

from the original data, with an RMSE value of 

0.0581 W.m-2 and a MAE value of 0.0496 W.m-2. 

Compared to the LSTM model, both the FVMD-

LSTM and DFVMD-LSTM models yield significant 

prediction accuracy improvements. The FVMD-

LSTM model achieves average RMSE reductions 

ranging from 23.96 % to 31.23 %, with an average 

decrease of 29.05 %; average MAE reductions ranging 

from 31.93 % to 42.78 %, with an average decrease of 

39.95 %; and average R1 increases ranging from 

0.08 % to 0.67 %, with an average increase of 0.34 %. 

The DFVMD-LSTM model achieves average RMSE 

reductions ranging from 27.94 % to 35.93 %, with an 

average decrease of 32.07 %; average MAE reductions 

ranging from 37.86 % to 46.25 %, with an average 

decrease of 42.25 %; and average R1 increases ranging 

from 0.26 % to 0.81 %, with an average increase of 

0.52 %. From the results, it can be concluded that the 

DFVMD-LSTM model demonstrates a certain level of 

improvement in overall predictive accuracy compared 

to the FVMD-LSTM model. When the K value for the 

first VMD decomposition in the DFVMD-LSTM 

model is the same as the K value in the FVMD-LSTM 

model, the predictive accuracy of the DFVMD-LSTM 

model is mostly slightly higher than that of the 

FVMD-LSTM model. This observation indicates that 

the DFVMD-LSTM model can further enhance the 

predictive accuracy of the FVMD-LSTM model by 

extracting oscillatory characteristics from the residual 

terms. However, since the DFVMD-LSTM model 

involves two rounds of VMD decomposition and is 

influenced by parameters such as K, achieving 

appropriate K values and other relevant parameters to 

effectively extract oscillatory features from the 

residual terms and minimize noise effects requires 

further in-depth exploration in future research. 

In conclusion, the DFVMD-LSTM model shows 

a certain level of improvement in predictive accuracy 

compared to the FVMD-LSTM model. However, due 

to the significant influence of different K values on the 

predictive accuracy of the DFVMD-LSTM model, this 

paper selects the optimal K values for subsequent 

experiments. Specifically, the DFVMD-LSTM model 
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Table 2 Division of each dataset. 

 

Dataset TSI 

data 

Training Set Validation Set Test Set 

Time  

span 

Length 

(years) 

Time span Length 

(years) 

Time  

span 

Length 

(years) 

Dataset 1 C1 1981-2015 33.00 2015-2016 1.00 2016-2021 5.75 

Dataset 2 C1 1992-2015 23.00 2015-2016 1.00 2016-2021 5.75 

Dataset 3 C1 2003-2015 11.50 2015-2016 1.00 2016-2021 5.75 

Dataset 4 C1 2009-2015 5.75 2015-2016 1.00 2016-2021 5.75 

Dataset 5 C2 1978-1991 13.00 1991-1992 1.00 1992-1998 5.75 

Dataset 6 C2 1978-1991 13.00 1991-1992 1.00 1992-2004 11.50 

Dataset 7 C2 1978-1991 13.00 1991-1992 1.00 1992-2015 23.00 

 

uses K=5 for the first VMD decomposition and K=4 

for the second VMD decomposition. 

 
4. EXPERIMENTAL RESULTS AND ANALYSIS 

4.1. ANALYSIS OF MULTISOURCE DATA 

PREDICTION RESULTS  

To analyze the prediction accuracy of the 

DFVMD-LSTM model under different feature data, 

considering that the utilized TSI time series have 

periods of 11.5 years (Montillet et al., 2022), this 

experiment divides the C1 and C2 datasets in 7 

different ways as follows, and the division results are 

shown in Table 2. 

In Table 2, the values under the term "Training 

Set" denote the duration and length of the training 

dataset. The values under "Validation Set" represent 

the duration and length of the validation dataset, while 

those under "Test Set" indicate the duration and length 

of the testing dataset. Each of these partitioned 

datasets is used as features in the ANN, LSTM, and 

DFVMD-LSTM models for experimentation 

purposes. The prediction results of each model are 

depicted in Appendix A (Figure A1 to Figure A7). In 

order to highlight the difference in prediction results, 

this paper adds prediction error to analyze. 
Specifically, datasets 1 to 4 are employed to 

investigate the prediction accuracy of each model for 

the same time span under different training durations 

and to identify the shortest training period. On the 

other hand, datasets 5 to 7 are utilized to examine the 

prediction accuracy of each model for different 

prediction time spans while maintaining the same 

training duration. 

