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ABSTRACT 
 

 

In this paper we investigate the possibility of combining least squares collocation (LSC) and 
spherical functions (spherical harmonic analysis SHA) with real eigenvalues methods for 
calculating the geoid model. A comparison of local analytical covariance functions calculated on 
the basis of Legendre polynomials and polynomials with real eigenvalues is carried out. We 
computed geoid model for the region of Central Ukraine using the proposed method and assessed
its accuracy. The input data for the computation of model are gravity anomalies, obtained after
filtering the results of digitization of gravimetric maps by the 3σ criterion, functionals of the Earth's
gravity field from the global gravity model EGM2008 and GNSS leveling data. The standard
deviation was found between the model values of the geoid height and the values, obtained from
GNSS leveling at the points of the state geodetic network. The accuracy of the geoid model
obtained using the proposed method is approximately 2 cm. Such accuracy is primarily
conditioned by the quality of initial data. To increase the accuracy of the model it is necessary to 
carry out a complex of gravimetric works in the studied region. 
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INTRODUCTION 

An integral part of solving modern scientific and 
applied problems of geodesy, geophysics, global 
geodynamics etc. is the modeling of the Earth's 
gravitational field, the interpretation of the obtained 
results and their direct use. The active development of 
new geodetic and geophysical technologies, 
increasing the accuracy of measuring devices, 
technological challenges of modern times require the 
improvement of methods of the Earth's gravity field 
modeling. In particular, networks of permanent GNSS 
stations actively develop in Ukraine today (Tretyak 
and Brusak, 2022). We need to compute a high-
precision geoid model for determination of gravity-
dependent heights by satellite methods. 

On a global scale Legendre's spherical functions 
are mostly used as the basic system of functions to 
calculate gravity field models. Such parameterization 
is considered standard for representing the global 
gravitational field of the Earth.  

On a regional scale other methods are used to 
solve similar problems based on model and 
operational approaches of physical geodesy. Such 
methods include least square collocation (LSC) 
(Tscherning, 2015), calculation of geoid heights based 
on the Stokes formula (Sideris, 2005), use of radial 
basis functions (Marchenko et al., 2015) etc.  

Another method of modeling the regional gravity 
field of the Earth is spherical cap harmonic analysis, 
which is based on the model approach of physical 
geodesy. This method is proposed in (Haines, 1985). 
It involves transforming the input data into a spherical 
cap and using Legendre's spherical functions of real 
degree as a base system of functions. Such functions 
are solutions of Laplace equation and form two 
orthogonal systems of functions on the cap of the 
sphere. However, in general these functions are non-
orthogonal. They do not have recurrence relations and 
can be found by expansion into an infinite 
hypergeometric series (Haines, 1988). Based on the 
SCHA method, a number of similar methods have 
been developed, for example ASHA (De Santis, 
1992), R-SCHA (Thébault et al., 2006), STHA 
(Dzhuman, 2017), TOSCHA (De Santis, 1991) etc. 

The aim of this work is to compare the LSC 
methods and spherical functions with real eigenvalues, 
namely the use of the corresponding polynomials as 
a basic system of functions to represent the local 
analytical covariance function, as well as the 
approbation of this method for calculating 
a high- precision geoid model. 

 
METHOD 

The use of the SCHA method for modeling the 
regional gravity field of the Earth involves the 
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 expansion of the gravity potential in a series by spherical functions with real eigenvalues (De Santis and Torta, 
1997): 
 

𝑉 ൌ ∑ ∑ ൫𝑎ത௞௠𝑅ത௞௠ሺ𝜃, 𝜆ሻ ൅ 𝑏ത௞௠𝑆௞̅௠ሺ𝜃, 𝜆ሻ൯௞
௠ୀ଴

௄೘ೌೣ
௞ୀଵ ,  

(1) 
 

where 𝑎ത and 𝑏ത are normalized unknown coefficients of the model, 𝐾௠௔௫ is the maximum order of the model, 
functions R and S are next: 
 

𝑅௞௠ሺ𝜃, 𝜆ሻ ൌ 𝑃௡ೖ௠ሺ𝑐𝑜𝑠 𝜃ሻ 𝑐𝑜𝑠ሺ𝑚𝜆ሻ,
𝑆௞௠ሺ𝜃, 𝜆ሻ ൌ 𝑃௡ೖ௠ሺ𝑐𝑜𝑠 𝜃ሻ 𝑠𝑖𝑛ሺ𝑚𝜆ሻ.

                                                                                                                      (2) 

 

Formulas for finding the norm of these functions can be found in (Haines, 1985; Hwang and Chen, 1997). 
Functions 𝑃௡ೖ௠ሺ𝑐𝑜𝑠 𝜃ሻ are obtained after using boundary conditions on the differential equation  

 
ௗ

ௗఓ
ቂሺ1 െ 𝜇ଶሻ

ௗ௉೘೙ሺఓሻ

ௗఓ
ቃ ൅ ቂ𝑛ሺ𝑛 ൅ 1ሻ െ

௠మ

ଵିఓమ
ቃ 𝑃௠௡ሺ𝜇ሻ ൌ 0,   

(3) 
 

In the case of a spherical trapezium (STHA method) functions (2) will take the form (Dzhuman, 2017): 

𝑅௞௠ሺ𝜃, 𝜆ሻ ൌ 𝑃௞௠ሺ𝑐𝑜𝑠𝜃ሻ𝑐𝑜𝑠 ቀ2𝜋𝑚
ఒିఒ೘೔೙

ఒ೘ೌೣିఒ೘೔೙
ቁ ,

𝑆௞௠ሺ𝜃, 𝜆ሻ ൌ 𝑃௞௠ሺ𝑐𝑜𝑠𝜃ሻ𝑠𝑖𝑛 ቀ2𝜋𝑚
ఒିఒ೘೔೙

ఒ೘ೌೣିఒ೘೔೙
ቁ .

                                                                                                   (4) 

and functions 𝑃௡ೖ௠ሺ𝑐𝑜𝑠 𝜃ሻ can be found from the formula 

𝑃௞௠ ൌ 𝑠𝑖𝑛௠ሺ𝜃 െ 𝜃௠௜௡ሻ 𝐹 ቆ𝑚 െ 𝑛௞,𝑛௞ ൅ 𝑚 ൅ 1,1 ൅𝑚,
1 െ 𝑐𝑜𝑠ሺ𝜃 െ 𝜃௠௜௡ሻ

2
 ቇ ,   𝑖𝑓 𝜃௠௜௡ ൑ 𝜃 ൑ 𝜃௠௘௔௡

𝑃௞௠ ൌ ሺെ1ሻ௞ା௠𝑠𝑖𝑛௠ሺ𝜃௠௔௫ െ 𝜃ሻ 𝐹 ቆ𝑚 െ 𝑛௞,𝑛௞ ൅𝑚 ൅ 1,1 ൅𝑚,
1 െ 𝑐𝑜𝑠ሺ𝜃௠௔௫ െ 𝜃ሻ

2
 ቇ ,   𝑖𝑓 𝜃௠௘௔௡ ൑ 𝜃 ൑ 𝜃௠௔௫

(5) 
where k and m are integer numbers, 𝜃௠௘௔௡ is average value, that is 𝜃௠௘௔௡ ൌ ሺ𝜃௠௜௡ ൅ 𝜃௠௔௫ሻ/2. 