From Figure A1 to Figure A7, it can be observed 

that the LSTM model outperforms the traditional 

ANN model in predicting the long-term TSI time 

series. However, there are still deviations in the 

predicted oscillation amplitudes compared to the 

original data. On the other hand, the DFVMD-LSTM 

model not only maintains consistency in predicting 

trends with the initial data but also effectively reduces 

the prediction bias of the LSTM model, leading to 

higher predictive accuracy.  

From Figure A1 to Figure A4, it can be observed 

that with decreasing training time, the deviations 

between the predictions of the ANN, LSTM, and 

DFVMD-LSTM models and the actual data gradually 

increase. For Dataset 1, both the LSTM and DFVMD-

LSTM models exhibit a high degree of fit with the 

original TSI time series when using the full training 

data. However, when reducing the training set to 

23 years (two TSI cycles), the goodness of fit 

decreases to some extent. Further reducing the training 

data to 5.75 years (half a TSI cycle) results in 

a significant deviation of the predictions from the 

original TSI time series. This indicates that reducing 

the training time decreases the prediction accuracy, 

and the training time should not be less than one TSI 

cycle. This finding confirms the importance of training 

time in the reconstruction of TSI time series. From the 

95 % prediction intervals of each model, it can be 

inferred that the predictive results of the DFVMD-

LSTM model are generally lower than those of the 

LSTM model, indicating a better fit with the true TSI 

data. 

Considering the minimum training time and 

length of dataset C2, this experiment utilized the first 

13 years of data from dataset C2 as the training set and 

1 year as the validation set. It predicted the time series 

for half a TSI cycle, one TSI cycle, and two TSI 

cycles, respectively. The predictive results are shown 

in Figures A5 to A7. 

From Figure A5 to Figure A7, it can be 

concluded that the DFVMD-LSTM model provides 

superior predictive results when an adequate training 

dataset is available, showing a reasonably good 

alignment with the trend of the original TSI data. In 

contrast, the LSTM model, as the prediction horizon 

increases, exhibits larger deviations from the original 

TSI data, with even more pronounced discrepancies at 

extreme points. Analyzing the prediction errors, the 

LSTM model's errors are significantly influenced by 

the fluctuation trends, closely resembling the 

fluctuation trends of the original data. In contrast, the 

DFVMD-LSTM model shows smoother prediction 

errors, with most time points having lower errors 

compared to the LSTM model. The 95 % prediction 

intervals obtained from the model predictions indicate 

that the DFVMD-LSTM model's intervals are wider 

than those of the LSTM model. This suggests that the 
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DFVMD-LSTM model captures larger fluctuations 

characteristics and fits the original data better. As the 

prediction horizon increases, the DFVMD-LSTM 

model's prediction errors do not show significant 

increases, indicating its stable predictive performance 

under sufficient training years. To achieve even higher 

predictive accuracy, increasing the model's training 

years and conducting thorough discussions on model 

parameters are necessary. Considering the TSI data's 

distinct and regular fluctuation frequencies and 

amplitudes, the data still demonstrates high predictive 

accuracy in long-term forecasting.  

In conclusion, the DFVMD-LSTM model not 

only resolves the issue of information leakage in the 

VMD-LSTM model but also enhances the predictive 

accuracy of the LSTM model, reducing the prediction 

errors from the original data. The DFVMD-LSTM 

model exhibits favorable predictive performance for 

various TSI time series under different training 

periods and prediction ranges, demonstrating its 

strong adaptability and robustness. Thus, this method 

can be applied to other domains requiring high-

precision time series forecasting. 

 
4.2. MULTISOURCE DATA PREDICTION ACCURACY 

ANALYSIS 

To further analyze the degree of model accuracy 

improvement, this paper uses the RMSE, the MAE and 

R2 to evaluate the prediction results produced by three 

different models under different datasets, and the 

results are shown in Table 3. 

In Table 3, R2 represents the correlation between 

the DFVMD-processed data and the original data, 

while “I” represents the prediction accuracy 

improvement achieved over the LSTM model by each 

hybrid model. The table shows that the average 

correlation between the DFVMD-processed data and 

the original data is as high as 0.97, indicating that the 

proposed method resolves the issue of poor correlation 

between the data obtained after VMD and the original 

data. This suggests its applicability in the field of high-

correlation multi-model prediction. Due to article 

length limitations, a comprehensive explanation of 

this topic will be covered in future research. From the 

prediction accuracies produced by each model under 

different datasets, it can be observed that the LSTM 

model, as a superior predictive model in long time 

series analysis cases, outperforms the traditional deep 

learning algorithm (the ANN model) in terms of 

prediction accuracy. Under Dataset 1, the VMD-

LSTM model yields an RMSE reduction of 51.31 % 

and a MAE reduction of 62.94 % compared to the 

LSTM model. This indicates that the information 

leakage caused by VMD leads to an overestimation of 

the prediction accuracy in the VMD-LSTM model, 

making it unsuitable for practical applications. Hence, 

this study does not further investigate its performance 

on other datasets. 