Then the basic system of functions will be orthogonal. We can use quadrature formulas similar to Neumann's 
second method (Dzhuman, 2018) for finding the coefficients of the model. In this case, all elements of the matrix 
of normal equations can be neglected except the elements of the main diagonal. For a grid with node coordinates 
𝜃௜ ሺ𝑖 ൌ 1, … ,𝑁തതതതതതതതതሻ, 𝜆௝  ሺ𝑗 ൌ 1, … ,𝑀തതതതതതതതതሻ any element of the main diagonal of the matrix of normal equations can be 
found as follow 

 

𝑛௤௤ ൌ
ெ

ଶିఋ೘
∑ 𝜔௜𝑃௞௠

ଶ ሺ𝜃௜ሻ
ே
௜ୀଵ ,                                                                                                                                    (6) 

 

where 𝑛௤௤ is element of the main diagonal of the matrix of normal equations, 𝛿௠ is the Kronecker symbol: 
 

𝛿௠ ൌ
1, 𝑖𝑓   𝑚 ൌ 0,
0, 𝑖𝑓   𝑚 ് 0.                                                                                                                                                 (7) 

 

Let us consider the possibility of using spherical functions with real eigenvalues in the LSC method. The 
optimal way to represent the local analytic covariance function (ACF) between points P and Q is its series 
expansion by Legendre polynomials (Moritz, 1980): 

 

𝐾෩ሺ𝑃,𝑄ሻ ൌ ∑ 𝑘෨௡ ቀ
ோమ

௥௥ᇲ
ቁ
௡ାଵ

𝑃௡ሺ𝑐𝑜𝑠𝜓ሻஶ
௡ୀே೘ೌೣାଵ ,                                                                                                        (8) 

 

where R is mean radius of the Earth, 𝜓 is spherical distance between points P and Q, 𝑟 and 𝑟ᇱ are spherical 
coordinates of points P and Q respectively, 𝑃௡ are Legendre polynomials, 𝑘෨௡ are expansion coefficients. To 
determine the coefficients 𝑘෨௡ the well-known Cherning-Rapp model was used (Tscherning, 2015): 
 

𝑘෨௡ ൌ
஺

ሺ௡ିଵሻሺ௡ିଶሻሺ௡ା஻ሻ
𝑠௡ାଶ,                                                                                                                                      (9) 

 

and s is given by the formula 
 

𝑠 ൌ
ோಳ
మ

ோమ
,                                                                                                                                                                     (10) 

 

where 𝑅஻ is Bjerhammar sphere radius. 
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 In the Cherning-Rapp model four parameters are 
unknowns: 𝑁௠௔௫, А, В and s. They are determined by 
the fitting based on the empirical covariance function 
(ECF).  

Usually, the covariance function of the 
disturbance potential is taken as the function of 
the reproducing kernel K(P, Q): 

 

𝐾ሺ𝑃,𝑄ሻ ൌ ∑ 𝑘௡ ቀ
ோమ

௥௥ᇲ
ቁ
௡ାଵ

𝑃௡ሺ𝑐𝑜𝑠𝜓ሻஶ
௡ୀே೘ೌೣାଵ .        (11) 

 

Practically all functionals of the gravity potential 
can be represented through the function of the 
disturbance potential using linear functionals. In this 
case the arbitrary covariance function C can be 
represented as (Moritz, 1980): 

 

𝐶௜௝ሺ𝑃,𝑄ሻ ൌ 𝐿௜
௉𝐿௝

ொ𝐾ሺ𝑃,𝑄ሻ,                                       (12) 
 

where 𝐿௜
௉ is і-th linear functional at point P, 𝐿௝

ொ is j-th 
linear functional at point Q. There is a dependence 
between the coefficients of the covariance functions of 
the geoid heights and the disturbance potential: 
 

𝑘௡ ൌ 𝛾଴
ଶ𝑘෨௡.                                                              (13) 

 

It is not difficult to find expressions for 
covariance functions (Moritz, 1980) 

 

𝐶ሚሺ𝑃,𝑄ሻ ൌ 𝑐𝑜𝑣ሾ𝑇ሺ𝑃ሻ,∆𝑔ሺ𝑄ሻሿ,
𝐶ሺ𝑃,𝑄ሻ ൌ 𝑐𝑜𝑣ሾ∆𝑔ሺ𝑃ሻ,∆𝑔ሺ𝑄ሻሿ.

                             (14) 

 

They can be obtained in the form 
 

𝐶෤ሺ𝑃,𝑄ሻ ൌ ∑ 𝑛െ1

𝑟′
𝑘𝑛 ቀ

𝑅2

𝑟𝑟′
ቁ
𝑛൅1

𝑃𝑛ሺ𝑐𝑜𝑠𝜓ሻ
∞
𝑛ൌ𝑁𝑚𝑎𝑥൅1 ,

𝐶ሺ𝑃,𝑄ሻ ൌ ∑ ሺ𝑛െ1ሻ2

𝑟𝑟′
𝑘𝑛 ቀ

𝑅2

𝑟𝑟′
ቁ
𝑛൅1

𝑃𝑛ሺ𝑐𝑜𝑠𝜓ሻ
∞
𝑛ൌ𝑁𝑚𝑎𝑥൅1 .

      (15) 

 

For the expansion of the considered covariance 
functions in a series by STHA-polynomials, we first 
set a hard condition 𝜃௠௜௡ ൌ 0. In this case the function 
of the reproducing kernel (the covariance function of 
the disturbance potential) K(P, Q) we can present as 

 

𝐾ሺ𝑃,𝑄ሻ ൌ ∑ 𝑘௟ ቀ
ோమ

௥௥ᇲ
ቁ
௡೗ାଵ

𝑃௡೗ሺ𝑐𝑜𝑠𝜓ሻ
௅೘ೌೣ
௟ୀ௅೘೔೙

.           (16) 
 

The coefficients of the expansion into a series of 
the covariance function of the geoid heights 𝑘෨௟ can be 
found using the formula (13). Formulas (15) will be 
next: 

 

𝐶෤ሺ𝑃,𝑄ሻ ൌ ∑ 𝑛𝑙െ1

𝑟′
𝑘𝑙 ቀ

𝑅2

𝑟𝑟′
ቁ
𝑛𝑙൅1

𝑃𝑛𝑙ሺ𝑐𝑜𝑠𝜓ሻ
𝐿𝑚𝑎𝑥
𝑙ൌ𝐿𝑚𝑖𝑛

,

𝐶ሺ𝑃,𝑄ሻ ൌ ∑ ሺ𝑛𝑙െ1ሻ2

𝑟𝑟′
𝑘𝑙 ቀ

𝑅2

𝑟𝑟′
ቁ
𝑛𝑙൅1

𝑃𝑛𝑙ሺ𝑐𝑜𝑠𝜓ሻ
𝐿𝑚𝑎𝑥
𝑙ൌ𝐿𝑚𝑖𝑛

.
         (17) 

 

In formula (15) the expansion is carried out using 
Legendre polynomials. In turn in formula (17) the 
expansion is performed using polynomials with real 
eigenvalues. Accordingly, nl is a real eigenvalue, and 
l is an integer for ordering nl. 

Calculation of the coefficients of the covariance 
function of the disturbance potential is also possible 

using the Cherning-Rapp model in the following 
version: 

 

𝑘௟ ൌ
஺

ሺ௡೗ିଵሻሺ௡೗ିଶሻሺ௡೗ା஻ሻ
𝑠௡೗ାଶ.                                   (18) 

 

Comparison of covariance and cross-covariance 
functions, decomposed into a series by Legendre 
polynomials and polynomials with real eigenvalues, 
was carried out to test the proposed method as well as 
geoid model was calculated using the proposed 
functions and the accuracy of the obtained model was 
evaluated. 
 
DATA 

We chose the Central Ukraine, namely Odesa 
and Vinnytsia regions, as the research area. Input data 
consists of number of heterogeneous information: 

 terrestrial gravity anomalies ∆g, obtained after 
filtering the results of digitization of gravimetric 
maps by the 3σ criterion (Marchenko et al., 2015); 

 functionals of the Earth's gravity field from the 
global gravity model EGM2008; 

 GNSS leveling data. 
 