From the prediction results produced by each 

model on Dataset 1 to Dataset 4, it can be observed 

that as the training horizon decreases, the prediction 

accuracies of all models decrease to varying degrees, 

Table 3 Accuracy evaluation indices of each model under different characteristics. 

 
Model Dataset R2 RMSE 

(W.m-2) 

I 

 (%) 

MAE 

(W.m-2) 

I 

 (%) 

ANN Dataset 1 0.98 0.1314  / 0.1213  / 

LSTM 0.0835 / 0.0712 / 

VMD-LSTM 0.0406 51.31 0.0264 62.94 

DFVMD-LSTM 0.0688 17.62 0.0533 25.15 

ANN Dataset 2 0.98 0.1339  / 0.1209  / 

LSTM 0.1003 / 0.0890 / 

DFVMD-LSTM 0.0889 11.30 0.0766 13.87 

ANN Dataset 3 0.97 0.2534  / 0.2472  / 

LSTM 0.1114 / 0.1009 / 

DFVMD-LSTM 0.0825 25.90 0.0696 31.01 

ANN Dataset 4 0.98 0.2324  / 0.2231  / 

LSTM 0.1256 / 0.1080 / 

DFVMD-LSTM 0.1297 -3.26 0.1052 2.60 

ANN Dataset 5 0.96 0.1167  / 0.0980  / 

LSTM 0.1099 / 0.0908 / 

DFVMD-LSTM 0.0967 12.05 0.0689 24.13 

ANN Dataset 6 0.97 0.1559  / 0.1178  / 

LSTM 0.1347 / 0.1054 / 

DFVMD-LSTM 0.1124 16.53 0.0817 22.45 

ANN Dataset 7 0.98 0.1371  / 0.1057  / 

LSTM 0.1256 / 0.1009 / 

DFVMD-LSTM 0.0962 23.41 0.0693 31.30 
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 reaching their lowest values when the training horizon 

is half a TSI cycle. Compared to the LSTM model, the 

DFVMD-LSTM model demonstrates improved 

prediction accuracy at different training horizons, with 

an average RMSE reduction of 12.89 % and an average 

MAE reduction of 18.16 %. This indicates that the 

DFVMD-LSTM model not only solves the issue of 

information leakage in the VMD-LSTM model but 

also achieves significant prediction accuracy 

improvements over the LSTM model. However, when 

the training set is only half a TSI cycle, the RMSE of 

the DFVMD-LSTM model increases by 3.26 %. This 

suggests that both the DFVMD-LSTM model and the 

LSTM model exhibit greater uncertainty in their 

predictions when the training set is insufficient. 

Therefore, when predicting TSI time series, the 

training horizon should be greater than one TSI cycle 

to ensure an adequately trained model. 

From the prediction results produced by each 

model on Dataset 5 to Dataset 7, it can be observed 

that as the prediction horizon increases, the prediction 

accuracy of the LSTM model continuously decreases, 

while the DFVMD-LSTM model maintains more 

stability, indicating its stronger robustness. Compared 

to the LSTM model, the DFVMD-LSTM model 

exhibits an average RMSE reduction of 17.33 % and 

an average MAE reduction of 25.96 % across different 

prediction horizons. When predicting two TSI cycles, 

the DFVMD-LSTM model demonstrates the highest 

prediction accuracy improvement, with an RMSE 

reduction of 23.41% and a MAE reduction of 31.30 % 

compared to the LSTM model. This highlights that the 

DFVMD-LSTM model achieves higher prediction 

accuracy across different prediction horizons. 

In conclusion, the DFVMD-LSTM model 

demonstrates superior predictive accuracy to that of 

the LSTM model in experiments involving different 

training and prediction durations for two types of TSI 

time series. The average RMSE and MAE reductions 

of 14.79 % and 21.50 %, respectively, in its predictive 

results validate the strong applicability and robustness 

of the DFVMD-LSTM model for time series 

forecasting. Furthermore, the data processed through 

DFVMD and the predicted results exhibit remarkably 

high correlations with the original data. Therefore, the 

DFVMD-LSTM model possesses great potential for 

applications in high-precision time series prediction 

domains. 