Map of gravity anomalies ∆g, obtained after 
filtering the results of digitization of gravimetric maps, 
is shown in Figure 1. 

Researched region (spherical trapezoid) must be 
completely and uniformly covered by the input data 
for a reliable determination of geoid heights. 
Therefore, in places where gravity anomalies ∆g are 
represented in insufficient quantities (mostly the Black 
Sea area and Moldova area), we used anomalies, 
calculated from the model of the global gravitational 
field of the Earth EGM2008 (Barthelmes and Köhler, 
2016; Pavlis et al., 2008). 

We computed gravity anomalies ∆gsys and 
contribution of geoid heights Nsys, corresponding to the 
long-wave features of the gravity field, as a systematic 
component according to the global model of the 
Earth's gravity field EGM2008 up to 360 
degrees/order (Ince et al., 2019) for using the 
procedure "Remove-Compute-Restore". 

Since the main type of input data for building 
geoid model for the area of Vinnytsia and Odesa 
regions is terrestrial gravimetry data, the use of the 
EGM2008 model gives the best results precisely in 
the case of 360 degrees/order, which corresponds to 
the field resolution of (30'×30'). Applying its version 
to a higher degree and order does not improve the 
solution for the geoid in long and medium waves. 

Residual differences ∆𝑔res were calculated 
between gravity anomalies, obtained as a result of 
digitization of gravimetric maps, and gravity 
anomalies according to the EGM2008 model up to 360 
degree/order: 

 

∆𝑔res = ∆g - ∆gsys.                                                    (19) 
 

Residual differences ∆𝑔res are shown in Figure 2. 
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Fig. 1 Map of gravity anomalies ∆g, obtained after filtering the results of digitization of gravimetric maps. 

Fig. 2 Residual differences of gravity anomalies ∆𝑔res. 

The  input  data  are  reduced  to  the  uniform 
grid for determining the elements of the normal 
equation matrix according to formula (6) using the 
least square prediction. We found the covariance 
functions 𝑐𝑜𝑣ሾ𝑇ሺ𝑃ሻ,𝑇ሺ𝑄ሻሿ, 𝑐𝑜𝑣ሾ𝑁ሺ𝑃ሻ,𝑁ሺ𝑄ሻሿ, 
𝑐𝑜𝑣ሾ𝑇ሺ𝑃ሻ,∆𝑔ሺ𝑄ሻሿ та 𝑐𝑜𝑣ሾ∆𝑔ሺ𝑃ሻ,∆𝑔ሺ𝑄ሻሿ according 

to the Cherning-Rapp model (Tscherning and Rapp, 
1974) using Legendre polynomials and polynomials 
with real eigenvalues by the ECF, constructed on the 
basis of gravity anomalies. The series expansion is 
from 361 to 1000 orders in the case of Legendre 
polynomials (15), and from 3 to 12 orders in the case 
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Fig. 3 Covariance function c𝑜𝑣ሾ𝑁ሺ𝑃ሻ,𝑁ሺ𝑄ሻሿ, 
expanded in a series by Legendre 
polynomials (blue curve) and polynomials 
with real indices (red curve), [𝑚ଶ]. 

Fig. 4 Covariance function 𝑐𝑜𝑣ሾ𝑇ሺ𝑃ሻ,𝑇ሺ𝑄ሻሿ, 
expanded in a series by Legendre 
polynomials (blue curve) and polynomials 
with real indices (red curve), [𝑚ଶ ∙ 𝑚𝐺𝑎𝑙ଶ]. 

Fig. 5 Covariance function 𝑐𝑜𝑣ሾ𝑇ሺ𝑃ሻ,∆𝑔ሺ𝑄ሻሿ 
expanded in a series by Legendre 
polynomials (blue curve) and polynomials 
with real indices (red curve), [𝑚 ∙ 𝑚𝐺𝑎𝑙ଶ]. 

Fig. 6 Covariance function 𝑐𝑜𝑣ሾ∆𝑔ሺ𝑃ሻ,∆𝑔ሺ𝑄ሻሿ, 
expanded in a series by Legendre 
polynomials (blue curve) and polynomials 
with real indices (red curve), [𝑚𝐺𝑎𝑙ଶ]. 

of polynomials with real indices (17). Figures 3-6 
show the obtained covariance functions. 

We investigated that the difference between the 
covariance functions is no more than 5 %. This 
approach will make it possible to significantly 
decrease the number of coefficients of analytical 
covariance function expansion in the. For example, we 
can use for the studied region only ≈10 coefficients of 
polynomials with real eigenvalues instead ≈640 
coefficients of Legendre polynomials for constructing 
the ECF (see Figures 3-6). 

Data from GNSS leveling at the points of the 
State Geodetic Network of Ukraine were used to 
assess the accuracy of the geoid model. This data set 
consisted of 485 points, including 184 points of the 

first class, 82 points of the second class and 219 points 
of the third class (Fig. 7). The accuracy of heights 
obtained from GNSS-leveling is 10-15 mm. 

The use of GNSS leveling data in the 
construction of a geoid model leads to the need of 
determination the accuracy of GNSS leveling results 
in an absolute measure taking into account their 
connection with geometric leveling of various classes. 
It is sufficient to estimate the total error of the 
measured geoid heights using the Molodensky 
formula if there are mean square errors of the geodetic 
height according to GNSS measurements and mean 
square errors of normal heights according to the results 
of leveling. 
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Fig. 7 Data set of GNSS leveling points: І class (green triangles), ІІ class (blue squares) and ІІІ class (yellow 
circles). 

Table 1 Eigenvalues nk of basic functions. 

k/m 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 0.0                         

1 58.1 44.4                       

2 92.9 92.9 74.0                     

3 134.1 129.5 124.7 101.9                   

4 170.5 170.5 163.0 155.1 129.2                 

5 210.5 207.6 204.7 194.9 184.5 155.9               

6 247.5 247.5 242.6 237.5 225.8 213.4 182.4             

7 287.0 284.9 282.8 276.1 269.3 256.0 241.8 208.7           

8 324.3 324.3 320.6 316.8 308.7 300.3 285.6 269.8 234.8         

9 363.5 361.9 360.2 355.1 349.9 340.5 330.8 314.8 297.6 260.7       

10 401.1 401.1 398.1 395.1 388.7 382.3 371.8 360.9 343.7 325.1 286.5     

11 440.1 438.7 437.4 433.2 429.0 421.6 414.1 402.5 390.5 372.2 400.6 312.3   

12 477.8 477.8 475.2 472.7 467.5 462.3 453.9 445.4 432.9 419.9 703.8 379.7 889.0 

 

However the situation is significantly 
complicated by the fact that the average square errors 
of the leveling results is traditionally estimated 
depending on the length of the leveling. For this 
reason, an independent assessment of the total error of 
the measured geoid heights was carried out using the 
standard 3σ criterion by comparison with independent 
models of gravimetric geoids (Marchenko et al., 
2015). 

 
 

RESULTS AND DISCUSSION 

We calculated the STHA-model of residual 
values of geoid heights Nres up to the 12th degree/order 
using the least squares method. The procedure for 
calculating the STHA-model of geoid is described in 
detail in (Dzhuman, 2018). For this purpose, the 
eigenvalues nk of spherical functions with real degrees 
(see Table 1) were first calculated according to the 
formulas  given  in  (Haines, 1988).  Figure 8 shows 
the model of residual values of geoid heights. 