 
5. CONCLUSION 

In this paper, a dual-fusion variational mode 

decomposition-long short-term memory neural 

network (DFVMD-LSTM) model is proposed for TSI 

time series prediction, addressing the issue of 

information leakage and the low correlation between 

the modal components obtained through VMD and the 

original data. This model is based on changing the 

VMD method and processing the decomposed data to 

avoid the information leakage caused by simultaneous 

decomposition of the testing and training sets. The 

dual-fusion method used in DFVMD retains more 

effective information from the original signals, 

thereby improving the prediction accuracy of the 

model. The proposed DFVMD-LSTM model is tested 

and validated on multiple TSI datasets, and the 

experimental results demonstrate the following.  

1. Compared to the single LSTM prediction model, 

the DFVMD-LSTM model exhibits RMSE 

reductions ranging from 27.94 % to 35.93 % and 

MAE reductions ranging from 37.86 % to 46.25 % 

for different values of K. In comparison with the 

FVMD-LSTM model, the DFVMD-LSTM model 

consistently demonstrates higher predictive 

accuracies and correlations for different K values. 

This indicates that the predictive accuracy of the 

DFVMD-LSTM model varies significantly with 

different K values, requiring the use of the grid 

search methodology to determine the optimal 

model parameter, K. 

2. The DFVMD-LSTM model resolves the issue of 

information leakage in the VMD-LSTM model, 

and the RMSE and MAE of the model are reduced 

by averages of 12.89 % and 18.16 %, respectively, 

when the same prediction period is used for 

different training periods. When different 

prediction periods are used for the same training 

period, the RMSE and MAE are reduced by 

averages of 17.33 % and 25.9 6%, respectively. 

These results indicate that the DFVMD-LSTM 

model has strong adaptability and robustness to 

different TSI datasets. On all datasets, the RMSE 

and MAE of the DFVMD-LSTM model are 

reduced by averages of 14.79 % and 21.50 %, 

respectively, confirming that the DFVMD-LSTM 

model has high prediction accuracy and can be 

applied to the field of high-precision TSI time 

series prediction. 

3. After applying DFVMD to the data, the average 

correlation coefficient R2 between the processed 

data and the original data reaches a maximum 

value of 0.97. This indicates that in the context of 

high-correlation multifeatured prediction, the data 

processed through DFVMD can be used as 

substitutes for the original data to improve the 

accuracy of multi-feature prediction. 

4. In addition, to further enhance the algorithm's 

predictive capabilities (especially for Long-term 

time series prediction), the training dataset could 

be expanded through methods such as simulating 

TSI observations or taking advantage of 

forthcoming longer datasets. Future work is 

essential to extend the forecast across multiple 

solar cycles, a crucial requirement for accurately 

modeling the solar influence on Earth's climate, as 

outlined in Herrera et al. (2015), Egorova et al. 

(2018) and Schmutz (2021). 
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APPENDIX A 

Considering the consistent legends in Figures A1 to 6, a uniform description is given as follows: 

The black curve represents the original TSI time series, denoted as "TRUE." 

The red curve represents the predictive results and prediction errors (the difference between the ground truth 

and the predicted values) of the DFVMD-LSTM model for each dataset. 

The green curve represents the predictive results and prediction errors of the LSTM model for each dataset. 

The blue curve represents the predictive results and prediction errors of the ANN model for each dataset. 

The light gray area indicates the 95 % prediction interval of the LSTM model, representing the range within 

which 95 % of the data points are expected to fall after fitting. 

The light blue area indicates the 95 % prediction interval of the DFVMD-LSTM model. 

 

Fig. A1 Prediction results and errors of each model in dataset 1 (Figure (a) is prediction result, (b) is error check). 

. 

Fig. A2 Prediction results and errors of each model in dataset 2 (Figure (a) is prediction result, (b) is error check). 

 

Fig. A3 Prediction results and errors of each model in dataset 3 (Figure (a) is prediction result, (b) is error check). 
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Fig. A4 Prediction results and errors of each model in dataset 4 (Figure (a) is prediction result, (b) is error check). 

 

Fig. A5 Prediction results and errors of each model in dataset 5 (Figure (a) is prediction result, (b) is error check). 

 

Fig. A6 Prediction results and errors of each model in dataset 6 (Figure (a) is prediction result, (b) is error check). 

 

Fig. A7 Prediction results and errors of each model in dataset 7 (Figure (a) is prediction result, (b) is error check). 

 

 