The next stage was the "Restore" of the geoid 
model (Fig. 9). 
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Fig. 8 Model of residual values of geoid heights Nres.  

Fig. 9 The model of the gravimetric geoid heights Nmod. 

Geoid models are mostly characterized by 
minimum, maximum, average and standard 
deviations. All the above statistics we calculated for 
the geoid model EGM2008 up to 360 degree/order 
Nsys, the model of residual values of geoid heights Nres 

and the model of gravimetric geoid heights Nmod. 
These statistics are obtained relative to the reference 
surface of the global ellipsoid. The results are shown 
in Table 2. 
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Table 2 Main statistics of geoid models. 

Model Minimum deviation,  
m 

Maximum 
deviation, m 

Average deviation, 
m 

Standard deviation, 
m 

Nsys 25.141 33.518 30.364 1.949 
Nres -1.056 0.749 0.006 0.232 
Nmod 25.054 33.730 30.370 1.980 

The standard deviation of the residual values of 
the geoid is ≈0.23 m (see Table 2), which is fully 
consistent with the accuracy of the EGM2008 model 
up to 360 degrees/order for the studied region. Usually 
there is a significant systematic component in the 
differences between gravimetric and geometric 
geoids. It is well known that for the territory of Europe 
such difference is in absolute value about half meter in 
average. In our case the difference between 
gravimetric and geometric (obtained from GNSS-
leveling) geoids was ∆N = -0.390 m. The standard 
deviation between the model values of the geoid 
height and the values obtained from GNSS leveling is 
≈2.1 sm. Such accuracy is primarily conditioned by the 
quality of initial data. To increase the accuracy of the 
model it is necessary to carry out a complex of 
gravimetric works in the studied region. 

Since in Ukraine today the official reference 
system is USK2000, which is based on the Krasovskyi 
ellipsoid, we recalculated the obtained geoid model to 
this ellipsoid. The geoid model relative to the 
Krasovskyi ellipsoid for the territory of the Vinnytsia 
region is shown in Figure 10 and on the territory of 
Odesa region is shown in Figure 11. 

It should be noted that in general the heights of 
the geoid for the territory of Ukraine, including the 
territory of the Vinnytsia and Odesa regions, are 
significantly smaller relative to the Krasovskyi 
ellipsoid compared to the GRS-80 ellipsoid. The 
heights of the geoid relative to the Krasovskyi 
ellipsoid range from +0.8 m (southeast Odesa region) 
to +3.6 m (west Vinnytsia region). The heights of the 
geoid above the GRS-80 ellipsoid range from +28 m 
to +33 m. 

CONCLUSIONS  

We proposed to use polynomials with real 
degrees as the basic system of functions for 
representing the local analytic covariance function. 
Covariance and cross-covariance functions were 
constructed using Legendre polynomials and 
polynomials with real degrees and compared to test 
this approach. We investigated that the difference 
between the covariance functions is no more than 5 %. 
This approach will make it possible to significantly 
decrease the number of coefficients of analytical 
covariance function expansion in the series. 

High-precision geoid model was computed for 
the territory of Central Ukraine (Vinnytsia and Odesa 
regions) relative to the GRS80 ellipsoid and the 
Krasovskyi ellipsoid using the proposed method. 
The accuracy of the obtained geoid model was 
evaluated in relation to the GNSS leveling data at 485 
points. The standard deviation is ≈2.1 cm.  

We investigated that for the studied region the 
systematic difference between the heights of the 
gravimetric geoid and the geoid heights, determined 
from GNSS leveling, is -0.390 m, while for the 
territory of Europe such difference is on average about 
half a meter. 

The proposed method can also be used to 
calculate regional models of the Earth's magnetic field 
and VTEC ionospheric parameter models. 
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Fig. 10 Geoid model relative to the Krasovskyi ellipsoid on the Vinnytsia region area. 
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Fig. 11 Geoid model relative to the Krasovskyi ellipsoid on the Odesa region area. 
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